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Abstract

We address the problem of crowd localization, i.e., the pre-
diction of dots corresponding to people in a crowded scene.
Due to various challenges, a localization method is prone to
spatial semantic errors, i.e., predicting multiple dots within a
same person or collapsing multiple dots in a cluttered region.
We propose a topological approach targeting these semantic
errors. We introduce a topological constraint that teaches the
model to reason about the spatial arrangement of dots. To en-
force this constraint, we define a persistence loss based on the
theory of persistent homology. The loss compares the topo-
graphic landscape of the likelihood map and the topology of
the ground truth. Topological reasoning improves the quality
of the localization algorithm especially near cluttered regions.
On multiple public benchmarks, our method outperforms pre-
vious localization methods. Additionally, we demonstrate the
potential of our method in improving the performance in the
crowd counting task.

Introduction
Localization of people or objects, i.e., identifying the loca-
tion of each instance, in a crowded scene is an important
problem for many fields. Localization of people, animals,
or biological cells provides detailed spatial information that
can be crucial in journalism (McPhail and McCarthy 2004),
ecology (Elphick 2008) or cancer research (Barua et al.
2018). A high quality localization algorithm naturally solves
the popular crowd counting problem, i.e., counting the num-
ber of people in a crowded scene (Idrees et al. 2018). Fur-
thermore, the rich spatial pattern can be used in many other
tasks, e.g., initialization of tracking algorithms (Ren et al.
2018), animal population studies (Elphick 2008), tumor mi-
croenvironment analyses (Aukerman et al. 2020), and mon-
itoring of social distancing (Yang et al. 2020).

Despite many proposed methods (Zhao, Nevatia, and Wu
2008; Ge and Collins 2009; Liu, Weng, and Mu 2019; Babu
Sam et al. 2020), localization remains a challenging task.
Aside from fundamental challenges of a crowded scene such
as perspective, occlusion, and cluttering, one key issue is the
limitation of annotation. Due to the large number of target
instances, the ground truth annotation is usually provided
in the form of dots located inside the instances (Fig. 1(a)).
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These dots only provide limited information. A dot can be
arbitrarily perturbed as long as it is within the target in-
stance, which can be of very different scales. As a con-
sequence, the dot features are not specific. Without suffi-
cient supervision, we cannot decide the boundary between
instances. Thus, it is very hard to prevent spatial semantic
errors, i.e., predicting multiple dots within a same person
(false positives) or collapsing the dots of multiple persons in
a cluttered area (false negatives).

In this paper, we propose a novel topological approach for
the localization problem. We treat the problem as predict-
ing a binary mask, called the Topological Map (Fig. 1(b)),
whose connected components one-to-one correspond to the
target dots. The number of components in the predicted
mask should be the same as the number of ground truth dots.
This spatial semantic constraint is indeed topological. Dur-
ing training we enforce such a “topological constraint” lo-
cally, i.e., the topology should be correct within each ran-
domly sampled patch. The topological constraint teaches
the model to reason about spatial arrangement of dots and
avoids incorrect phantom dots and collapsing dots. This sig-
nificantly improves the localization method quality, espe-
cially near dense regions. See Fig. 1(b), (c) and (d).

To enforce the topological constraint, we introduce a
novel loss, called persistence loss, based on the theory of
persistent homology (Edelsbrunner and Harer 2010). In-
stead of directly computing the topology of the predicted
binary mask, we inspect the underlying likelihood map, i.e.,
the sigmoid layer output of the neural network. The per-
sistent homology algorithm captures the topographic land-
scape features of the likelihood map, namely, modes and
their saliency. Our persistence loss compares these modes
and the true topology. Within a sample patch, if there are k
true dots, the persistence loss promotes the saliency of the
top k modes and penalizes the saliency of the remaining
modes. This way it ensures that there are exactly k modes
in the likelihood landscape, all of which are salient. A 0.5-
thresholding of such a topologically correct likelihood map
gives a binary mask with exactly k components, as desired.

We evaluate our method on various benchmarks and show
that our proposed method, TopoCount, outperforms previous
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Figure 1: (a) a sample image and the ground truth (GT) dots; (b) the localization result of our method (TopoCount); (c) without
the topological constraints, topological errors may happen and the localization quality is impacted; (d) closeup view of some
specific patches. Without the topological constraints, the prediction often misses dots or collapses nearby dots (R1). It can also
create phantom dots (R2 and R3). TopoCount successfully avoids such errors; (e) a density map from a SOTA counting method
(Ma et al. 2019). The density map loses important topological information and cannot recover spatial arrangement of dots.

localization methods in various localization metrics. 1

Application to crowd counting. We further demonstrate the
power of our localization method by applying it to a closely
related problem, crowd counting. For the counting problem,
training images are also annotated with dots, but the task is
simpler; one only needs to predict the total number of in-
stances in each image. State-of-the-art (SOTA) counting al-
gorithms, such as (Liu, Salzmann, and Fua 2019; Ma et al.
2019; Jiang et al. 2020; Wang et al. 2020a), learn to approxi-
mate a density map of the crowd whose integral gives the to-
tal count in the image. The learnt density function, even with
accurate counting number, can significantly lose the topo-
logical characterization of the target density, especially near
the dense population region. See Fig. 1(e).

To solve the counting problem, we can directly apply the
localization algorithm and count the number of dots in the
output map. However, this is not necessarily ideal for the
task. Counting is an easier problem than localization. It has
been shown that relaxing the output to a density function
is the most effective strategy, although it will lose the exact
locations of people or objects.

To achieve the best counting performance, we incorpo-
rate our localization result as complimentary information
for density-based counting algorithms. By introducing our
TopoCount results as additional input to SOTA counting al-
gorithms (Ma et al. 2019; Liu, Salzmann, and Fua 2019), we
improve their counting performance by 7 to 28 % on several
public benchmarks. This further demonstrates the power of
the spatial configuration information that we obtain through
the topological reasoning.
In summary, our technical contribution is three-fold.
• We propose a topological constraint to address the topo-

logical errors in crowd localization.
• To enforce the constraint, we propose a novel persistence

loss based on the theory of persistent homology. Our
method achieves SOTA localization performance.

• We further integrate the topology-constrained localization
algorithm into density-based counting algorithms to im-
prove the performance of SOTA counting methods.

1The code and a full version of this paper can be found at
https://github.com/TopoXLab/TopoCount.

Related Work
We discuss various localization approaches; some of which
learn the localization algorithm jointly with the counting
model. Babu Sam et al. (2020) learn to predict bounding
boxes of human heads by fusing multi-scale features. The
model is trained with cross entropy loss over the whole im-
age and special focus on selected high error regions. Liu
et al. (2018) performs detection using Faster RCNN (Ren
et al. 2015). Faster RCNN has been shown to not scale well
with the increasing occlusion and clutter in crowd counting
benchmarks (Wang et al. 2020c). Liu, Weng, and Mu (2019)
also learn to predict a localization map as a binary mask.
They use a weighted cross-entropy loss to compensate for
the unbalanced foreground/background pixel populations. In
dense regions, the localization is further improved by recur-
rent zooming. However, all these methods are not explicitly
modeling the topology of dots and thus cannot avoid topo-
logical errors (phantom dots and dots collapsing).

A related method is by (Laradji et al. 2018). It formulates
the problem as a semantic segmentation problem. Blobs of
the segmentation mask correspond to the target object in-
stances. A blob is split if it contains multiple true dots and is
suppressed if it does not contain any true dot. This method
is not robust to the perturbation of dot locations; a blob
that barely misses its corresponding true dot will be com-
pletely suppressed. On the contrary, our method leverages
the deformation-invariance of topological structures arising
from dots, and thus can handle the dot perturbation robustly.

(Ranjan, Le, and Hoai 2018; Cao et al. 2018; Li, Zhang,
and Chen 2018; Liu, Salzmann, and Fua 2019; Ma et al.
2019; Jiang et al. 2020; Ranjan et al. 2020; Wang et al.
2020a). These methods train a neural network to generate
a density function, the integral of which represents the esti-
mated object count (Lempitsky and Zisserman 2010). The
ground truth density functions are generated by Gaussian
kernels centered at the dot locations. While these methods
excel at counting, the smoothed density functions lose the
detailed topological information of the original dots, espe-
cially in dense areas (see Fig. 1(e)). As a consequence, local-
ization maps derived from the estimated density maps, e.g.,
via integer programming (Ma, Lei Yu, and Chan 2015) or
via multi-scale representation of the density function (Idrees
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et al. 2018), are also of limited quality.
Topological information has been used in various learn-

ing and vision tasks. Examples include but are not limited
to shape analysis (Reininghaus et al. 2015; Carriere, Cu-
turi, and Oudot 2017), graph learning (Hofer et al. 2017;
Zhao and Wang 2019; Zhao et al. 2020), clustering (Ni
et al. 2017; Chazal et al. 2013), learning with label noise
(Wu et al. 2020) and image segmentation (Wu et al. 2017;
Mosinska et al. 2018; Chan et al. 2017; Waggoner et al.
2015). Persistent-homology-based objective functions have
been used for image segmentation (Hu et al. 2019; Clough
et al. 2019), generative adversarial networks (GANs) (Wang
et al. 2020b), graphics (Poulenard, Skraba, and Ovsjanikov
2018) and machine learning model regularization (Hofer
et al. 2019; Chen et al. 2019). To the best of our knowl-
edge, our method is the first to exploit topological informa-
tion in crowd localization and counting tasks, and to use a
topology-informed loss to solve the corresponding topolog-
ical constraint problem.

Method: TopoCount
We formulate the localization problem as a structured pre-
diction problem. Given training images labeled with dot an-
notations, i.e., sets of dots representing persons (Fig. 1(a)),
we train our model to predict a binary mask. Each connected
component in the mask represents one person. We take the
centers of the connected components as the predicted dots.
For training, we expand the dot annotations of training im-
ages into dot masks by a slight dilation of each dot, but with
the condition that the expanded dots do not overlap. We call
this “dot mask” the ground truth dot map.

To train a model to predict this binary ground truth dot
map, we use a U-Net type architecture with a per-pixel
loss. The output of the model after the Sigmoid activation
is called the topological likelihood map. During inference,
a final thresholding step is applied to the likelihood to gen-
erate the binary mask. We call the mask the topological dot
map as it is required to have the same topology as the ground
truth dot map. Fig. 2 shows our overall architecture.

The rest of this section is organized as follows. We first
introduce the topological constraint for the topological dot
map. Next, we formalize the persistence loss that is used to
enforce the topological constraint. Afterwards, we provide
details of the architecture and training. Finally, we discuss

Figure 2: TopoCount has a U-Net style architecture with a
VGG-16 encoder. During training a pixel-wise loss (DICE
loss) is applied on the whole image and persistence loss is
applied on sampled patches.

how to incorporate our method into SOTA counting algo-
rithms to improve their counting performance.

Topological Constraint for Localization
For the localization problem, a major challenge is the per-
turbation of dot annotation. In the training dot annotation, a
dot can be at an arbitrary location of a person and can cor-
respond to different parts of a human body. Therefore it is
hard to control the spatial arrangement of the predicted dots.
As illustrated in Fig. 1(d), a model without special design
can easily predict multiple “phantom dots” at different body
parts of the same person. At cluttered regions, the model can
exhibit “dots collapsing”. To address these semantic errors,
we must teach the model to learn the spatial contextual in-
formation and to reason about the interactions between dots.
A model needs to know that nearby dots are mutually exclu-
sive if there are no clear boundary between them. It should
also encourage more dots at cluttered regions. To teach the
model this spatial reasoning of dots, we define a topological
constraint for the predicted topological dot map y:

Definition 1 (Topological constraint for localization)
Within any local patch of size h × w, the Betti number of
dimension zero; i.e, the number of connected components,
of y equals to the number of ground truth dots.

This constraint allows us to encode the spatial arrange-
ment of dots effectively without being too specific about
their locations. This way the model can avoid the topological
errors such as phantom dots and dots collapsing, while being
robust to perturbation of dot annotation. Next, we introduce
a novel training loss to enforce this topological constraint.

Persistence Loss
Directly enforcing the topological constraint in training is
challenging. The number of connected components and
the number of dots within each patch are discrete values
and their difference is non-differentiable. We introduce a
novel differentiable loss called persistence loss, based on the
persistence homology theory (Edelsbrunner, Letscher, and
Zomorodian 2000; Edelsbrunner and Harer 2010). The key
idea is that instead of inspecting the topology of the binary
topological dot map, we use the continuous-valued likeli-
hood map of the network f . We consider f as a terrain func-
tion and consider the landscape features of the terrain. These
features provide important structural information. In partic-
ular, we focus on the modes (i.e., local maxima) of f . As
illustrated in Fig. 3(b)(c), a salient mode of f , after thresh-
olding, will become a connected component in the predicted
topological dot map. A weak mode will miss the cutoff value
and disappear in the dot map.

The persistence loss captures the saliency of modes and
decides to enhance/suppress these modes depending on the
ground truth topology. Given a patch with c many ground
truth dots, our persistence loss enforces the likelihood f to
only have c many salient modes, and thus c connected com-
ponents in y. It reinforces the total saliency of the top c
modes of f , and suppresses the saliency of the rest. The
saliency of each mode, m, is measured by its persistence,
Pers(m), which will be defined shortly. As an example, in
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Figure 3: (a) An example image patch and its ground truth dot map (with 4 true dots). (b) The likelihood map and prediction
mask without topological constraint. (c) A landscape view of the likelihood function. There are 5 modes (red dots) and their
paired saddles(blue crosses). The top 4 salient ones (m1 to m4) are matched to the ground truth dots. The 5th, m5, is not
matched. The thresholding excludes the weak mode (m5) in the predicted mask. But m1 and m2 are merged in the thresholded
result because the saddle point between them (s2) is above the cutoff value. (d) Optimizing the Persistence loss will suppress
m5 by reducing f(m5). Meanwhile, it will enhance the saliency of m2 by increasing f(m2) and decreasing f(s2). When
f(s2) is below the threshold, m1 and m2 are separated into two components in the final prediction. (e) The likelihood and the
prediction mask with topological constraint (persistence loss). The collapsing of m1 and m2 is avoided. (f) A landscape view
of the likelihood function in (e). Only 4 modes remain. (g) An illustration of persistent homology. Three modes are paired with
saddles at which their attractive basins merge with others. The differences f(mi)− f(si), i = 1, 2, 3 are their persistence.

Fig. 3(c), f has 5 salient modes. If c = 4, the persistence
loss will suppress the mode with the least persistence, in this
case m5, and will reinforce the other 4 modes. As a conse-
quence, the modem2 is enhanced and is separated fromm1,
avoiding a mode collapsing issue. Formally:

Definition 2 (Persistence Loss) Given a patch, δ, with c
ground truth dots, denote by Mc the top c salient modes,
andMc the remaining modes of f . The persistence loss of
f at the patch δ is

LPers(f, δ) = −
∑

m∈Mc

Pers(m) +
∑

m∈Mc

Pers(m)

(1)

Minimizing this loss is equivalent to maximizing the
saliency of the top c modes and minimizing the saliency of
the rest. Consequently, the function will only have c salient
modes, corresponding to c components in the predicted
mask, Fig. 3(e)(f). Next we formalize the mode saliency,
called persistence, and derive the gradient of the loss.
Saliency/persistence of a mode. For a mode m (local max-
imum), its basin of attraction is the region of all points from
which a gradient ascent will converge to m. Intuitively, the
persistence of m, measuring its “relative height”, is the dif-
ference between its height f(m) and the level f(s) at which
its basin of attraction meets that of another higher mode. See
Fig. 3(g) for an illustration.

In implementation, the saliency/persistence of each mode
is computed by capturing its local maximum and corre-
sponding saddle point. To find each mode mi and its cor-
responding saddle point si where the component of mi dies,
we use a merging tree algorithm (Edelsbrunner and Harer
2010; Ni et al. 2017).

This algorithm is almost linear. The complexity is
O(n log n + nα(n)), where n is the patch size. The
O(n log n) term is due to the sorting of all pixels.O(nα(n))
is the complexity for the union-find algorithm for merg-
ing connected components. α(n) is the inverse Ackermann’s

function, which is almost constant in practice. The algorithm
will detect all critical points, i.e. modes and saddle points, at
different thresholds and pair them properly corresponding to
all topological features of the function/landscape.

Having obtained the critical points of the likelihood func-
tion using the above algorithm, we apply the persistence loss
as follows: For each component ci, denote by mi its birth
maximum and by si its death saddle critical points. The per-
sistence of ci is Pers(mi) = f(mi) − f(si). We sort all
modes (or maximum-saddle pairs) according to their persis-
tence. The persistence loss in Eq. (1) can be rewritten as

LPers(f, δ) = −
∑

mi∈Mc
(f(mi)− f(si))

+
∑

mi∈Mc
(f(mi)− f(si)) (2)

When we take the negative gradient of the loss, for each
of the top c modes, we will improve its saliency by in-
creasing the function value at the maximum, f(mi), and
decreasing the function value at its saddle f(si). But for
each other mode that we intend to suppress, the nega-
tive gradient will suppress the maximum’s value and in-
crease the saddle point’s value. An important assumption
in this setting is that the critical points, mi and si, are
constant when taking the gradient. This is true if we as-
sume a discretized domain and a piecewise linear func-
tion f . For this discretized function, within a small neigh-
borhood, the ordering of pixels in function value f remains
constant. Therefore the algorithm output of the persistent
computation will give the same set of mode-saddle pairs.
This ensures that si and mi’s for all modes remain con-
stant. The gradient of the loss w.r.t. the network weights,
W , ∇WLPers(f, δ) = −

∑
mi∈Mc

(
∂f(mi)
∂W − ∂f(si)

∂W

)
+∑

mi∈Mc

(
∂f(mi)
∂W − ∂f(si)

∂W

)
.

TopoCount: Model Architecture and Training
TopoCount computes the topological map that has the same
topology as the dot annotation. To enable the model to learn
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Figure 4: Sample results from different density crowd images. The columns represent the original image, ground truth, topo-
logical map by TopoCount, and the estimated density map by the integration of Bayesian + TopoCount.

to predict the dots quickly, we provide per-pixel supervi-
sion using DICE loss (Sudre et al. 2017). The DICE loss
(LDICE) given Ground truth (G) and Estimation (E) is:
LDICE(G,E) = 1 − 2 × (

∑
G◦E)+1

(
∑

G2+
∑

E2)+1 , where ◦ is the
Hadamard product.

More precisely, the model is trained with the loss:

L = LDICE + λpersLPers (3)

in which λpers adjusts the weight of the persistence loss. An
ablation study on the weight λpers is reported in the exper-
iments. To provide more balanced samples for the per-pixel
loss, we dilate the original dot annotation (treated as a su-
pervision mask) slightly, but ensure that the dilation does
not change its topology. The masks of two nearby dots stop
dilating if they are about to overlap and impose false topo-
logical information. The size of the dilated dots is not related
to the scale of the objects. These dilated dot masks from
ground truth are used for training. Note that the persistence
loss is applied to the likelihood map of the model, f .
Model Architecture Details. We use a UNet (Ronneberger,
P.Fischer, and Brox 2015) style architecture with a VGG-
16 encoder (Simonyan and Zisserman 2015). The VGG-16
backbone excludes the fully connected layers and has ≈ 15
million trainable parameters. There are skip connections be-
tween the corresponding encoding and decoding path blocks
at all levels except for the first. The skip connection between
the first encoder block and last decoder block is pruned to
avoid overfitting on low level features, e.g., simple repeated
patterns that often occur in crowd areas. The final output is

the raw topological map, a Sigmoid activation is applied to
generate the likelihood map. See Fig 2.

Integration with Counting Methods
In this section, we discuss how to apply our localization
method to the task of crowd counting. In crowd counting,
one is given the same dots annotation as the localization
task. The goal is to learn to predict the total number of per-
son or objects in an image. A straightforward idea is to use
the localization map predicted by TopoCount and directly
count the number of dots. Empirically, this solution is al-
ready on par with state-of-the-art methods (Table 5).

Here we present a second solution that is better suited for
the counting task. We combine our localization algorithm
with existing density-estimation methods (Ma et al. 2019;
Liu, Salzmann, and Fua 2019) to obtain better counting per-
formance. It has been shown that for the counting task, pre-
dicting a density map instead of the actual dots is the best
strategy, especially in extremely dense or sparse regions. We
argue that high quality localization maps provide additional
spatial configuration information that can further improve
the density-estimation counting algorithms.

To combine TopoCount with density-estimation counting
methods, we use the raw output of a pre-trained TopoCount
(the dot map and the topological likelihood map) as two
additional channels concatenated to the RGB image. The
five-channel ‘images’ are used as the input for a density-
estimation model. The existing density-estimation model
has to be adjusted to account for the change in the number
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of input channels. The density estimation model is usually
initialized with weights from a pre-trained network on Im-
ageNet. We keep the architecture and pre-trained weights
of the density-estimation model the same everywhere ex-
cept for the input layer. We modify the input layer so it ac-
cepts five channels and randomly initialize its weights. The
density-estimation network is then trained end-to-end.

Our method is agnostic of the density-estimation model.
As a proof-of-concept, we integrate TopoCount with two
popular density-estimation counting methods: Bayesian (Ma
et al. 2019) and CAN (Liu, Salzmann, and Fua 2019). We
will show that the integration of the localization result learnt
with topological constraint significantly boosts the perfor-
mance of SOTA counting algorithms (7 to 28%, see Sec-
tion ). This further demonstrates the power of the spatial
configuration we obtain through the topological reasoning.

The downside of the combined approach is that it only
outputs density maps. The density maps, although better ap-
proximates the counts, cannot provide high quality localiza-
tion information. This is the price one has to pay in order to
achieve better counting performance.

Experiments
We validate our method on popular crowd counting bench-
marks including ShanghaiTech parts A and B (Zhang et al.
2016), UCF CC 50 (Idrees et al. 2013), UCF QNRF (Idrees
et al. 2018), JHU++ (Sindagi, Yasarla, and Patel 2020), and
NWPU Challenge (Wang et al. 2020c).

For the localization task, our method is superior compared
to other methods. Moreover, we show that the localization
results of our method benefits the counting task.
Training Details. We train our TopoCount with the dilated
ground truth dot mask. The dilation is by default up to 7 pix-
els. For JHU++ and NWPU, which are provided with head
box annotation, we use a more accurate dilation guided by
the box size, max(7, box width/2, box height/2). In all cases
the dilation is no more than half the distance to the nearest
neighbor to avoid overlapping of nearby dots.

The window size of the patch for topological constraint
controls the level of localization we would like to focus on.
Since the scale of persons within an image is highly het-
erogeneous, varying the window size based on scale sounds
intriguing. However the ground truth dot annotation gener-
ally do not carry scale information. As a result, we fix the
patch size for each dataset. We use 50×50 pixels patches
for ShanghaiTech and UCF CC 50, and 100×100 pixels
patches for the larger scale datasets UCF QNRF, JHU++,
and NWPU to account for the larger scale variation. An ab-
lation study on the patch size selection is reported in the
experiments. The persistence loss is applied on grid tiles to
enforce topological consistency between corresponding pre-
diction and ground truth tiles/patches. As data augmentation,
coordinates of the top left corner of the grid are randomly
perturbed. It should be noted that this tiling procedure is
only performed during training with the persistence loss and
is not performed during inference.

The model is trained with the combined loss L (Eq. (3)).
During the first few epochs the likelihood map is random and

is not topologically informative. In the beginning of training
we use DICE loss only (λ = 0). When the model starts to
converge to reasonable likelihood maps, we add the persis-
tence loss with λ = 1. Fig. 4 shows qualitative results.

Localization Performance
We evaluate TopoCount on several datasets using (1) local-
ized counting; (2) F1-score matching accuracy; and (3) the
NWPU localization challenge metric.
Localized Counting. We evaluate the counting performance
within small grid cells and aggregate the error. The Grid
Average Mean absolute Errors (GAME) metric (Guerrero-
Gómez-Olmedo et al. 2015), G(L), divides the image into
4L non-overlapping cells. In Table 1, the cell count in the
localization-based methods LSC-CNN (Babu Sam et al.
2020) and TopoCount is the sum of predicted dots in the
cell. On the other hand, the cell count in the density map es-
timation methods CSRNet (Li, Zhang, and Chen 2018) and
Bayesian (Ma et al. 2019) is the integral of the density map
over the cell area. TopoCount achieves the lowest error espe-
cially at the finest scale (level L=3), which indicates higher
localization accuracy by the predicted dots.
Matching Accuracy. We evaluate matching accuracy in two
ways. First, similar to Idrees et al. (2018) on the UCF QNRF
dataset, we perform a greedy matching between detected lo-
cations and ground truth dots at thresholds varying from 1
to 100 and average the precision, recall, and F-scores over
all thresholds. We compare with scores reported in (Idrees
et al. 2018) in addition to calculated scores for SOTA local-
ization methods (Babu Sam et al. 2020). Table 2 shows that
our method achieves the highest F-score.

Second, similar to (Liu, Weng, and Mu 2019) on Shang-
haiTech Part A and UCF QNRF datasets, we impose at each
dot annotation an un-normalized Gaussian function param-
eterized by σ. A true positive is a predicted dot whose re-
sponse to the Gaussian function is greater than a threshold t.
We compare with (Liu, Weng, and Mu 2019) results at σ = 5
and σ = 20. Table 3 reports the mean average precision
(mAP) and mean average recall (mAR) for t ∈ [0.5, 0.95],
with a step of 0.05. TopoCount achieves the highest scores
with a large margin at both the small and large sigma σ.
NWPU-Crowd Online Localization Challenge. NWPU
dataset provides dot annotation in addition to box coordi-
nates with specified width w and height h surrounding each
head. The online challenge evaluates the F-score with two
adaptive matching distance thresholds: σl =

√
w2 + h2/2

and a more strict threshold σs = min(w, h)/2. Table 4
shows the F-score, precision, and recall with the 2 thresholds
against the published challenge leaderboard. TopoCount
achieves the highest F-score in both thresholds.

Counting Performance
Our localization method can be directly applied to crowd
counting task. It performs competitively among SOTA
counting methods. In Table 5, we compare TopoCount’s
overall count in terms of the Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) against SOTA count-
ing methods. Our method achieves SOTA performance on
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ShanghaiTech A ShanghaiTech B UCF QNRF
Model G(1) G(2) G(3) G(1) G(2) G(3) G(1) G(2) G(3)
CSRNet (Li, Zhang, and Chen 2018) 76 113 149 13 21 29 157 187 219
Bayesian (Ma et al. 2019) 75 90 130 10 14 23 100 117 150
LSC-CNN (Babu Sam et al. 2020) 70 95 137 10 17 27 126 160 206
TopoCount (proposed) 69 81 104 10 14 20 102 119 148

Table 1: Grid Average Mean absolute Errors (GAME)

Method Prec. Recall F-score
MCNN (Zhang et al. 2016) 59.93% 63.50% 61.66%
CL-CNN D∞ (Idrees et al. 2018) 75.8% 59.75% 66.82%
LSC-CNN (Babu Sam et al. 2020) 74.62% 73.50% 74.06%
TopoCount (proposed) 81.77% 78.96% 80.34%

Table 2: Localization accuracy on the UCF QNRF dataset,
with metric in (Idrees et al. 2018)

ShanghaiTech A UCF QNRF
σ = 20 σ = 5 σ = 20 σ = 5

mAP/mAR mAP/mAR mAP/mAR mAP/mAR
RAZ Loc 58.4/74.1 19.7/42.2 28.4/48.3 3.7/14.8
TopoCount 85.0/82.8 56.0/54.8 69.0/66.5 27.1/26.2

Table 3: Localization accuracy using metric in (Liu, Weng,
and Mu 2019).

the new JHU++ large scale dataset and is mostly between
second and third place for the other datasets compared to
SOTA density-based methods.

Integration with Density-Based Methods. A high qual-
ity localization model can be combined with density-based
methods to boost their performance. As described in Sec-
tion , we integrate TopoCount with two SOTA density-based
counting algorithms and report the results. Table 6 shows
that the integration results in a significant improvement over
the individual performance of the density map models. This
further demonstrates the high quality of TopoCount local-
ization and suggests that more sophisticated density map
models can benefit from high quality localization maps to
achieve an even better counting performance.

Ablation Studies

Ablation Study for the Loss Function. On the Shang-
haiTech Part A dataset, we compare the performance of
TopoCount trained with variations of the loss function in
Eq. 3: (1) per-pixel weighted Binary Cross Entropy (BCE)
loss as in (Liu, Weng, and Mu 2019) with empirically cho-
sen weight of 5 to account for the amount of class imbalance
in the ground truth dot maps, (2) per-pixel DICE loss only
(i.e λ = 0 in Eq. 3), and (3) a combined per-pixel DICE
loss and Persistence loss with λ ∈ {0.5, 1, 1.5, 2}. The re-
sults in Table 7 show the training with BCE loss gives the
largest error. With λ = 0, i.e., DICE without the persistence
loss, the error is lower. The error is further lowered with the
introduction of the persistence loss. Varying λ between 0.5
and 2.0 the results are more robust and comparable, with the

Method F1-m / Pre / Rec (%)

Faster RCNN (Ren et al. 2015) σl : 6.7 / 95.8 / 3.5
σs : 6.3 / 89.4 / 3.3

TinyFaces (Hu and Ramanan 2017) σl : 56.7 / 52.9 / 61.1
σs : 52.6 / 49.1 / 56.6

VGG+GPR (Gao et al. 2019) σl : 52.5 / 55.8 / 49.6
σs : 42.6 / 45.3 / 40.2

RAZ Loc (Liu, Weng, and Mu 2019) σl : 59.8 / 66.6 / 54.3
σs : 51.7 / 57.6 / 47.0

TopoCount (proposed) σl : 69.1 / 69.5 / 68.7
σs : 60.1 / 60.5 / 59.8

Table 4: NWPU-Crowd Localization Challenge Results.
F1-m=F1-measure. Refer to (Wang et al. 2020c) for more
details.

best performance at λ = 1 and λ = 1.5. Consequently, we
use λ = 1 in all our experiments.

Ablation Study for Choosing Persistence Loss Patch Size
The window size of the topological constraint patch controls
the level of localization we would like to focus on. In the
one extreme, when the patch is 1×1, the topological con-
straint becomes a per-pixel supervision. It helps the model
to learn features for dot pixels, but loses the rich topological
information within local neighborhoods. It is also not flex-
ible/robust with perturbation. On the other extreme, when
the patch is the whole image, the topological information is
simply the total count of the image. This information is too
high-level and will not help the model to learn efficiently;
thus we have all other intermediate level supervisions, such
as the density map. A properly chosen patch size will ex-
ploit rich spatial relationships within local neighborhoods
while being robust to perturbation. In our experiments, we
use a patch size of 50×50 pixels for ShanghaiTech and UCF
CC 50 datasets, for datasets with larger variation in scale,
namely UCF QNRF, JHU++, and NWPU-Crowd datasets,
we use a larger patch size of 100×100 pixels. Next we ex-
plain how we choose the patch sizes.

To select the patch size for the persistence loss, we train
four models on the ShanghaiTech Part A dataset with differ-
ent patch sizes: 150×150, 100×100, 50×50, and 30×30.
We evaluate the models localization accuracy using the
GAME metric at scales L = 1 through 3, see Table 8. Train-
ing with patch size 30 or 150 yields poor performance. Using
patch sizes 50 or 100 gives mostly similar results except at
the smallest cell size (L=3) where patch size 50 is the win-
ner, indicating better localization. We thus choose patch size
of 50 for the ShanghaiTech and UCF CC 50 experiments.

The datasets UCF QNRF, JHU++, and NWPU-Crowd are
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Shanghai. A Shanghai. B UCF CC 50 UCF QNRF JHU++ NWPU
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
IC-CNN (Ranjan, Le, and Hoai 2018) 68.5 116.2 10.7 16 260.9 365.5 - - - - - -
CSRNet (Li, Zhang, and Chen 2018) 68.2 115 10.6 16 266.1 397.5 - - 85.9 309.2 121.3 387.8
SANet (Cao et al. 2018) 67 104.5 8.4 13.6 258.4 334.9 - - 91.1 320.4 190.6 491.4
ANF (Zhang et al. 2019) 63.9 99.4 8.3 13.2 250.2 340 110 174 - - - -
RAZ-Net (Liu, Weng, and Mu 2019) 65.1 106.7 8.4 14.1 - - 116 195 - - 151.5 634.7
LSC-CNN (Babu Sam et al. 2020) 66.4 117.0 8.1 12.7 225.6 302.7 120.5 218.2 112.7 454.4 - -
CAN (Liu, Salzmann, and Fua 2019) 62.3 100 7.8 12.2 212.2 243.7 107 183 100.1 314.0 106.3 386.5
Bayesian (Ma et al. 2019) 62.8 101.8 7.7 12.7 229.3 308.2 89 155 75.0 299.9 105.4 454.2
CG-DRC (Sindagi, Yasarla, and Patel 2020) 60.2 94.0 7.5 12.1 - - 95.5 164.3 71.0 278.6 - -
ASNet (Jiang et al. 2020) 57.8 90.1 - - 174.8 251.6 91.6 159.7 - - - -
DM-Count (Wang et al. 2020a) 59.7 95.7 7.4 11.8 211.0 291.5 85.6 148.3 - - 88.4 388.6
TopoCount (proposed) 61.2 104.6 7.8 13.7 184.1 258.3 89 159 60.9 267.4 107.8 438.5

Table 5: Counting Performance Evaluation

ShanghaiTech A ShanghaiTech B UCF CC 50 UCF QNRF JHU++
Model MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
CAN (Liu, Salzmann, and Fua 2019) 62.3 100 7.8 12.2 212.2 243.7 107 183 100.1 314.0
TopoCount + CAN (proposed) 59.5

-4.5%
93.3

-6.7%
7.5

-2.5%
13.2

+8.1%
190

-10.5%
249

+2.2%
99

-7.5%
162

-11.5%
71.9

-28.2%
260.9

-19.9%
Bayesian (Ma et al. 2019) 62.8 101.8 7.7 12.7 229.3 308.2 89 155 75.0 299.9
TopoCount + Bayesian (proposed) 58

-7.6%
96.3

-5.4%
7.2

-6.5%
11.8

-7.1%
191

-16.7%
257

-16.6%
85

-4.5%
148

-4.5%
61.8

-17.6%
262.0

-12.7%

Table 6: Integration of TopoCount with density estimation methods.

BCE DICE λ = 0.5 λ = 1.0 λ = 1.5 λ = 2.0
G(3) 122 114 109 104 104 107

Table 7: Ablation study on the loss function. Compare
TopoCount localization score G(3) on the ShanghaiTech
Part A dataset when trained with different loss functions:
weighted BCE loss, DICE loss (λ = 0), and DICE loss + λ
Persistence loss (λ = 0.5, 1, 1.5, 2).

different from the other datasets in their wide variation in
scale and resolution. We suspect that a patch size of 50 may
not be suitable. We experiment with a small subset of ran-
domly selected (N=50) images from the UCF QNRF train-
ing data. Again, we train 4 models with different patch sizes:
150, 100, 50, and 30, and evaluate the models localization
using GAME. Because the images in this dataset have a
higher resolution range, we use L = 1 through 4, see Ta-
ble 8. We find that a patch size of 150 is more suitable at the
coarser cells (L=1, 2) while a patch size of 50 is more suit-
able at the finer cells (L=3, 4). For training on these datasets,
we choose the intermediate patch size of 100.

Conclusion
This paper proposes a novel method for localization in the
crowd. We propose a topological constraint and a novel per-
sistence loss based on persistent homology theory. The pro-
posed topological constraint is flexible and suitable for both
sparse and dense regions. The proposed method achieves
state-of-the-art localization accuracy. The high quality of our
results is further demonstrated by the significant boost of the

G(L)
Dataset Patch Size G(1) G(2) G(3) G(4)

Shanghai. A 150 75.4 89.9 114.2 -
100 68.4 82.0 107.7 -
50 69.3 81.6 104.9 -
30 75.4 86.4 108.2 -

UCF-QNRF 150 153.5 175.1 208.5 272.3
100 155.9 177.1 206.6 264.4
50 160.6 179.4 206.8 260.3
30 179.9 195.2 222.1 273.1

Table 8: Comparison of patch size for persistence loss on
ShanghaiTech Part A and UCF-QNRF (N=50) using local-
ization score GAME(L)

performance of density-based counting algorithms when us-
ing our results as additional input. Our method closes the gap
between the performance of localization and density map es-
timation methods; thus paving the way for advanced spatial
analysis of crowded scenes in the future.
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