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Abstract

Depth estimation from Light Field (LF) images is a crucial
basis for LF related applications. Since multiple views with
abundant information are available, how to effectively fuse
features of these views is a key point for accurate LF depth
estimation. In this paper, we propose a novel attention-based
multi-level fusion network. Combining with the four-branch
structure, we design intra-branch fusion strategy and inter-
branch fusion strategy to hierarchically fuse effective features
from different views. By introducing the attention mecha-
nism, features of views with less occlusions and richer tex-
tures are selected inside and between these branches to pro-
vide more effective information for depth estimation. The
depth maps are finally estimated after further aggregation.
Experimental results show the proposed method achieves
state-of-the-art performance in both quantitative and qualita-
tive evaluation, which also ranks first in the commonly used
HCI 4D Light Field Benchmark.

Introduction
Light Fields (LFs) (Adelson and Bergen 1991) record light
in different directions and describe scenes with more rich
information than traditional images. Lytro (Ng 2018) and
Raytrix (Perwaß and Wietzke 2018) are successful instances
of commercial LF cameras, which capture scenes from dif-
ferent directions in one shot by placing the micro-lens ar-
ray (Ng et al. 2005a) in front of the imaging sensor. As one
crucial step, depth estimation provides the structure infor-
mation and is used for various researches, such as digital
refocusing (Ng et al. 2005b), image segmentation (Wanner,
Straehle, and Goldluecke 2013), view synthesis (Jin et al.
2020), saliency detection (Li et al. 2014) and super resolu-
tion (Zhang, Lin, and Sheng 2019).

In order to estimate accurate depth (or equal to dispar-
ity) information, lots of traditional approaches have been
proposed. Based on the photo-consistency of views in LFs,
some methods (Jeon et al. 2015; Williem, Park, and Lee
2017; Sheng et al. 2017) are designed by constructing cost
volumes based on traditional stereo matching. Due to the
narrow baseline of LFs, other approaches analyze specific
linear structures in Epipolar Plane Images (EPIs) (Wanner,
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Straehle, and Goldluecke 2014; Zhang et al. 2016) or the fo-
cusness in focal stack (Lin et al. 2015; Tao et al. 2013) for
depth estimation. However, since the local depth estimation
is sensitive to occlusion, noise and texture-less regions, fur-
ther complex optimization methods (Wanner, Straehle, and
Goldluecke 2014; Wang, Efros, and Ramamoorthi 2015) are
necessary in order to obtain smooth depth maps. Moreover,
these methods also suffer from high computational cost due
to the discretization of depth space.

Recently, some learning-based methods (Shin et al. 2018;
Luo et al. 2017) have been introduced for depth estimation
in LFs. Similar to traditional approaches, some (Luo et al.
2017; Feng et al. 2018) are designed by learning the slope of
lines in EPIs, while others (Shi, Jiang, and Guillemot 2019;
Guo et al. 2020) directly explore the correspondences among
all views in LFs. Since LFs provide a wealth of viewing an-
gle information, how to select suitable views for matching
calculation in different regions becomes an important issue.
However, most of these methods choose to directly fuse all
features together (Shin et al. 2018) or according to one sim-
ple attention for the whole image (Yu-Ju et al. 2020). There-
fore, some matching errors in complex areas with occlusions
and less textures are introduced when performing depth es-
timation.

In this work, we introduce a multi-level fusion network
based on attentions for LF depth estimation. We consider
four directions (0◦, 90◦, 45◦ and 135◦) of LFs and group
them into four branches. Combining with the four-branch
structure, two different feature fusion methods are proposed:

• The intra-branch feature fusion based on channel atten-
tion, in which features of views that contain less occlu-
sions are selected within one branch.

• The inter-branch feature fusion based on branch attention,
in which features between branches are further fused by
choosing branches that have less occlusions and richer
textures.

With further feature extraction and cost aggregation, the fi-
nal depth maps are generated. Experimental results on both
synthetic and real-world datasets show the proposed method
recovers more accurate estimated depth maps than other
state-of-the-art methods. The proposed feature fusion strate-
gies are also proved that are effective to improve the depth
estimation results, especially in occlusion boundaries. The
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Figure 1: One typical example with the related EPIs, which is occluded when views change along the lower-right direction.
Compared with 90◦ and 135◦ EPIs, the line of point P is broken in the 0◦ and 45◦ EPIs. For 0◦ and 45◦ EPIs, if views are
separated into two groups with ‘+’ and ‘-’ two sides, the line in the ‘+’ side is more complete than the ‘-’ side.

evaluation metrics on the commonly used HCI 4D Light
Field Benchmark also show that our method achieves the
highest accuracy on average and gets the rank one position
to date.

Related Work
In this section, previous depth estimation methods are
reviewed, which include conventional methods and deep
learning based methods.

Conventional Methods

By slicing views of LFs in one direction, the depth informa-
tion are intuitively displayed in the EPIs (Levoy and Han-
rahan 1996; Gortler 1996). Wanner et al. (2014) first pro-
posed to estimate direction of lines on EPIs based on struc-
ture tensors and the local estimation is then integrated using
fast denoising and global optimization. Zhang et al. (2016)
proposed a spinning parallelogram operator to estimate the
slope of lines on EPIs by assuming that the difference be-
tween the two sides of the line is the largest. Zhang et al.
(2017) proposed the locally linear embedding for depth es-
timation, which improves the accuracy of the estimation re-
sults and reduces the calculation time without global opti-
mization.

Different from EPI-based methods, some methods are de-
signed based on view images and estimate the disparity by
matching pixels in different views. Jeon et al. (2015) es-
timated disparity by computing matching cost volumes be-
tween the central view image and view images displaced us-
ing the phase shift theorem. Wang et al. (2015) introduced a
depth estimation method which treats the non-occluded and
occluded region differently to handle occlusions. Williem
and Park (2016) used angle entropy measurement and adap-
tive defocus response to construct data costs, which is robust
to occlusion and less sensitive to noise.

However, most of these conventional methods suffer from
long calculation time with complex optimization and are
sensitive to occlusion, texture-less and noisy regions.

Deep Learning Based Methods
Recently, deep learning methods are used in LF depth esti-
mation. Based on EPIs, several methods have been proposed
to estimate orientations of lines in EPIs. Luo et al. (2017)
used EPI (horizontal and vertical) patch pairs to train a CNN.
Then post-processing is used to obtain better results. Feng
et al. (2018) leveraged on synthetic LFs and proposed a two-
stream CNN network that learns to estimate the disparities
of multiple neighborhood pixels from EPIs. Leistner et al.
(2019) introduced the idea of EPI-Shift that virtually shifts
the LF stack. The proposed network predicts the integer and
offsets of the disparity separately and then combines them.
Li et al. (2020) designed a novel module to construct the
relationship between oriented lines in horizontal and verti-
cal EPIs. However, these EPI-based methods only consider
the EPI characteristics of horizontal and vertical directions,
so that the information is not sufficient and reduces the re-
liability of the results. Moreover, due to the lack of global
information constraints, subsequent optimization processing
is required.

The other methods are designed by direct exploring the
correspondences between all views in LFs. Shi (2019) es-
timated disparity for all LF views based on the finetuned
FlowNet 2.0 (Ilg et al. 2017), which is suitable for both
densely and sparsely sampled LF data. Shin et al. (2018)
introduced a multi-stream input structure that concatenates
views from four directions in different branches to explore
EPI information for depth estimation. Guo et al. (2020) pro-
posed an occlusion-aware network by leveraging the explic-
itly learned occlusion maps, which is capable of estimating
accurate depth maps with sharp edges. The recently pro-
posed attention-based view selection network (Yu-Ju et al.
2020) used all LF images to construct cost volumes and
then generated an attention map indicating the importance
of each view. However, since all pixels in one view are as-
signed the same weight, it is difficult to extract special fea-
tures for different occluded regions. Most of these methods
do not make full use of the large amount of rich viewing an-
gle information provided by LFs, which makes it difficult to
extract effective information especially in the case of occlu-
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Figure 2: The architecture of our four-branch LF depth estimation network. The cost volume is first constructed after feature
extraction in the four branches. Then features of views are fused in each branch based on the intra-branch feature fusion. After
that, features of the four branches are further merged through the inter-branch fusion. Finally, the depth map of center view is
generated through the cost aggregation module.

sion and weak texture areas.

Motivation
Since the LF contains many views from different perspec-
tives, a lot of redundant information can be used to find the
correct color consistency. Therefore, how to choose the ef-
fective angular information from LF images for depth es-
timation is a problem worthy of further investigation. We
choose one typical example with occlusions in Figure 1
for further analyses. As shown, P is occluded when view
changes along the lower-right direction (↘) with one spe-
cific degree in (0◦, 45◦). The related EPIs in four directions
are also shown, which are able to directly reflect the corre-
spondence through the slope of lines. If views in one direc-
tion are grouped, the EPIs can be regarded as the slices along
the specific direction in the group of views. We then explore
the special properties within and between these groups.
• In this example, the lines of P in the 0◦ and 45◦ EPIs are

broken by the foreground objects. By contrast, in other
90◦ and 135◦ EPIs, no occlusions exist and the diag-
onal lines in the related EPIs are complete. Therefore,
the group with more complete and clear correspondence
should be given more attention.

• Since occlusions exist in the lower-right direction (↘), for
the upper-left (↖) views in 0◦ and 45◦ EPIs, P is not oc-
cluded and the related line in the EPI is well kept. There-
fore, when we slice the EPIs into ‘+’ and ‘−’ two sides,
the correspondence in one side ‘+’ can still be used to
provide correct information without occlusion errors.

For different points in one image, occlusions may come from

different directions. Therefore, we design our network with
two attentions at different levels within and between these
branches for each point. Based on the above observations,
we first separate the views in one branch into two sides and
introduce the attention mechanism to calculate the impor-
tance of each side for fusion, i.e. the intra-branch fusion
strategy. Then the four branches are fused to generate atten-
tion maps through the inter-branch fusion module, in which
the branches with less occlusions and clear correspondences
are assigned with large weights.

The Proposed Method

Figure 2 shows the proposed network structure in detail,
which consists of four parts. Suppose that L(x, y, u, v, c) ∈
RH×W×M×M×C , where (x, y) and (u, v) represents the
coordinates in spatial domain and angular domain, respec-
tively (Levoy and Hanrahan 1996). The M views in four
different directions (0◦, 45◦, 90◦, 135◦) are grouped and fed
into four branches respectively. The feature extraction is first
performed on the input views to obtain feature maps and
the initial cost volumes are constructed in the four branches.
We then design an intra-branch feature fusion module based
on channel attention to fuse features of each view together
in one branch. The cost volumes in four branches are fur-
ther fused in the inter-branch feature fusion module using
a branch attention strategy, in which the cost volumes with
less occlusions are preferred. Finally, the disparity map of
the center view is calculated after the cost aggregation mod-
ule.
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(a) 0◦ (b) 90◦ (c) 45◦ (d) 135◦

Figure 3: The calculated channel attentions in the four
branches of point ”P” in the scene ”Bicycle” in Figure 1.
(a∼d) shows the attention map inside the 0, 45, 90, 135 di-
rection branch, respectively.

Feature Extraction and Cost Volume Construction
In order to fully extract features from views in different
scales, the commonly used Spatial Pyramid Pooling module
(SPP) (Yu-Ju et al. 2020; Chang and Chen 2018) is intro-
duced. Same with (Yu-Ju et al. 2020), the feature extraction
module is designed with several 2D convolutions, residual
blocks and SPP module with 4 levels. The output that have
F features of the SPP module with hierarchical context in-
formation are then concatenated, which can be denoted as
Fspp ∈ RM×H×W×F . Through the hierarchical feature ex-
traction strategy, more useful features from nearby regions
is supplemented for challenging areas, e.g. texture-less and
reflection areas.

After extracting the features of each view, we further im-
plement the view shifting strategy as (Yu-Ju et al. 2020) to
enlarge the receptive field. Specifically, the features Fspp of
each view are manually shifted with D = 9 disparity lev-
els from −4 to 4 according to their relative position with the
central view. The cost volumes Fspp are then expanded as
Fs

spp ∈ RM×D×H×W×F . When the views are shifted, the
large disparities are reduced in one specific cost volume and
the relationships between adjacent views are easier to extract
using a relatively small receptive field.

Intra-Branch Fusion based on Channel Attention
When the features of each view are extracted, previously
methods (Shin et al. 2018) directly concatenate all features
together. However, as analyzed in Figure 1, some regions
are visible in some views but occluded in other views. If
all the features are directly fused, the cost volumes of these
occluded regions become ambiguous and the correct dispar-
ities are difficult to find. As analyzed before, in simple oc-
clusion scenes with one occlusion, when the views change
in one direction, the points can only be occluded on the one
side of central view. Therefore, we propose the Intra-Branch
Fusion module, in which features are fused inside the branch
to choose views on one side which are less likely to have oc-
cluded regions.

Specifically, we design the Intra-Branch Fusion module
HAttc with one 3D global average pooling layer, three 1× 1
convolutional layers and a sigmoid layer. The channel atten-
tion is calculated as:

Attc = HAttc(Fs
spp), (1)

where Attc ∈ R3×H×W represents the importance of the

feature maps on the central view and two sides of the central
view.

Instead of estimating M weight for each view in one
branch, we divide the M views into two groups and esti-
mate two weights for the two groups. Using this constraint,
the learnable parameters are reduced and the network is eas-
ier to train with reasonable results. We show one example
in Figure 3, where the attentions of the two sides of point
P in Figure 1 in four directions are shown. Since occlusions
exist in 0◦ and 45◦ EPIs, the attentions of the two sides in
these two branches have a large difference. For views on
the non-occluded side (↖), the related weights (0.869 and
0.876) are higher compared with weights (0.176 and 0.287)
of the occluded side (↘). By contrast, since in 90◦ and 135◦

EPIs, views on both sides have no occlusions and the related
weights are assigned with similar values.

The attention Attc is then multiplied with the related cost
volume using the element-wise product:

FAttc = Fs
spp ⊗Attc, (2)

where FAttc has the same size with Fs
spp and ⊗ is element-

wise product.

Inter-Branch Fusion based on Branch Attention
After the intra-branch fusion, F i

Attc , i = 0◦,90◦,45◦,135◦,
from four different branches are obtained. In this section,
we further fuse features from four branches to integrate the
information effectively. As previous analyses, the features
of the same pixel in the four branches are different, in which
some may have occlusions and some may have insufficient
textures. Therefore, instead of using a simple concatenation
operation, we design the inter-branch fusion module to fuse
the features from different branches.

In order to calculate the attentions of four branches for
each point, the cost volume F i

Attc first passes through three
3D convolutional layers, labelled as HAttb1 :

F i
Attb1 = HAttb1(F i

Attc), (3)

where F i
Attb1 ∈ RD×H×W . The four features F i

Attb1 are
then fused through corresponding point multiplication, so
that the information of the same pixel in the four branches
can better interact. Then the attention maps are generated
after several 2D convolutional layers and one sigmoid layer,
labelled as HAttb2 :

[Attb0, ..., Att
b
135] = HAttb2(F0

Attb1 ⊗ ...⊗F
135
Attb1), (4)

where the Attbi ∈ RH×W and i = 0◦, 90◦, 45◦, 135◦ rep-
resents branch attention of four different angular branch re-
spectively. Finally, the four cost volumes are multiplied by
the four branch attentions Attbi :

FAttb = [F0
Attc ⊗Attb0, ...,F135

Attc ⊗Attb135], (5)

where FAttb ∈ R4M×D×H×W×F is the fused cost vol-
ume for further aggregation. In this way, the information
provided by the four branches is selectively merged and
branches with more clear matching information make more
contribution to the cost volume. More experiments for the
proposed inter-branch fusion are conducted in the following
Ablation Study.
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Backgammon Dots Pyramids Stripes Time0.07 0.03 0.01 mse 0.07 0.03 0.01 mse 0.07 0.03 0.01 mse 0.07 0.03 0.01 mse
Epinet-fcn-m 3.501 5.563 19.43 3.705 2.490 9.117 35.61 1.475 0.159 0.874 11.42 0.007 2.457 2.711 11.77 0.932 10.66

EPI-Shift 22.89 40.53 70.58 12.79 43.92 53.18 74.55 13.15 1.242 7.315 40.48 0.037 22.72 47.70 78.95 1.686 29.43
EPN+OS+GC 3.328 10.56 55.98 3.699 39.25 82.74 84.91 22.37 0.242 3.169 28.56 0.018 18.54 19.596 28.17 8.731 297.3

PS RF 7.142 13.93 74.65 6.892 7.975 17.54 78.80 8.338 0.107 6.235 83.23 0.043 2.964 5.790 41.64 1.382 993.4
SPO 3.781 8.639 49.94 4.587 16.27 35.06 58.07 5.238 0.861 6.263 79.20 0.043 14.97 15.46 21.87 6.955 2134

LFattNet 3.126 3.985 11.58 3.648 1.432 3.012 15.05 1.425 0.195 0.488 2.063 0.004 2.933 5.417 18.21 0.892 5.746
ours 3.228 4.625 13.73 3.863 1.606 2.021 10.61 1.035 0.174 0.429 1.767 0.003 2.932 4.743 15.44 0.814 4.551

Boxes Cotton Dino Sideboard Time0.07 0.03 0.01 mse 0.07 0.03 0.01 mse 0.07 0.03 0.01 mse 0.07 0.03 0.01 mse
Epinet-fcn-m 12.34 18.11 46.09 5.968 0.447 2.076 25.72 0.197 1.207 3.105 19.39 0.157 4.462 10.86 36.49 0.798 10.65

EPI-Shift 25.95 44.15 74.36 9.790 2.176 10.68 46.86 0.475 5.964 22.15 64.16 0.392 11.79 36.64 73.42 1.261 18.97
EPN+OS+GC 15.30 29.01 67.35 9.314 2.060 9.767 54.85 1.406 2.877 12.79 58.79 0.565 7.997 23.87 66.35 1.744 261.9

PS RF 18.94 35.23 76.39 9.043 2.425 14.98 70.40 1.161 4.379 16.44 75.96 0.751 11.75 36.28 79.97 1.945 1187
SPO 15.89 29.52 73.23 9.107 2.594 13.71 69.05 1.313 2.184 16.36 69.87 0.310 9.297 28.81 73.36 1.024 2068

LFattNet 11.04 18.97 37.04 3.996 0.271 0.697 3.644 0.209 0.848 2.339 12.22 0.093 2.869 7.243 20.73 0.530 5.868
ours 11.14 18.65 37.66 3.842 0.195 0.374 1.522 0.059 0.440 1.193 4.559 0.045 2.691 6.951 21.56 0.398 4.542

Table 1: Numerical comparison of BadPix(0.07, 0.03, 0.01), MSE ∗ 100 and running time on different scenes.

BadPix(0.01) BadPix(0.03) BadPix(0.07) MSE Discontinuities

Figure 4: The screenshot of the benchmark (http://hci-lightfield.iwr.uni-heidelberg.de) ranking result in September 2020. Our
method “AttMLFNet” is highlighted and ranks the average first on five different metrics.

Cost Volume Aggregation
In order to further aggregate the cost volume information,
we also implement the widely used spatial attention strat-
egy (Zhao and Wu 2019) in the proposed network structure.
As shown in Figure 2, the spatial attention branch HAtts

consists of two parallel branches, which includes 2D convo-
lutional layers with 1 × k and k × 1 kernels (k = 9 in the
experiment). The result attention is then multiplied with the
cost volume using the element-wise product. The spatial at-
tention further strengthens the connection between adjacent
pixels and fully extracts context information. After that, the
cost volume then passes through eight 3D CNN layersH3D:

Ffinal = H3D(FAttb ⊗HAtts(FAttb)), (6)

where Ffinal ∈ RD×H×W . Finally, the disparity regression
is used to estimate continuous disparity maps:

d̂ =
∑
d∈D

d× σ(−cd), (7)

where cd is the slice of Ffinal along dimension D and rep-
resents the cost of disparity label d. The probability of each
disparity label is calculated by softmax σ(·). Then the dis-
parity d̂ is estimated according to the probabilities.

Experiments
In this section, we first introduce the detailed implementa-
tion of the experiments. Then the performance of our pro-
posed method is compared with other state-of-the-art meth-

ods. Finally, we verify the effectiveness of the proposed at-
tention module through ablation study.

Details of Implementation
We use the 4D synthetic LF Dataset (Honauer et al. 2016)
in our experiment, in which images have 9 × 9 views and
512×512 spatial resolution. Same with other networks (Shin
et al. 2018; Yu-Ju et al. 2020), 16 images in “Additional” are
used for training, 8 images in “Stratified” and “Training” for
validating and 4 images in “Test” for testing.

During training, patch-wise training is used by randomly
cropping 32 × 32 gray-scale patches from the LF images.
Same with the training strategy in (Shin et al. 2018; Yu-Ju
et al. 2020), the reflection, refraction and texture-less areas
are manually removed during training in order not to confuse
the consistency of matching. The L1 loss that measures the
difference of estimated disparity d̂ and ground truth disparity
dgt is used in our network. We use Adam optimizer (Kingma
and Ba 2014) to optimize the network and set the batch
size to 16. The learning rate is kept at 1e−3. The tensor-
flow is used to implement the proposed network. The model
is trained on an NVIDIA GTX 1080Ti GPU and takes about
one week for training.

Evaluation
In the experiments, the BadPix(ε) defined in (Honauer
et al. 2016) and Mean Square Errors (MSE) are used for
quantitative evaluation. BadPix(ε) measures the percent-
age of wrongly estimated pixels whose errors exceed ε, i.e.
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GT Ours (a) (b) (c) (d) (e) (f)

Figure 5: Visual comparison of scenes ”Boxes”, ”Cotton”, ”Dino”, ”Dots” with state-of-the-art methods, including (a) SPO (b)
PS RF (c) EPI-Shift (d) EPN+OS+GC (e) Epinet-fcn-m (f) LFattNet. The BadPix(0.03) error maps and the disparity maps
are shown. In the error map, green regions represent the correct estimation, while red parts represent error pixels. Our results
have fewer error pixels especially on flat surfaces and along occlusion boundaries.

|dgt(i)− de(i)|> ε. The ε is set as 0.07, 0.03 and 0.01. The
ground truth depth in “Stratified” and “Training” is public
and the ground truth depth in “Test” is only used to test re-
sults that are submitted to the benchmark website.

We compare the proposed method with several state-of-
the-art methods which are top-ranked on the 4D Light Field
Benchmark, including SPO (Zhang et al. 2016), Epinet-
fcn-m (Shin et al. 2018), EPI-Shift (Leistner et al. 2019),
EPN+OS+GC (Luo et al. 2017), PS RF (Jeon et al. 2017),
and LFattNet (Yu-Ju et al. 2020). Table 1 illustrates spe-

cific numerical comparison results. Our method achieves
the lowest errors in most scenes, especially for images with
lots of occlusions, such as “Dino” and “Sideboard”. For
“Cotton” with unclear texture, “Dots” with lots of noise
and “Pyramids” with slanted surface, our method obviously
outperforms other approaches. The average comparison of
the whole validation and testing images is shown in Fig-
ure 4, which is the screenshot of the top six on the Bench-
mark website in September 2020. Our method “AttMLFNet”
ranks the first among all methods in four mainly com-
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View Image Ours LFattNet

Figure 6: Depth estimation results of real world LF images
captured by Lytro Illum. Our depth maps show better per-
formance especially in edges of thin objects than LFattNet.

BaseNet BattNet Proposed
Avg BadPix(0.07) 4.010 3.364 2.801

Avg MSE 1.926 1.561 1.257

Table 2: Results with the BaseNet, BattNet and the proposed
network. The average evaluation metrics are calculated on
scenes of Table 1.

pared metrics (BadPix007, BadPix003, BadPix001,
MSE∗100) in average. We also show that the proposed
outperforms other methods in discontinuity regions defined
in (Honauer et al. 2016) .

Some example estimated depth maps and the related
BadPix(0.03) error maps are shown in Figure 5. The
Epinet (Shin et al. 2018) does not consider the relation-
ship between the views of different branches and directly
concatenates all features together for further processing. In
LFattNet (Yu-Ju et al. 2020), all points in one view are
assigned with one weight, in which different features can-
not be specifically chosen for different regions. Therefore,
these methods have estimation errors in occluded areas,
texture-less areas and along object edges. By contrast, our
method effectively fuses features inside and between the
four branches for different regions, which fully utilizes in-
formation in the angular domain for depth estimation. As
shown, our results show sharper object boundaries and more
smooth surfaces than Epinet and LFattNet.

The real-world LFs (Wang, Efros, and Ramamoorthi
2015) captured by Lytro Illum cameras (Ng 2018), are also
used for evaluation. Compared with synthetic images, real-
world images contain a lot of noise. Since the ground truth
depth of real-world LF images is unavailable, we use the
trained models same with the last experiment. The related
depth maps are compared in Figure 6. As shown, our depth
maps also show obviously more clear occlusion boundaries
and more smooth planes than LFattNet (Yu-Ju et al. 2020)
in the real-world dataset.

Figure 7: Comparison of two different types of areas (R1:
occlusion; R2: no occlusion). We show the distribution of
average weight values of four branches in the two regions.

Ablation Study
In order to validate the effectiveness of our proposed intra-
branch and inter-branch fusion strategies, we design three
experiments for ablation study as: (1) BaseNet is the base
network without intra-branch and inter-branch fusion, in
which we directly concatenate cost volumes from four
branches after feature extraction. (2) BattNet is the net-
work with only inter-branch fusion. (3) AttMLFNet is our fi-
nal proposed network including both intra-branch and inter-
branch fusion. Other experiment settings are kept the same.
As in Table 2, Our proposed network BattNet with inter-
branch fusion based on branch attention performs much bet-
ter than the BaseNet, which integrates features from dif-
ferent directions more effectively. The intra-branch fusion
based on channel attention further improves the estimation
results of BattNet, which uses channel attention to choose
more correct features within the branch.

We further conduct another experiment to show the effec-
tiveness of the proposed inter-branch fusion. We first choose
two specific areas with occlusions (R1) or without occlu-
sions (R2), shown in Figure 7. The weight of each pixel in
different branches is separately calculated. We then calculate
the average weights of points in the specific areas in differ-
ent branches as w0,90,45,135. The variance σ2 of w0,90,45,135

is also calculated, which quantitatively reflects the attention
difference of the four branches. Note thatR1 contains occlu-
sion structure, but there is no occlusion in the 45◦ direction.
In the weight histogram of R1, w45 is much higher than the
other weights. Conversely, in the non-occlusion region R2,
the average weight values of all branches are comparable. At
the same time, σ2 of the R1 is much larger than R2, which
implies that our network has indeed learned the different ef-
fective information among different branches.

Conclusion
This paper proposed a multi-level fusion network based
on two types of attentions for light field depth estimation.
Through the analysis of EPIs in different regions, the intra-
branch and inter-branch feature fusion strategies are pro-
posed to select features that contain less occlusions and clear
correspondence cues for cost volume construction. Exper-
imental results demonstrated the effectiveness of the pro-
posed attention mechanism for accurate depth estimation.
The quantitative and qualitative comparison also showed
that our method achieves state-of-the-art performance in the
HCI 4D Light Field Benchmark and real-world images.
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