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Abstract

Visual storytelling is a task of generating relevant and in-
teresting stories for given image sequences. In this work we
aim at increasing the diversity of the generated stories while
preserving the informative content from the images. We pro-
pose to foster the diversity and informativeness of a gener-
ated story by using a concept selection module that suggests
a set of concept candidates. Then, we utilize a large scale pre-
trained model to convert concepts and images into full stories.
To enrich the candidate concepts, a commonsense knowl-
edge graph is created for each image sequence from which
the concept candidates are proposed. To obtain appropriate
concepts from the graph, we propose two novel modules that
consider the correlation among candidate concepts and the
image-concept correlation. Extensive automatic and human
evaluation results demonstrate that our model can produce
reasonable concepts. This enables our model to outperform
the previous models by a large margin on the diversity and
informativeness of the story, while retaining the relevance of
the story to the image sequence.

Introduction
Telling a story based on a sequence of images is a natural
task for humans and a fundamental problem for machine in-
telligence for various scenarios such as assisting the visually
impaired people. Also known as visual storytelling (VST),
the task has raised extensive research attention, since VST
requires the model to not only understand the complex con-
tent within one image but also reason about the event across
images as they occur and change. Since image sequences
contain rich and diverse information, it is especially difficult
for a model to tell a relevant story that is both informative of
the image content and diverse in story style.

Most previous works on VST construct end-to-end frame-
works (Yang et al. 2019; Wang et al. 2018; Jung et al.
2020; Yu, Bansal, and Berg 2017). However, although these
methods can produce legitimate stories with high score in
automatic metrics like BLEU (Papineni et al. 2002), it is
shown that the stories tend to be monotonous which contains
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Figure 1: Stories generated by the state-of-the-art
model (Jung et al. 2020) and our proposed model us-
ing concept selection (red). The state-of-the-art model
tends to generate similar stories (blue) for different inputs.
Compared with it, our model can generate more informative
and diverse stories.

limited lexical diversity and knowledge (Hsu et al. 2019a)
(see the example in Figure 1). Recently, two-stage gener-
ation methods, also known as plan-write strategy, aroused
much research attention in story generation tasks (Yao et al.
2019; Martin et al. 2017; Ammanabrolu et al. 2020). When
adopted to the task of VST, Hsu et al. (2019a) shows that
this strategy is capable of generating more diverse stories
compared with end-to-end methods. However, their method
directly generates concepts from the images using sequence-
to-sequence models. Since the concept is selected from the
full vocabulary, this kind of direct generation often produces
concepts of low quality which affects the informativeness of
the story.

In this work we aim to generate stories that are both di-
verse and informative for a given input image sequence.
Taking the advantage of the previous two-stage models,
we detect image concepts and construct concept graphs for
proposing a set of concept candidates, and propose two
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Figure 2: An overview of our visual storytelling model. The image features are obtained by a pretrained CNN combined with a
bi-LSTM layer. The concepts are obtained from a concept detection model and enriched by ConceptNet (Liu and Singh 2004).
These concepts from the nodes in a graph and are connected according to the relationship in the knowledge base. Initialized
by the word embedding vector, the concept features are then updated by a Graph Attention Network. Our proposed concept
selection module is then applied to select exact concept words using the image features and the concept features. Finally, both
image features and concept words are used to generate a full story.

novel methods for better selecting the appropriate concept
for the second generation stage. After detecting the con-
cept in each input image, we first extend the concepts into
a larger commonsense graph using ConceptNet (Liu and
Singh 2004). This extension step increases the informative-
ness of generated stories. Since selecting appropriate candi-
dates from the concept graph is critical for generating sto-
ries of good quality, a natural way is to use a graph attention
network (Veličković et al. 2017) to refine the node features.
Using Graph Attention Network can allow message passing
along the graph structure, so that information of related con-
cepts can be updated and integrated. This would allow us to
get a better pool of concept candidates.

For selecting the most adequate concept from the candi-
dates as the input to the second stage of our model, two novel
modules are proposed in this work. The first one, named
Sequential Selection Module (SSM), operates in a straight-
forward manner that uses an encoder-decoder for selecting
concepts for each image. Differently from SSM, the second
module called Maximal Clique Selection Module (MCSM)
processes the concept graph as a whole. It learns a probabil-
ity for each concept in the training phase, and during infer-
ence it finds a maximal clique using the Bron Kerbosch al-
gorithm (Bron and Kerbosch 1973). The concepts within the
clique are used for the next story generation step. Our exper-
iments show that improved quality of concept selection can
greatly help to increase the diversity of the generated stories
while keeping the relevance with the input images.

The second stage of our model generates a story with the
image features and the selected concepts. Other than using
the same module for fair comparison with existing works,
we also propose to modify the large scale pre-trained model
BART (Lewis et al. 2019) to input the images and concepts
and output the full stories.

We conduct extensive experiments on the public VIST
dataset (Huang et al. 2016). Our experiments demonstrate
that using our proposed concept selection modules, our gen-
erated stories can achieve better performance on both auto-

matic metric and multiple human evaluation metrics using
the same generation module. When equipped with BART,
the quality of the stories can be remarkably improved, with
the generated story diversity similar to human writing.

In summary, our main contributions are listed as follows:

• We propose two novel modules SSM and MCSM to se-
lect concepts from the given candidates concepts under a
plan-write two-stage visual storytelling system. The ex-
periments show that our proposed methods can output
more appropriate concepts than the previous work.

• We exploit modified BART as our story generation mod-
ule to mitigate the problem caused by limited vocabulary
and knowledge in the dataset. To the best of our knowl-
edge, this is the first work to use a large scale pre-trained
language model in a visual storytelling task.

• Large scale experiments using automatic metrics and hu-
man evaluation show that our model can outperform pre-
vious models by a large margin in both diversity and infor-
mativeness, while retaining the relevance and logicality as
the previous work.

Related Work
Visual storytelling aims at generating stories for image se-
quences. Many existing methods focused on generating rel-
evant and coherent stories (Hu et al. 2020; Wang et al. 2020;
Chandu et al. 2019; Li et al. 2019; Hsu et al. 2019b). These
works can be separated into two lines: one line is to construct
end-to-end models to generate the stories directly from the
images. The other line is to build a two-stage generation
model that first outputs a mid-level abstraction and then gen-
erates the full story.

End-to-End Methods
Wang et al. (2018) proposed a visual storytelling framework
which is widely used as a base model in the coming-up stud-
ies. This framework uses an end-to-end structure that first
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Figure 3: (a) Sequential Selection Module: this module sequentially use current hidden state as a query to select the concept
from the commonsense graph. (b) Maximal Clique Selection Module: this module calculates concept-to-concept and image-to-
concept correlation maps. The correlation maps can be viewed as a fully connected graph of concepts. We set a threshold to
prune the edges. Then, a maximal clique algorithm is applied to find the maximal cliques in the remaining graph. Finally, those
cliques are scored and the one with highest score will be selected and the concepts to be used in the next generation stage.

convert the image into features and then transfer its infor-
mation to the adjacent images by a BiLSTM layer. Finally, a
decoder decodes the features separately and merge the sen-
tences into a story. While many succeeding works (Huang
et al. 2019; Jung et al. 2020) can achieve high automatic
scores, the story may not be interesting and informative (Hu
et al. 2020) for human as they often contain repetitive texts
and limited information. One of the main reasons for the low
diversity and informativeness is that these model are trained
end-to-end under the maximum likelihood estimation (Yang
et al. 2019).

Two-Stage Methods

To alleviate the low diversity problem, Hsu et al. (2019a)
proposed to generate several concepts before outputting the
full stories. The discrete concept words can guide the de-
coder to produce more diverse stories. This plan-and-write
strategy (Yao et al. 2019) can substantially increase the di-
versity of the stories. During the planning, to enhance the
concepts that models can obtain, some researchers (Hsu
et al. 2019a; Yang et al. 2019) introduce external common-
sense knowledge database such as OpenIE (Angeli, Premku-
mar, and Manning 2015), Visual Genome (Krishna et al.
2017) or ConceptNet in the VST task. Their results show
that using external knowledge base helps to generate more
informative sentences. These works also show that the con-
cepts are critical for the quality of generated stories because
they can control the story flow.

In this work we aim to improve the concept selection
for increasing the diversity and informativeness of VST. We
propose two concept selection modules that carefully selects
concept from a well-designed pool of concept candidates.
The stories generated using our selected concepts thus be-
come more diverse and informative. We further introduce to
modify the pretrained model BART and use it to generate
even better stories.

Method
Figure 2 depicts an overview of our proposed model. Given
a sequence of N images as input, our model 1) encode im-
age features, 2) construct a large commonsense graph for the
images, 3) update concept feature in the graph, 4) select the
concepts from the graph and 5), send concepts and image
features into the decoder to output the full story. The details
of each step are as follows:

Image Feature Encoding
We send the images into ResNet152 (He et al. 2016) to ob-
tain image features I = {I1, ..., IN}. Following Wang et al.
(2018), a bidirectional GRU further encodes the high-level
visual features to capture sequential information. The en-
coded feature for each image contains both the information
of itself and the information from the adjacent images. Note
that position embedding is applied before sending the image
features into GRU to identify the order of the images.

Commonsense Graph Construction
To build our commonsense knowledge graph for image se-
quences, we need some seed concepts. Following Yang et al.
(2019), we use clarifai1 to obtain the top 10 seed concepts
from each image. Each concept is used as a query to select
relative commonsense concepts in the ConceptNet (Liu and
Singh 2004). Since the number of the commonsense con-
cepts is usually very large (> 500), we make several rules
to filter some concepts which are less useful:

• Remove the commonsense concepts that appear less than
5 times in the whole training corpus.

• Remove the commonsense concepts that do not co-occur
with the seed concepts either in the sentence or in the
training corpus.

• If the concept number is still larger thanK for one image.
We simply randomly sample K words from it.

1www.clarifai.com
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After the filtering process, each image contains K concepts.
Note that while different images can obtain the same concept
in one image sequence, they can represent different seman-
tic meanings in different positions of the story. Each con-
cept forms a node in the commonsense graph. An undirected
edge is established between concepts if they are related in
ConceptNet. Also, a concept in one image will connect to
the related concepts in the adjacent images to allow infor-
mation flow between images. Like (Yang et al. 2019), we
do not use the specific relation (e.g., isA, has) between con-
cepts. Till now, we build a graph which is a graph structure
that is both connected within an image and between images.

Concept Features Update
The concept features are initialized with word embedding
vectors. To incorporate the visual information into the con-
cepts, we also connect the image feature to its corresponding
concept features in the graph. These features are updated by
a two-layer Graph Attention Network, which passes infor-
mation between connected concepts and image using atten-
tion mechanism.

Concept Selection Module
We propose two methods to select concepts given the con-
cept features and the image features.

To better formalize the procedure in the methods, we de-
note ci,j as the j-th concept of the i-th (1 ≤ i ≤ N ) image.
we let CS = {c1,1S , ..., c

N,K
S } and CG = {c1,1G , ...} denote the

concepts set in the source candidate concepts and the full
word set in the gold story, respectively. The target concepts
are their intersection: CT = CS ∩ CG.

Sequential Selection Module (SSM) One straightforward
way of selecting concepts is to adopt an encoder-decoder
model where we can forward the updated concept features
into the encoder, and the decoder will output the selected
concepts. Inspired by the Copy Mechanism (Gu et al. 2016),
instead of generating a probability distribution with vocab-
ulary size in each step, the SSM outputs are directly cho-
sen from the inputs CS . As shown in Figure 3(a), we use
a GRU (Cho et al. 2014) to first encode the concept embed-
ding feature vt−1S and the hidden state into a new hidden state
h
t. We then use ht to query all the concepts in CS to get a

probability pS for each concept in the source set. Finally the
concept with the highest probability is selected as the output
concept, while its feature is directly copied for the genera-
tion of the next step:

h
t
= GRU (ht−1, vt−1S )

pS = softmax ((Whh
t)TWcVS)

c
t
S = argmax(pS)

(1)

Here Wh and Wc are trainable projection matrices. The ob-
jective function is to maximize the probability score of the
concepts which locate in CT .

Lssm = −ΣyS,T log(pS), (2)

where yS,T is an indicator of whether a concept in CS is
in CT . The sequence selection step stops when the module
generates <end> token. This <end> token is added to the
set of candidate concepts with a uniform random initialized
feature without any update during the training phase. The
same procedure is done to the <start> token except that it is
not involved in the candidates.

Maximal Clique Selection Module (MCSM) Different
from SSM, this method aims to calculate the co-occurrence
probability of all candidate concepts cs in the graph. An
illustration of MCSM is shown in Figure 3(b). In the be-
ginning, we calculate self-attention to compute a correlation
matrix MC ∈ (NK ×NK) which contains the correlation
between each pair of nodes. We also calculate another cor-
relation matrix for each image MI ∈ (N × K) indicating
the correlation between the concept embedding feature (vS)
and image features (I).

MC = σ(vTSWT
a WbvS)

MI = σ(ITWT
c WdvS)

(3)

Here, Wa,Wb,Wc,Wd is trainable weights, σ denotes sig-
moid activation function. Intuitively, the concepts that ap-
pear in a gold story should own high correlations with each
other, and the image should be highly related to the gold con-
cepts to describe it. Thus, our target correlation maps can be
written as follow:

M̂C[i, j] = {1, ci ∈ CT ∧ cj ∈ CT
0, otherwise

M̂I[i, j] = {1, cj ∈ Ci
T

0, otherwise

(4)

Then, the objective is to minimize the difference between
predicted and target correlation maps:

Lmcsm = λ1
ÂÂÂÂÂMC − M̂C

ÂÂÂÂÂ
2

2
+ λ2

ÂÂÂÂÂMI − M̂I
ÂÂÂÂÂ
2

2
(5)

In testing phase, MC can be viewed as a fully connected
graph in which the edge weights correspond to the values
in the matrix. Therefore, a low edge weight means less co-
occurrence probability between two concepts. Based on this
assumption, we set a threshold τ to remove the edges whose
weight is less than τ . Then we apply Bron Kerbosch algo-
rithm (Bron and Kerbosch 1973) to find all maximal cliques
from the remaining sub-graph. Finally, we score each of
them with equation 6 and select a clique with maximum
score s. The output concepts are the nodes within the se-
lected cliques.

s = sC + sI

sC =
1

(∥CP∥ − 1) ∥CP∥ ∑
i

∑
j≠i

log(MC[i, j])

sI =
1

∥CP∥
N

∑
i=1

∑
cj∈Ci

P

log(MI[i, j]).

(6)

where CP denotes the concepts in a clique, and Ci
P denotes

the concept of the i-th image in the clique.

1002



Concept to Story Module
The selected concepts are assigned to its corresponding im-
age to generate the sentences. We tried two kinds of encoder-
decoder to decode the story: 1) a simple encoder-decoder
module that uses multi-head pooling to encode the concept
embeddings, and decode the sentences with a RNN decoder.
2) a large scale encoder-decoder which both can encode the
input and output the sentences.

RNN Decoder decodes sentences separately for each im-
age and then concatenates into a story, while BART accepts
all the images and concepts at once to output a full story.

RNN To get the concept feature from the concept words,
we apply Multi-head Pooling (Liu and Lapata 2019) to cal-
culate multi head self-attention score on the input concept
embedding and do weighted summation on the concept em-
bedding. Each image and corresponding concepts are de-
coded separately with the same decoder as Jung et al. (2020).
The decoder accepts the image features Ii and the pooled
concept feature vi as input. Formally, the generation process
can be written as:

h
t
i = RNN (ht−1i , [wi

t−1; Ii; vi]) (7)

π
t
= softmax (Wsh

t
i) (8)

Here Ws is a projection matrix for outputting the probabil-
ity distribution π

t on the full vocabulary. “;” denotes the
channel-wise concatenation operation. Finally, all of the cor-
responding words are merged into a complete story.

BART Although there exists many large scale pretrained
language models, none of them are used on VST in previous
works. In this paper, we propose to use a modified version of
BART as our base decoder model. BART is pretrained on a
large dataset and their arbitrary noise function helps to miti-
gate the exposure bias. For inputting the image features into
BART, We add a new randomly initialized projection matrix
to transform the size of image features to fit BART’s input.
For the concepts we simply use the pretrained BART word
embedding. Since BART is powerful enough to generate a
long story. Different with RNN decoder, we input N images
and all concepts into the BART together and use a <SEP>
token to separate the images and concepts, and to separate
the concepts from different images. The transformed image
feature and concept embedding are sent to BART and gen-
erate the final stories.

Experiment
Dataset
We conduct experiments on the widely used VIST dataset
(Huang et al. 2016), which consists of 40101 samples for
training 5050 test samples. Each sample contains 5 images
and one corresponding gold story. For fair comparison, we
follow the same experiment setting as (Jung et al. 2020) ex-
cept that we set the vocabulary size to 28000. All models use
the same fixed random seed.

Concept Detector
In this paper, we use the Concept Detection API produced
by clarifai. This Detector can predict 11,000 concepts which
is larger than any other detection model. This powerful pre-
trained detector helps us to precisely find out the concepts
inside the images, so that the word in the gold sentences
can be easily involved in our knowledge enhanced candidate
concepts.

Implementation Details
When training SSM, since we assume that there is no order
relationship between the concepts in one image, so during
the training phase, we randomly shuffle the target concept
in one image. When training BART, we conduct a two-stage
training: 1) freeze all BART parameters except for the im-
age projection matrix. 2) finetune all parameters. We use
Adam (Kingma and Ba 2014) optimizer with an initial learn-
ing rate of 4e-4 in the first stage, then the learning rate is de-
creased to 4e-5 in the fine tuning stage. Each stage is trained
for 5 epochs. All the other parts of our model are trained with
an Adam Optimizer with learning rate 4e-4. During train-
ing, we follow Jung et al. (2020) to blind one of the images
starting from the 50-th epoch and increase the blinding into
two images from epoch 80. The training stops at epoch 100.
Our model uses gold concepts extracted from gold stories to
train the concept to story model. This step is similar to the
common auto-regressive models that use the target token as
the input to generate the next token. As has been discussed
in the previous sections, this kind of generation often meets
with the problem caused by the train-test discrepancy that
we cannot see the gold concepts in the testing phase. To alle-
viate, a simple and effective way is to add noise to the inputs.
In this work, we add two kinds of noise into the inputs in the
story generation module: masking and random replacement.
We mask 30% concepts and replace 20% of them into other
similar words in training.

τ Search in Maximal Clique Selection Module
τ is set as the threshold in pruning edges for the maximal
clique selection. Larger τ leads to fewer concepts that can
be selected and will further result in the lack of imagination
(diversity) in the generated story. However, smaller τ would
lead to too many concepts that may mislead the model to
generate irrelevant stories. To make a trade-off, we initial-
ize τ as 0.3 and continual decreasing the number until Bron
Kerbosch algorithm (Bron and Kerbosch 1973) can produce
at least 5 candidate cliques that contains 7 to 15 candidate
concepts in each clique.

Decoding Strategy
During model inference, usually beam search is used in de-
coding the sentences from the decoder (Wang et al. 2018;
Jung et al. 2020; Yu, Bansal, and Berg 2017). However, it has
been proved that beam search can result in bland, incoherent
stories, or gets stuck in repetitive outputs (Holtzman et al.
2019). In this paper, to further improve diversity in generated
stories, we apply nucleus sampling (Holtzman et al. 2019)
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Method Precision Recall F measure
Rand 2.68 2.45 2.56
C Attn 30.38 43.37 35.86
I2C 31.32 20.75 24.96
SSM 40.43 40.30 40.36
MCSM 45.30 40.90 42.99

Table 1: Concept selection performance of different meth-
ods. The results show that our MCSM achieved the best f-
score among all methods.

Figure 4: The y axis shows the ranking score (lower the bet-
ter) and Distinct-4 score (higher the better) while we change
the temperature in nucleus sampling with the model trained
from scratch on VIST dataset. We ask the workers to rank
the overall score for five stories generated by 5 different tem-
peratures. As we can see, with the increasing of the temper-
ature, the stories become more diverse, however, the quality
of them become lower.

which outperforms top-k sampling method. However, nu-
cleus sampling does not perform well without a well-trained
language model. We show this by an experiment where we
train our model with RNN as the story generation module on
the VIST dataset and decode using nucleus sampling. Note
the VIST dataset is relatively small compared with other nat-
ural language datasets like Book Corpus (Zhu et al. 2015).
We conduct human evaluation and let the annotators to rank
the overall story qualities (lower the better) generated with
different softmax temperatures [0.5,0.6,0.7,0.8,0.9] for the
same image sequence. We randomly pick 100 samples for
this experiment. Figure 4 shows that with the temperature
increases, the story quality would drop. Especially, when the
temperature is 0.9 which is recommended in Holtzman et al.
(2019), the generated sentences are incomprehensible and
full of grammatical errors. This result motivates us to use a
large scale pre-trained language model in our experiment.

Thus, for fair comparison with previous works, the same
RNN with beam search is used as the story generation mod-
ule to validate the effectiveness of our concept planning
model. While, we use nucleus sampling (temperature=0.9,
p=0.9) when BART (Lewis et al. 2019) is applied to demon-
strate a higher upper bound of our model’s ability.

Method Dist-2 Dist-3 Dist-4
INet⭒ 8.36 18.92 31.02
KS⭒ 10.84 22.90 36.51
KG-Story† 18.73 38.65 57.22
Our(MCSM) 13.98 34.01 54.11
Image+BART† 21.63 46.23 67.57
Our(MCSM)+BART† 34.95 69.88 88.74
Gold 47.76 82.27 95.05

Table 2: Diversity of generated stories by different methods.
Two-stage generation methods can produce more diverse
stories. Using BART, we can achieve the diversity close the
human writing, while achieving same level story quality in
other aspect. †denotes the story generation module is pre-
trained with other dataset. ⭒ denotes end-to-end methods.

Experiment on Concept Selection
We first test the ability to select appropriate concepts for dif-
ferent models. Since each image sequence in the test sample
corresponds to 3 to 5 gold stories, we report the highest per-
formance of the output selection result with respect to all
gold stories in each sample. Similar as Keyphrase generation
tasks, we apply precision, recall and f measure to evaluate
the efficiency of concept selection methods. The precision
is defined as the number of correct concepts selected over
the target concepts, and recall is defined as the number of
correct selections over all candidates.

We compare among several methods:

• Rand: A simple baseline where we randomly pick 3 con-
cepts from the candidates for each image. On average,
each image contains 2.65 gold concepts.

• C Attn: We extract the attended concepts where the at-
tention score is larger than a threshold from the model of
Yang et al. (2019). This is an end-to-end model with sig-
moid attention on concept words. We choose 0.8 as the
threshold since this contributes the best f-score.

• Image to concept(I2C): This is a straightforward version
of concept selection where the concepts are directly gen-
erated from the images. We simply add a projection layer
on each hidden state to predict the concept words from the
vocabulary size of the concepts, which is very similar to
the model of Hsu et al. (2019a).

• SSM: Our proposal which uses a copy mechanism in each
step of selection.

• MCSM: Our proposal which calculates the correlation
score for concept-concept and image-concept and uses
maximal clique selection.

Qualitative results are shown in Table 1. We can see that
our proposed SSM and MCSM can achieve significantly
higher f-score than other methods. This helps our model to
keep the story relevance to the input images while generat-
ing diverse stories.

Experiment on Visual Storytelling
Here we show the results of the visual storytelling. We use
the following baselines for comparison:
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Method B-3 B-4 R M C
INet⭒ 23.5 14.4 29.7 35.3 9.5
KS⭒ 24.7 15.0 31.0 35.0 9.8
Rand+RNN 13.3 6.1 27.2 31.1 2.2
C Attn+RNN 20.7 11.2 29.7 34.5 7.8
SSM+RNN 22.1 12.0 30.0 35.4 10.5
MCSM+RNN 23.1 13.0 30.7 36.1 11.0

Table 3: Automatic metric in story quality. We report BLEU
(B), METEOR (M), ROUGH-L (R), and CIDEr (C) scores.
The two-stage generation can achieve higher METEOR and
CIDER scores.

INet (Jung et al. 2020) This is a recent work which uses a
“hide-and-tell” strategy to train an end-to-end model. In this
method no concept is used.
KS (Yang et al. 2019) This method uses sigmoid attention to
incorporate concept features into the model. We change the
structure of the visual encoder and decoder the same as INet
for fair comparison.
KG-Story† (Hsu et al. 2019a) is a strong baseline that use
two stage plan-write strategy and pretrain the decoder on
RocStories Corpora (Mostafazadeh et al. 2017). †indicates
the model introduces external large-scale pretraining data.
Image+BART†is an end-to-end baseline that uses BART
on top of image features to directly generate the story. This
baseline is one-stage that does not generate concepts.

We also change the concept selection module and story
generation module in our model to validate the effec-
tiveness of each component. Specifically, we compare:
Rand+RNN, C Attn+RNN, SSM+RNN, MCSM+RNN,
and MCSM+BART† .

Comparison on Diversity We first compare the ability of
generating diverse stories of different models. Quantitative
comparison is shown in Table 2. We report Distinct-n (Dist-
n) scores (Li et al. 2015) that calculate the percentage of
unique n-gram in all generated stories in the test dataset.
Higher score means less inter-story repetition. From the ta-
ble, two stage generation methods (KG-Story and ours) can
achieve significantly higher diversity scores. Our MCSM
can generate the most diverse stories among all the methods
without using external pretrained models. When equipped
with BART, we can even achieve diversity close to human
writing. We show in the following that the increased diver-
sity also improves the overall quality of the story.

Automatic Evaluation In Table 3, for comparing the
quality of generated stories, we use automatic metrics
BLEU (B) (Papineni et al. 2002), METEOR (M) (Baner-
jee and Lavie 2005), ROUGH-L (R) (Lin 2004), and CIDEr
(C) (Vedantam, Lawrence Zitnick, and Parikh 2015). Note
that it remains tricky for automatic scores to appropriately
evaluate story qualities. Using concept, KS can achieve bet-
ter performance than INet that does not use concept. From
the comparison of the variants of our model, we can see that
better concept selection can lead to better automatic scores.

Figure 5: We calculate the Pearson Correlation Coefficient
for each criteria in human evaluation. R, I, L, O denotes
Relevance, Informativeness, Logicality and Overall, respec-
tively. We can see that Informativeness is almost indepen-
dent to Relevance and Logicality, while is highly correlated
to Overall score.

With reasonable concept selection, our SSM and MCSM can
achieve highest METEOR and CIDER scores.

Human Evaluation To better evaluate the quality of gen-
erated stories, we conduct human evaluation to compare
pair-wise outputs with several models via the Amazon Me-
chanical Turk (AMT). We randomly sample 200 image se-
quences from the test set and generate stories using each
model. For each sample pair, two annotators participate in
the judgement and decide their preference on either story
(or tie) in terms of Relevance, Informativeness, Logicality
and Overall. Relevance evaluates how relevant the stories
and the images are. Informativeness assesses how much in-
formation can be achieved in the generated stories, and this
score from one side reflects the diversity of stories. Logical-
ity evaluates the logical coherence in the stories. Overall is
a subjective criterion that shows the preference of workers.

Table 4 shows the human evaluation result. Since there
exists randomness in human evaluation, we compute the Co-
hen’s Kappa coefficient and found that all evaluations are in
Moderate Agreement and Fair agreement, which indicates
the evaluation result is reasonable as good inner agreement
between evaluators is reached. We also conduct a Sign test to
illustrate the significance of the evaluation difference: if p is
below 0.05 it would indicate that the two compared models
have a significant performance difference. From the com-
parison between MCSM and INet and the comparison be-
tween MCSM and KS, we can see that our two-stage plan-
ning method greatly outperforms the end-to-end models, es-
pecially in the informativeness score. The MCSM module
also outperforms the SSM module, which indicates posi-
tive correlation between the quality of concept selection and
the overall quality of generated stories. Finally, using BART
with MCSM can help to achieve further informativeness and
generate even better stories.

Importance of Informativeness in Story Quality
We calculate the Pearson Correlation Coefficient on four cri-
teria in human evaluation. In Figure 5, R, I, L, O denotes
Relevance, Informativeness, Logicality and Overall, respec-
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Choices(%) MCSM vs INet MCSM vs KS MCSM vs SSM MCSM+BART† vs KS MCSM+BART† vs MCSM
MCSM INet MCSM KS MCSM SSM MCSM+BART KS MCSM+BART MCSM

Revelence 47.4 35.6 26.3 31.6 50.5 40.0 28.8 33.6 35.2 35.2
Informativeness 51.0* 31.6 46.3* 28.9 44.7 41.2 62.5** 18.8 58.8** 23.5
Logicality 35.5 34.3 34.2 29.0 32.9 42.3 35.3 33.3 40.2 37.5
Overall 55.0** 30.0 44.7 34.2 48.3 37.1 43.5** 23.0 47.0* 31.6

Table 4: Human evaluation. Numbers indicate the percentage of annotators believe that a model outperforms its opponent.
Methods without (+BART) means using RNN as the story generation module. Cohen’s Kappa coefficients (κ) for all evaluations
are in Moderate (0.4-0.6) or Fair (0.2-0.4) agreement, which ensures inter-annotator agreement. We also conduct a sign test to
check the significance of the differences. The scores marked with * denotes p < 0.05 and ** indicates p < 0.01 in sign test.

tively. Ranged from -1 to 1, the Informativeness score has
low correlation score with Logicality (0.011) and Relevance
(0.08), while a high correlation score with Overall (0.47).
This indicates that Informativeness is almost independent on
Relevance and Logicality, but highly dependent on the Over-
all score. This suggests that humans tend to choose stories
with more interesting information. This phenomenon proves
the significance of informativeness and diversity in visual
storytelling.

Case Study
We show a qualitative result of a random test sample in Fig-
ure 6. This is a hard example because the last three images
are very similar and the objects in all images are hard to rec-
ognize. We can see that INet generates monotonous and even
irrelevant sentences. KS can generate better sentences but
still low in lexical diversity. For the stories generated by two-
stage strategy with RNN (SSM+RNN, MCSM+RNN), we
can see that the story follows the selected concepts and the
stories seem more reasonable than that of end-to-end train-
ing methods. When using BART, we compare three meth-
ods that represent no concept selection (Image+BART), bad
concept selection (Rand+BART) and ours concept selection
(MCSM+BART). We can see that without using concepts
or using randomly selected concepts, the generated stories
are of low quality and to a certain extent irrelevant to the
images. However, when guided by the selected concept, the
story becomes vivid, relevant and logical.

Conclusion
In this work we exploit concept selection for improving
the diversity and informativeness of stories generated from
image sequences. By constructing a commonsense graph
and two novel modules for concept selection, our proposed
model outperforms all previous works in diversity by a large
margin while still preserving the relevance and logical con-
sistency on the VIST dataset. Our future direction aims to
increase the relevance of the generated story by better lever-
aging the visual information.

Acknowledgements
We thank the anonymous reviewers for the useful com-
ments. This paper was based on results obtained from a
project, JPNP20006, commissioned by the New Energy and
Industrial Technology Development Organization (NEDO)

Figure 6: The examples of generated stories by different
methods. Our MCSM and SSM can generate better sto-
ries compared with other baselines that do not use BART.
When using the pretrained BART, the concept selection with
MCSM can produce vivid and informative story.

and was also supported by JSPS KAKENHI Grant Number
JP19H04166.

References
Ammanabrolu, P.; Tien, E.; Cheung, W.; Luo, Z.; Ma, W.;
Martin, L. J.; and Riedl, M. O. 2020. Story Realization:

1006



Expanding Plot Events into Sentences. In Proceedings of
the AAAI Conference on Artificial Intelligence, 7375–7382.

Angeli, G.; Premkumar, M. J. J.; and Manning, C. D. 2015.
Leveraging linguistic structure for open domain information
extraction. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Processing
(Volume 1: Long Papers), 344–354.

Banerjee, S.; and Lavie, A. 2005. METEOR: An automatic
metric for MT evaluation with improved correlation with hu-
man judgments. In Proceedings of the acl workshop on in-
trinsic and extrinsic evaluation measures for machine trans-
lation and/or summarization, 65–72.

Bron, C.; and Kerbosch, J. 1973. Algorithm 457: Finding
All Cliques of an Undirected Graph. Commun. ACM 16(9):
575–577. ISSN 0001-0782. doi:10.1145/362342.362367.
URL https://doi.org/10.1145/362342.362367.

Chandu, K.; Prabhumoye, S.; Salakhutdinov, R.; and Black,
A. W. 2019. “My Way of Telling a Story”: Persona based
Grounded Story Generation. In Proceedings of the Second
Workshop on Storytelling, 11–21.
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