
Context-aware Attentional Pooling (CAP) for Fine-grained Visual Classification

Ardhendu Behera, Zachary Wharton, Pradeep R P G Hewage and Asish Bera
Department of Computer Science, Edge Hill University

St Helen Road, Lancashire
United Kingdom, L39 4QP

beheraa@edgehill.ac.uk, zachary.wharton@go.edgehill.ac.uk, pradeep.hewage@edgehill.ac.uk, beraa@edgehill.ac.uk

Abstract

Deep convolutional neural networks (CNNs) have shown a
strong ability in mining discriminative object pose and parts
information for image recognition. For fine-grained recogni-
tion, context-aware rich feature representation of object/scene
plays a key role since it exhibits a significant variance in the
same subcategory and subtle variance among different sub-
categories. Finding the subtle variance that fully characterizes
the object/scene is not straightforward. To address this, we
propose a novel context-aware attentional pooling (CAP) that
effectively captures subtle changes via sub-pixel gradients,
and learns to attend informative integral regions and their im-
portance in discriminating different subcategories without re-
quiring the bounding-box and/or distinguishable part annota-
tions. We also introduce a novel feature encoding by consid-
ering the intrinsic consistency between the informativeness
of the integral regions and their spatial structures to capture
the semantic correlation among them. Our approach is simple
yet extremely effective and can be easily applied on top of
a standard classification backbone network. We evaluate our
approach using six state-of-the-art (SotA) backbone networks
and eight benchmark datasets. Our method significantly out-
performs the SotA approaches on six datasets and is very
competitive with the remaining two.

Introduction
Over recent years, there has been significant progress in the
landscape of computer vision due to the adaptation and en-
hancement of a fast, scalable and end-to-end learning frame-
work, the CNN (LeCun et al. 1998). This is not a recent in-
vention, but we now see a profusion of CNN-based models
achieving SotA results in visual recognition (He et al. 2016;
Huang et al. 2017; Zoph et al. 2018; Sandler et al. 2018). The
performance gain primarily comes from the model’s ability
to reason about image content by disentangling discrimina-
tive object pose and part information from texture and shape.
Most discriminative features are often based on changes in
global shape and appearance. They are often ill-suited to dis-
tinguish subordinate categories, involving subtle visual dif-
ferences within various natural objects such as bird species
(Wah et al. 2011; Van Horn et al. 2015), flower categories
(Nilsback and Zisserman 2008), dog breeds (Khosla et al.
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2011), pets (Parkhi et al. 2012) and man-made objects like
aircraft types (Maji et al. 2013), car models (Krause et al.
2013), etc. To address this, a global descriptor is essential
which ensembles features from multiple local parts and their
hierarchy so that the subtle changes can be discriminated
as a misalignment of local parts or pattern. The descriptor
should also be able to emphasize the importance of a part.

There have been some excellent works on fine-grained vi-
sual recognition (FGVC) using weakly-supervised comple-
mentary parts (Ge, Lin, and Yu 2019), part attention (Liu
et al. 2016), object-part attention (Peng, He, and Zhao 2018),
multi-agent cooperative learning (Yang et al. 2018), recur-
rent attention (Fu, Zheng, and Mei 2017), and destruction
and construction learning (Chen et al. 2019). All these ap-
proaches avoid part-level annotations and automatically dis-
criminate local parts in an unsupervised/weakly-supervised
manner. Many of them use a pre-trained object/parts detec-
tor and lack rich representation of regions/parts to capture
the object-parts relationships better. To truly describe an im-
age, we need to consider the image generation process from
pixels to object to the scene in a more fine-grained way, not
only to regulate the object/parts and their spatial arrange-
ments but also defining their appearances using multiple par-
tial descriptions as well as their importance in discriminating
subtle changes. These partial descriptions should be rich and
complementary to each other to provide a complete descrip-
tion of the object/image. In this work, we propose a simple
yet compelling approach that embraces the above properties
systematically to address the challenges associated with the
FGVC. Thus, it can benefit a wide variety of applications
such as image captioning (Herdade et al. 2019; Huang et al.
2019a; Li et al. 2019), expert-level image recognition (Valan
et al. 2019; Krause et al. 2016), and so on.
Our work: To describe objects in a conventional way as in
CNNs as well as maintaining their visual appearance, we
design a context-aware attentional pooling (CAP) to encode
spatial arrangements and visual appearance of the parts ef-
fectively. The module takes the input as a convolutional fea-
ture from a base CNN and then learns to emphasize the
latent representation of multiple integral regions (varying
coarseness) to describe hierarchies within objects and parts.
Each region has an anchor in the feature map, and thus many
regions have the same anchor due to the integral characteris-
tics. These integral regions are then fed into a recurrent net-
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work (e.g. LSTM) to capture their spatial arrangements, and
is inspired by the visual recognition literature, which sug-
gests that humans do not focus their attention on an entire
scene at once. Instead, they focus sequentially by attending
different parts to extract relevant information (Zoran et al.
2020). A vital characteristic of our CAP is that it generates a
new feature map by focusing on a given region conditioned
on all other regions and itself. Moreover, it efficiently cap-
tures subtle variations in each region by the sub-pixel gradi-
ents via bilinear pooling. The recurrent networks are mainly
designed for sequence analysis/recognition. We aim to cap-
ture the subtle changes between integral regions and their
spatial arrangements. Thus, we introduce a learnable pool-
ing to emphasize the most-informative hidden states of the
recurrent network automatically. It learns to encode the spa-
tial arrangement of the latent representation of integral re-
gions and uses it to infer the fine-grained subcategories.
Our contributions: Our main contributions can be summa-
rized as: 1) an easy-to-use extension to SotA base CNNs
by incorporating context-aware attention to achieve a con-
siderable improvement in FGVC; 2) to discriminate the
subtle changes in an object/scene, context-aware attention-
guided rich representation of integral regions is proposed;
3) a learnable pooling is also introduced to automatically se-
lect the hidden states of a recurrent network to encode spatial
arrangement and appearance features; 4) extensive analysis
of the proposed model on eight FGVC datasets, obtaining
SotA results; and 5) analysis of various base networks for
the wider applicability of our CAP.

Related Work
Unsupervised/weakly-supervised parts/regions based
approaches: Such methods learn a diverse collection
of discriminative parts/regions to represent the complete
description of an image. In (Chen et al. 2019), the global
structure of an image is substantially changed by a random
patch-shuffling mechanism to select informative regions.
An adversarial loss is used to learn essential patches. In (Ge,
Lin, and Yu 2019), Mask R-CNN and conditional random
field are used for object detection and segmentation. A
bidirectional LSTM is used to encode rich complementary
information from selected part proposals for classification.
A hierarchical bilinear pooling framework is presented
in (Yu et al. 2018a) to learn the inter-layer part feature
interaction from intermediate convolution layers. This
pooling scheme enables inter-layer feature interaction and
discriminative part feature learning in a mutually reinforced
manner. In (Cai, Zuo, and Zhang 2017), a higher-order in-
tegration of hierarchical convolutional features is described
for representing parts semantic at different scales. A poly-
nomial kernel-based predictor is defined for modelling part
interaction using higher-order statistics of convolutional
activations. A general pooling scheme is demonstrated in
(Cui et al. 2017) to represent higher-order and nonlinear
feature interactions via compact and explicit feature map-
ping using kernels. Our approach is complementary to
these approaches by exploring integral regions and learns to
attend these regions using a bilinear pooling that encodes
partial information from multiple integral regions to a

comprehensive feature vector for subordinate classification.
Object and/or part-level attention-based approaches:
Recently, there has been significant progress to include at-
tention mechanisms (Zhao, Jia, and Koltun 2020; Leng, Liu,
and Chen 2019; Bello et al. 2019; Parmar et al. 2019) to
boost image recognition accuracy. It is also explored in
FGVC (Zheng et al. 2019; Ji et al. 2018; Sun et al. 2018).
In (Zheng et al. 2020), a part proposal network produces
several local attention maps, and a part rectification net-
work learns rich part hierarchies. Recurrent attention in (Fu,
Zheng, and Mei 2017) learns crucial regions at multiple
scales. The attended regions are cropped and scaled up with
a higher resolution to compute rich features. Object-part at-
tention model (OPAM) in (Peng, He, and Zhao 2018) in-
corporates object-level attention for object localization and
part-level attention for the vital parts selection. Both jointly
learn multi-view and multi-scale features to improve per-
formance. In (Liu et al. 2019), a bidirectional attention-
recognition model (BARM) is proposed to optimize the re-
gion proposals via a feedback path from the recognition
module to the part localization module. Similarly, in atten-
tion pyramid hierarchy (Ding et al. 2020), top-down and
bottom-up attentions are integrated to learn both high-level
semantic and low-level detailed feature representations. In
(Rodrı́guez et al. 2020), a modular feed-forward attention
mechanism consisting of attention modules and attention
gates is applied to learn low-level feature activations. Our
novel paradigm is a step forward and takes inspiration from
these approaches. It is advantageous over the existing meth-
ods as it uses a single network, and the proposed attention
mechanism learns to attend both appearance and shape in-
formation from a single-scale image in a hierarchical fash-
ion by exploring integral regions. We further extend it by
innovating the classification layer, where the subtle changes
in integral regions are learned by focusing on the most in-
formative hidden states of an LSTM.

Proposed Approach
The overall pipeline of our model is shown in Fig. 1a. It takes
an input image and provides output as a subordinate class
label. To solve this, we are given N images I = {In|n =
1, . . . , N} and their respective fine-grained labels. The aim
is to find a mapping function F that predicts ŷn = F(In),
which matches the true label yn. The ultimate goal is to learn
F by minimizing a loss L(yn, ŷn) between the true and the
predicted label. Our model consists of three elements (Fig.
1a): 1) a base CNNFb(.; θb), and our novel 2) CAPFc(.; θc)
and 3) classification Fd(.; θd) modules. We aim to learn the
model’s parameters θ = {θb, θc, θd} via end-to-end training.
We use the SotA CNN architecture as a base CNN Fb(.; θb),
and thus, we emphasize the design and implementation of
the rest two modules Fc(.; θc) and Fd(.; θd).

Context-aware Attentional Pooling (CAP)
It takes the output of a base CNN as an input. Let us con-
sider x = Fb(In; θb) to be the convolutional feature map
as the output of the base network Fb for input image In.
The proposed CAP considers contextual information from
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Figure 1: a) High-level illustration of our model (left). b) The detailed architecture of our novel CAP (right).
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Figure 2: a) Learning pixel-level relationships from the convolutional feature map of size W ×H × C. b) CAP using integral
regions to capture both self and neighborhood contextual information. c) Encapsulating spatial structure of the integral regions
using an LSTM. d) Classification by learnable aggregation of hidden states of the LSTM.

pixel-level to small patches to large patches to image-level.
The pixel refers to a spatial location in the convolutional fea-
ture map x of width W , height H and channels C. The aim
is to capture contextual information hierarchically to better
model the subtle changes observed in FGVC tasks. Our at-
tention mechanism learns to emphasize pixels, as well as re-
gions of different sizes located in various parts of the image
In. At pixel-level, we explicitly learn the relationships be-
tween pixels, i.e. p(xi|xj ; θp), ∀i i 6= j and 1 ≤ i, j ≤
W ×H , even they are located far apart in x. It signifies how
much the model should attend the ith location when synthe-
sizing the jth position in x (Fig. 2a). To achieve this, we
compute the attention map θp by revisiting the self-attention
concept (Zhang et al. 2018) where key k(x) = Wkx, query
q(x) = Wqx and value v(x) = Wvx in x are computed
using separate 1 × 1 convolutions. The attentional output
feature map o is a dot-product of attention map θp and x.
θp = {Wk, Wq,Wv} ∈ θc is learned.

Proposing integral regions: To learn contextual informa-
tion efficiently, we propose multiple integral regions with
varying level of coarseness on the feature map o. The level
of coarseness is captured by different size of a rectangular
region. Let us consider the smallest region r(i, j,∆x,∆y)
of width ∆x, height ∆y and is located (top-left corner) at
the ith column and jth row of o. Using r(i, j,∆x,∆y), we
derive a set of regions by varying their widths and heights
i.e. R = {r(i, j,m∆x, n∆y)}; m,n = 1, 2, 3, . . . and

i < i + m∆x ≤ W , j < j + n∆y ≤ H . This is illus-
trated in Fig. 1b (left) for the given spatial location of (i, j).
The goal is to generate the similar set of regions R at vari-
ous spatial locations (0 < i < W , 0 < j < H) in o. In this
way, we generate a final set of regions R = {R} located
at different places with different sizes and aspect ratios, as
shown in Fig. 1b. The approach is a comprehensive context-
aware representation to capture the rich contextual informa-
tion characterizing subtle changes in images hierarchically.
Bilinear pooling: There are |R| regions with size varies
from a minimum of ∆x × ∆y × C to a maximum of
W × H × C. The goal is to represent these variable size
regions (X × Y × C) ⇒ (w × h × C) with a fixed size
feature vector. Thus, we use bilinear pooling, typically bi-
linear interpolation to implement differentiable image trans-
formations, which requires indexing operation. Let Tψ(y)
be the coordinate transformation with parameters ψ and
y = (i, j) ∈ R2 denotes a region coordinates at which the
feature value is R(y) ∈ RC . The transformed image R̃ at
the target coordinate ỹ is:

R̃(ỹ) =
∑
y

R(Tψ(y)) K(ỹ, Tψ(y)), (1)

where R(Tψ(y)) is the image indexing operation and is non-
differentiable; thus, the way gradients propagate through the
network depends on the kernel K(., .). In bilinear interpo-
lation, the kernel K(y1,y2) = 0 when y1 and y2 are not
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direct neighbors. Therefore, the sub-pixel gradients (i.e. the
feature value difference between neighboring locations in
the original region) only flow through during propagation
(Jiang et al. 2019). This is an inherent flaw in bilinear in-
terpolation since the sub-pixel gradients will not associate
to the large-scale changes, which cannot be captured by the
immediate neighborhood of a point. To overcome this, sev-
eral variants (Jiang et al. 2019; Lin and Lucey 2017) have
been proposed. However, for our work, we exploit this flaw
to capture the subtle changes in all regions via sub-pixel
gradients. Note that the bilinear interpolation, although is
not differentiable at all points due to the floor and ceiling
functions, can backpropagate the error and is differentiable
in most inputs as mentioned in the seminal work of Spatial
Transform Networks (Jaderberg et al. 2015). We use bilinear
kernelK(., .) in (1) to pool fixed size features f̄r (w×h×C)
from all r ∈ R.
Context-aware attention: In this step, we capture the con-
textual information using our novel attention mechanism,
which transforms f̄r to a weighted version of itself and con-
ditioned on the rest of the feature maps f̄r′ (r, r′ ∈ R). It
enables our model to selectively focus on more relevant in-
tegral regions to generate holistic context information. The
proposed context-aware attention takes a query q(f̄r) and
maps against a set of keys k(f̄r′) associated with the inte-
gral regions r′ in a given image, and then returns the output
as a context vector cr and is computed as:

cr =

|R|∑
r′=1

αr,r′ f̄r′ , αr,r′ = softmax (Wαβr,r′ + bα)

βr,r′ = tanh
(
q(f̄r) + k(f̄r′) + bβ

)
q(f̄r) = Wβ f̄r and k(f̄r′) = Wβ′ f̄r′ ,

(2)

where weight matrices Wβ and Wβ′ are for estimating the
query and key from the respective feature maps f̄r and f̄r′ ;
Wα is their nonlinear combination; bα and bβ are the biases.
These matrices and biases ({Wβ ,Wβ′ ,Wα, bα, bβ} ∈ θc)
are learnable parameters. The context-aware attention ele-
ment αr,r′ captures the similarity between the feature maps
f̄r and f̄r′ of regions r and r′, respectively. The attention-
focused context vector cr determines the strength of f̄r in
focus conditioned on itself and its neighborhood context.
This applies to all integral regions r (refer Fig. 2b).
Spatial structure encoding: The context vectors c =
{cr|r = 1 . . . |R|} characterize the attention and saliency.
To include the structural information involving the spatial
arrangements of regions (see Fig. 1b and 2b), we represent c
as a sequence of regions (Fig. 2c) and adapt a recurrent net-
work to capture the structural knowledge using its internal
states, which is modeled via hidden units hr ∈ Rn. Thus,
the internal state representing the region r is updated as:
hr = Fh(hr−1, fr; θh), where Fh is a nonlinear function
with learnable parameter θh. We use a fully-gated LSTM
as Fh (Hochreiter and Schmidhuber 1997), which is ca-
pable of learning long-term dependencies. The parameter
θh ∈ θc consists of weight matrices and biases linking in-
put, forget and output gates, and cell states of Fh. For sim-
plicity, we omitted equations to compute these parameters

and refer interested readers to (Hochreiter and Schmidhu-
ber 1997) for further details. To improve the generalizabil-
ity and lower the computational complexity of our CAP, the
context feature fr is extracted from the context vector cr
via global average pooling (GAP). This results in the reduc-
tion of feature map size from (w × h × C) to (1 × C). The
sequence of hidden states h = (h1, h2, . . . , hr, . . . , h|R|)
corresponding to the input sequence of context feature f =
(f1, f2, . . . , fr, . . . , f|R|) (see Fig. 1b) is used by our classi-
fication module Fd(.; θd).

Classification
To further guide our model to discriminate the subtle
changes, we propose a learnable pooling approach (Fig. 2c),
which aggregates information by grouping similar responses
from the hidden states hr. It is inspired by the existing fea-
ture encoding approach, such as NetVLAD (Arandjelovic
et al. 2016). We adapt this differentiable clustering approach
for the soft assignment of the responses from hidden states
hr to cluster κ and their contribution to the VLAD encoding.

γκ(hr) =
eW

T
κ hr+bκ∑K

i=1 e
WT
i hr+bi

Nv(o, κ) =

|R|∑
r=1

γκ(hr)hr(o), ŷ = softmax(WNNv)

(3)

where Wi and bi are learnable clusters’ weights and biases.
T signifies transpose. The term γκ(hr) refers to the soft as-
signment of hr to cluster κ, andNv is the encoded responses
of hidden states from all the regions r ∈ R. In the original
implementation of VLAD, the weighted sum of the resid-
uals is used i.e.

∑|R|
r=1 γκ(hr) (hr(o)− ĉκ(o)) in which ĉκ

is the κth cluster center and o ∈ hr is one of the elements
in the hidden state response. We adapt the simplified ver-
sion that averages the actual responses instead of residuals
(Miech, Laptev, and Sivic 2017), which requires fewer pa-
rameters and computing operations. The encoded response
is mapped into prediction probability ŷ by using a learnable
weight WN and softmax. The learnable parameter for the
classification module Fd is θd = {Wi, bi,WN}.

Experiments and Discussion
We comprehensively evaluate our model on widely used
eight benchmark FGVC datasets: Aircraft (Maji et al. 2013),
Food-101 (Bossard, Guillaumin, and Gool 2014), Stanford
Cars (Krause et al. 2013), Stanford Dogs (Khosla et al.
2011), Caltech Birds (CUB-200) (Wah et al. 2011), Oxford
Flower (Nilsback and Zisserman 2008), Oxford-IIIT Pets
(Parkhi et al. 2012), and NABirds (Van Horn et al. 2015).
We do not use any bounding box/part annotation. Thus, we
do not compare with methods that rely on these. Statistics of
datasets and their train/test splits are shown in Table 1. We
use the top-1 accuracy (%) for evaluation.
Experimental settings: In all our experiments, we resize
images to size 256 × 256, apply data augmentation tech-
niques of random rotation (±15 degrees), random scaling
(1± 0.15) and then random cropping to select the final size
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Dataset #Train / #Test #Classes Our Past Best (primary) Past Best (primary + secondary)

Aircraft 6,667 / 3,333 100 94.9 93.0 (Chen et al. 2019) 92.9 (Yu et al. 2018b)
Food-101 75,750 / 25,250 101 98.6 93.0 (Huang et al. 2019b) 90.4 (Cui et al. 2018)
Stanford Cars 8,144 / 8,041 196 95.7 94.6 (Huang et al. 2019b) 94.8 (Cubuk et al. 2019)
Stanford Dogs 12,000 / 8,580 120 96.1 93.9 (Ge, Lin, and Yu 2019) 97.1 (Ge, Lin, and Yu 2019)
CUB-200 5,994 / 5,794 200 91.8 90.3 (Ge, Lin, and Yu 2019) 90.4 (Ge, Lin, and Yu 2019)
Oxford Flower 2,040 / 6,149 102 97.7 96.4 (Xie et al. 2016) 97.7 (Chang et al. 2020)
Oxford Pets 3,680 / 3,669 37 97.3 95.9 (Huang et al. 2019b) 93.8 (Peng, He, and Zhao 2018)
NABirds 23,929 / 24,633 555 91.0 86.4 (Luo et al. 2019) 87.9 (Cui et al. 2018)

Table 1: Dataset statistics and performance evaluation. FGVC accuracy (%) of our model and the previous best using only the
primary dataset. The last column involves the transfer/joint learning strategy consisting of more than one dataset.

Aircraft Food-101 Stanford Cars
Method ACC Method ACC Method ACC

DFL (Wang et al. 2018) 92.0 WISeR (Martinel et al., 2018) 90.3 BARM (Liu et al. 2019) 94.3
BARM (Liu et al. 2019) 92.5 DSTL∗ (Cui et al. 2018) 90.4 MC∗

Loss (Chang et al. 2020) 94.4
GPipe (Huang et al. 2019b) 92.7 MSMVFA (Jiang et al. 2020) 90.6 DCL (Chen et al. 2019) 94.5
MC∗

Loss (Chang et al. 2020) 92.9 JDNet∗ (Zhao et al. 2020) 91.2 GPipe (Huang et al. 2019b) 94.6
DCL (Chen et al. 2019) 93.0 GPipe (Huang et al. 2019b) 93.0 AutoAug∗ (Cubuk et al. 2019) 94.8
Proposed 94.9 Proposed 98.6 Proposed 95.7

CUB-200 Oxford-IIIT Pets NABirds

iSQRT (Li et al. 2018) 88.7 NAC (Simon and Rodner 2015) 91.6 T-Loss (Taha et al. 2020) 79.6
DSTL∗ (Cui et al. 2018) 89.3 TL-Attn∗ (Xiao et al. 2015) 92.5 PC-CNN (Dubey et al. 2018a) 82.8
DAN (Hu et al. 2019) 89.4 InterAct (Xie et al. 2016) 93.5 MaxEnt∗ (Dubey et al. 2018b) 83.0
BARM (Liu et al. 2019) 89.5 OPAM∗ (Peng, He, and Zhao 2018) 93.8 Cross-X (Luo et al. 2019) 86.4
CPM∗ (Ge, Lin, and Yu 2019) 90.4 GPipe (Huang et al. 2019b) 95.9 DSTL∗ (Cui et al. 2018) 87.9
Proposed 91.8 Proposed 97.3 Proposed 91.0

Table 2: Accuracy (%) comparison with the recent top-five SotA approaches. Methods marked with * involve transfer/joint
learning strategy for objects/patches/regions consisting of more than one dataset (primary and secondary). Please refer to the
supplementary document (https://ardhendubehera.github.io/cap/) for the results of Stanford Dogs and Oxford Flowers.

of 224 × 224 from 256 × 256. The last Conv layer of the
base CNN (e.g. 7× 7 pixels) is increased to 42× 42 by us-
ing an upsampling layer (as in GAN) and then fed into our
CAP (Fig. 1a) to pool features from multiple integral regions
R. We fix bilinear pooling size of w = h = 7 for each re-
gion with minimum width ∆x = 7 and height ∆y = 7. We
use spatial location gap of 7 pixels between consecutive an-
chors to generate |R| = 27 integral regions. This is decided
experimentally by considering the trade-off between accu-
racy and computational complexity. We set the cluster size
to 32 in our learnable pooling approach. We apply Stochas-
tic Gradient Descent (SGD) optimizer to optimize the cate-
gorical cross-entropy loss function. The SGD is initialized
with a momentum of 0.99, and an initial learning rate 1e-4,
which is multiplied by 0.1 after every 50 epochs. The model
is trained for 150 epochs using an NVIDIA Titan V GPU (12
GB). We use Keras+Tensorflow to implement our algorithm.

Quantitative results and comparison to the SotA ap-
proaches: Overall, our model outperforms the SotA ap-
proaches by a clear margin on all datasets except the Stan-
ford Dogs (Khosla et al. 2011) and Oxford Flowers (Nils-
back and Zisserman 2008) (Table 1). In Table 1, we com-
pare our performances with the two previous best (last two
columns). One uses only the target dataset (primary) for

training and evaluation (past best), and is the case in our
model. The other (last column) uses primary and addi-
tional secondary (e.g. ImageNet, COCO, iNat, etc.) datasets
for joint/transfer learning of objects/patches/regions during
training. It is worth mentioning that we use only the pri-
mary datasets and our performance in most datasets is sig-
nificantly better than those uses additional datasets. This
demonstrates the benefit of the proposed approach for dis-
criminating fine-grained changes in recognizing subordinate
categories. Moreover, we use only one network for end-to-
end training, and our novel CAP and classification layers are
added on top of a base CNN. Therefore, the major computa-
tions are associated with the base CNNs.

Using our model, the two highest gains are 5.6% and 3.1%
in the respective Food-101 (Bossard, Guillaumin, and Gool
2014) and NABirds (Van Horn et al. 2015) datasets. In Dogs,
our method (96.1%) is significantly better than the best SotA
approach (93.9%) (Ge, Lin, and Yu 2019) using only pri-
mary data. However, their accuracy increases to 97.1% when
joint fine-tuning with selected ImageNet images are used.
Similarly, in Flowers, our accuracy (97.7%) is the same as in
(Chang et al. 2020), which uses both primary and secondary
datasets, and we achieve an improvement of 1.3% compared
to the best SotA approach in (Xie et al. 2016) using only pri-
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Base CNN Plane Cars Dogs CUB Flowers Pets

ResNet-50 94.9 94.9 95.8 90.9 97.5 96.7
Incep. V3 94.8 94.8 95.7 91.4 97.6 96.2
Xception 94.1 95.7 96.1 91.8 97.7 97.0
DenseNet 94.6 93.6 95.5 91.6 97.6 96.9
NASNet-M 93.8 93.7 96.0 89.7 97.7 97.3
Mob-NetV2 94.4 94.0 95.9 89.2 97.4 96.4

Table 3: Our model’s accuracy (%) with different SotA base
CNN architectures. Previous best accuracies for these results
are; Aircraft: 93.0 (Chen et al. 2019), Cars: 94.6 (Huang
et al. 2019b), Dogs: 93.9 (Ge, Lin, and Yu 2019), CUB:
90.3 (Ge, Lin, and Yu 2019), Flowers: 96.4 (Xie et al. 2016),
and Pets: 95.9 (Huang et al. 2019b). The result of the Birds
dataset is included in the supplementary document.

mary data. We also compare our model’s accuracy with the
top-five SotA approaches on each dataset in Table 2. Our
accuracy is significantly higher than SotA methods using
primary data in all six datasets in Table 2 and two in sup-
plementary. Furthermore, it is also considerably higher than
SotA methods, which use both primary and secondary data
in six datasets (Aircraft, Food-101, Cars, CUB-200, Pets and
NABirds). This clearly proves our model’s powerful ability
to discriminate subtle changes in recognizing subordinate
categories without requiring additional datasets and/or sub-
networks and thus, has an advantage of easy implementation
and a little computational overhead in solving FGVC.
Ablation study: We compare the performance of our ap-
proach using the benchmarked base CNN architectures such
as ResNet-50 (He et al. 2016), Inception-V3 (Szegedy et al.
2016), Xception (Chollet 2017) and DenseNet121 (Huang
et al. 2017), as well as SotA lightweight architectures such
as NASNetMobile (Zoph et al. 2018) and MobileNetV2
(Sandler et al. 2018). The performance is shown in Table
3. In all datasets, both standard and lightweight architec-
tures have performed exceptionally well when our proposed
CAP and classification modules are incorporated. Even our
model outperforms the previous best (primary data) for both
standard and lightweight base CNNs except in Cars and
CUB-200 datasets in which our model with standard base
CNNs exceed the previous best. Our results in Table 1 & 2
are the best accuracy among these backbones. Nevertheless,
the accuracy of our model using any standard backbones
(ResNet50 / Inception V3 / Xception; Table 3) is better than
the SotA. In Flowers and Pets datasets, the lightweight NAS-
NetMobile is the best performer, and the MobileNetV2 is not
far behind (Table 3). This could be linked to the dataset size
since these two are of smallest in comparison to the rest (Ta-
ble 1). However, in other datasets (e.g. Aircraft, Cars and
Dogs), there is a little gap in performance between stan-
dard and lightweight CNNs. These lightweight CNNs in-
volve significantly less computational costs, and by adding
our modules, the performance can be as competitive as the
standard CNNs. This proves the importance of our modules
in enhancing performance and its broader applicability.

We have also evaluated the above base CNNs (B) and the
influence of our novel CAP (+C) and the classification mod-

ule (+E) in the recognition accuracy on Aircraft, Cars and
Pets datasets (more in the supplementary). The results are
shown in Table 4. It is evident that the accuracy improves
as we add our modules to the base networks, i.e., (B+C+E)
> (B+C) > (B+E) > B, resulting in the largest gain con-
tributed by our novel CAP (B+C). This signifies the impact
of our CAP. In B+C, the minimum gain is 7.2%, 5.7% and
5.1% on the respective Aircraft, Cars and Pets datasets for
the Inception-V3 as a base CNN. Similarly, the highest gain
is 12.5% and 11.3% in Aircraft and Cars, respectively. These
two datasets are relatively larger than the Pets (Table 1) in
which the highest gain (7.9%) is achieved by using ResNet-
50 as a base CNN. We also observe that there is a significant
gap in baseline accuracy between lightweight and standard
base CNNs in larger (Aircraft and Cars) datasets. These gaps
are considerably reduced when our CAP is added. There is a
further increase in accuracy when we add the classification
module (B+C+E). This justifies the inclusion of our novel
encoding by grouping hidden responses using residual-less
NetVLAD and then infer class probability using learnable
pooling from these encoded responses. For base CNNs, we
use the standard transfer learning by fine-tuning it on the
target dataset using the same data augmentation and hyper-
parameters. For our models, we use pre-trained weights for
faster convergence. We experimentally found that the ran-
dom initialization takes nearly double iterations to converge
(similar accuracy) than the pre-trained weights. A similar
observation is shown in (He, Girshick, and Dollár 2019).

Our model’s accuracy is also compared using different
numbers of regions |R|. It is a hyper-parameter and is com-
puted from ∆x and ∆y . The results are shown in Table 5
(best |R| = 27). We have also provided results for top-N ac-
curacy in the supplementary document. The top-2 accuracy
is around 99% and is independent of the CNN types.
Model complexity: It is represented as a number of train-
able parameters in millions and per-image inference time in
millisecond (Table 4). It also depends on the base CNNs
types (e.g. standard vs lightweight). Given the number of
trainable parameters (9.7M) and inference time (3.5ms), the
performance of the lightweight NASNetMobile is very com-
petitive in comparison to the rest. The role of secondary data
has improved accuracy in (Chang et al. 2020; Cubuk et al.
2019; Ge, Lin, and Yu 2019; Ge and Yu 2017). However,
such models involve multiple steps and resource-intensive,
resulting in difficulty in implementing. For example, 3 steps
in (Ge, Lin, and Yu 2019): 1) object detection and instance
segmentation (Mask R-CNN and CRF), 2) complementary
part mining (512 ROIs) and 3) classification using context
gating. The model is trained using 4 GPUs. In contrast, our
model can be trained on a single GPU (12 GB). The per-
image inference time is 4.1ms. In (Ge, Lin, and Yu 2019), it
is 27ms for step 3 and additional 227ms for step 2. FCANs
(Liu et al. 2016) reported its inference time as 150ms. Using
27 integral regions and ResNet50 as a base, the training time
for the Aircraft is ∼4.75 hrs for 150 epochs (12 batch size).
It is ∼5.7 hrs for Cars and ∼8.5 hrs for Dogs.
Qualitative analysis: To understand the discriminability of
our model, we use t-SNE (Van Der Maaten 2014) to visu-
alize the class separability and compactness in the features
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Aircraft/Planes Stanford Cars Oxford-IIIT Pets Param Time
Base CNN Base B+C B+E B+C+E Base B+C B+E B+C+E Base B+C B+E B+C+E (M) ms

ResNet-50 79.7 88.8 81.1 94.9 84.7 91.5 85.7 94.9 86.8 94.7 86.3 96.7 36.9 4.1
Incep. V3 82.4 89.6 83.3 94.8 85.7 91.4 85.7 94.8 90.2 95.3 92.4 96.2 35.1 3.8
Xception 79.5 89.5 89.3 94.1 84.8 91.6 89.1 95.7 91.0 96.2 96.0 97.0 34.2 4.2
NASNet-M 77.1 89.6 80.4 93.8 80.4 91.7 82.7 93.7 89.9 95.6 94.9 97.3 9.7 3.5

Table 4: Performance (accuracy in %) of our model with the addition of our novel CAP (+C) and classification (+E) module to
various SotA base (B) CNNs. The observed accuracy trend is (B+C+E)> (B+C)> (B+E)> B for all base CNNs. Final model’s
(B+C+E) trainable parameters (Param) are given in million (M) and the respective per-frame inference time in millisecond (ms).

(a) Base CNN (b) Impact on base CNN (c) CAP (d) CAP + Encoding

(e) αr,r′ for class 1 (f) αr,r′ for class 2 (g) cr of region 1 (h) cr of region 20 (i) cr of class 1 (j) t-SNE plot of cr

Figure 3: Discriminability using t-SNE to visualize class separability and compactness (a-d). Aircraft test images using Xcep-
tion: a) base CNN’s output, b) our CAP’s impact on the base CNN’s output, c) our CAP’s output, and d) our model’s final
output. Our CAP’s class-specific attention-aware response for class 1 (e) and class 2 (f) to capture the similarity between 27
integral regions (27×27). Class-specific cr in (2) for 9 classes (3 × 3) from region 1 (g) and 20 (h). Blue to red represents
class-specific less to more attention towards that region. Class-specific individual feature response within cr of the region 1 and
class 4 (i). t-SNE plot of cr representing images from the above 9 classes (j).

Aircraft Cars
Base CNN #9 #27 #36 #9 #27 #36

ResNet-50 85.9 94.9 91.2 92.9 94.9 91.9
Xception 87.8 94.1 90.0 93.9 95.7 92.6
NASNet-M 92.7 93.8 90.3 92.4 93.7 90.9

Table 5: Accuracy (%) of our model with a varying number
of integral regions. More results in the supplementary.

extracted from a base CNN, and our novel CAP and classi-
fication modules. We also analyze the impact of our CAP in
enhancing the discriminability of a base CNN. We use test
images in Aircraft and Xception as a base CNN. In Fig. 3(a-
d), it is evident that when we include our CAP + encoding
modules, the clusters are farther apart and compact, result-
ing in a clear distinction of various clusters representing dif-
ferent subcategories. Moreover, the discriminability of the
base CNN is significantly improved (Fig. 3b) in comparison
to without our modules shown in Fig. 3a. More results are
shown in the supplementary material. We have also looked
at the inside of our CAP by visualizing its class-specific

attention-aware response using αr,r′ and context vector cr in
(2). Aircraft images (randomly selected 9 classes) are used
in Fig. 3(e-j). Such results clearly show our model’s power
in capturing the context information for discriminating sub-
tle changes in FGVC problems. We have also included some
examples, which are incorrectly classified by our model with
an explanation in the supplementary.

Conclusion
We have proposed a novel approach for recognizing subcate-
gories by introducing a simple formulation of context-aware
attention via learning where to look when pooling features
across an image. Our attention allows for explicit integra-
tion of bottom-up saliency by taking advantages of integral
regions and their importance, without requiring the bound-
ing box/part annotations. We have also proposed a feature
encoding by considering the semantic correlation among the
regions and their spatial layouts to encode complementary
partial information. Finally, our model’s SotA results on
eight benchmarked datasets, quantitative/qualitative results
and ablation study justify the efficiency of our approach.
Code is available at https://ardhendubehera.github.io/cap/.
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