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Abstract

Domain generalization (DG) offers a preferable real-world
setting for Person Re-Identification (Re-ID), which trains a
model using multiple source domain datasets and expects it to
perform well in an unseen target domain without any model
updating. Unfortunately, most DG approaches are designed
explicitly for classification tasks, which fundamentally dif-
fers from the retrieval task Re-ID. Moreover, existing appli-
cations of DG in Re-ID cannot correctly handle the massive
variation among Re-ID datasets. In this paper, we identify two
fundamental challenges in DG for Person Re-ID: domain-
wise variations and identity-wise similarities. To this end, we
propose an end-to-end Dual Distribution Alignment Network
(DDAN) to learn domain-invariant features with dual-level
constraints: the domain-wise adversarial feature learning and
the identity-wise similarity enhancement. These constraints
effectively reduce the domain-shift among multiple source
domains further while agreeing to real-world scenarios. We
evaluate our method in a large-scale DG Re-ID benchmark
and compare it with various cutting-edge DG approaches.
Quantitative results show that DDAN achieves state-of-the-
art performance.

1 Introduction
Person Re-Identification (Re-ID) aims to identify the same
pedestrian captured by different cameras under variant view-
points, lighting, and locations. To date, approaches based on
deep Convolution Neural Networks (CNNs) have achieved
remarkable performance in this topic (Bak and Carr 2017;
Bai, Bai, and Tian 2017; Li, Zhu, and Gong 2017). Unfortu-
nately, these approaches’ success heavily relies on the i.i.d.
assumption between labeled training and test data. In real-
world applications, meeting this supervised i.i.d. assump-
tion is prohibitively expensive, as it requires low-variation
datasets and extensive manual labeling. To this end, Unsu-
pervised Domain Adaptation (UDA) was introduced in per-
son Re-ID (Wang et al. 2018; Lin et al. 2018; Bak et al.
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2018). These approaches typically learn a model by mixing
data from both the labeled source domain and the unlabeled
target domain, hence fitting the target domain’s distribution
without the cost of labeling. Though being more practical
than supervised ones, existing endeavors have shown that
UDA approaches require training with many target data to
achieve good results (Peng et al. 2016; Deng et al. 2018;
Zhong et al. 2019; Fu et al. 2019).

Compared with UDA, Domain Generalization (DG) of-
fers a preferable real-world setting, which learns a model us-
ing multiple source domain datasets and expects this model
to perform well in an unseen target domain without any
model updating, i.e., adaptation or retraining. An optimal
DG should learn a feature representation that is discrimi-
native for the task and insensitive to the variation of domain
distributions. Therefore, DG is arguably preferable as it does
not need any data from the target domain. Unfortunately,
existing DG methods are designed explicitly for classifica-
tion tasks (Li et al. 2018a,b), while Re-ID is a retrieval task,
which fundamentally differs. To explain, DG in classifica-
tion tackles the same set of labels in all source domains. In
contrast, DG in retrieval should compare the feature similar-
ity between different identities (corresponding to different
labels between source and target domains).

To this end, some works attempted to apply DG in per-
son Re-ID by employing existing techniques, such as meta-
learning (Song et al. 2019) and normalization layers (Jia
et al. 2019), to learn discriminative features that are insen-
sitive to domain variations. However, these approaches are
still not specific to person Re-ID. The variation among Re-
ID datasets is usually massive, so directly applying clas-
sification DG methods with pair-wise domain alignment
can hurt the performance, as there is a statistical trade-
off between domain-invariance and classification accuracy
(Akuzawa, Iwasawa, and Matsuo 2019). Moreover, they
naively mix all source data without associating similar sam-
ples from different domains: two pedestrian features maybe
even closer than visually-similar ones solely because the
former ones are from the same domain. It contradicts real-
world scenarios, as visually-similar pedestrians are more
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Figure 1: An Overview of DDAN. Left: Network Architecture (red arrows denote gradients). Middle: Domain-wise Adversarial
Feature Learning, where peripheral domains align to the central domain (detailed in Sec. 3.2). Right: Identity-wise Similarity
Enhancement, where an ID pool is used to enhance the inter-domain similarity of feature distributions (detailed in Sec.3.3). Big
dots denote the summarized representation of each ID, to which the similarity of new inputs should be selectively enhanced.

likely to be (incorrectly) identified as the same person.
We have identified two fundamental challenges in DG

for person Re-ID from the above observations: domain-wise
variations and identity-wise similarities. To address these
two challenges, we propose an end-to-end Dual Distribution
Alignment Network (DDAN) with dual-level constraints,
which reduces the domain-shift among multiple source do-
mains further while agreeing to real-world scenarios.

As shown in Fig. 1(a), DDAN consists of an encoder E,
a feature mapping network M , and four objective modules.
In addition to regular Re-ID constraints, such as Identity-
Discriminative Embedding (IDE) (Zheng, Yang, and Haupt-
mann 2016) and Triplet losses, our main contribution orig-
inates from the dual-level constraints. At the domain level,
we propose a novel adversarial feature learning scheme to
align feature distributions of different domains. In particu-
lar, we selectively reduce the discrepancy between a cen-
tral domain and each of the peripheral domains as shown
in Fig. 1(b). We formalize these two kinds of domains us-
ing Wasserstein distance, thus minimizing the required dis-
tributional shift for alignment (detailed in Sec. 3.2). At
the identity level, we enhance the inter-domain similar-
ity of visually-similar samples from different domains. In
Fig. 1(c), we associate each sample with its top-k similar
samples from other domains and reduce their distances to
enforce the domain-invariance.

To summarize, the proposed Dual Distribution Alignment
Network (DDAN) innovates in the following three aspects:

1. We propose a novel domain-wise adversarial feature
learning scheme. It aligns domains with minimal distri-
butional shifts to mitigate the loss of accuracy.

2. We introduce an identity-wise similarity enhancement. It
encourages visually-similar features from different do-
mains to be closer than those from the same domain but
with fewer visual similarities.

3. We evaluate our method in a large-scale DG Re-ID bench-
mark (Song et al. 2019) and compare it with various al-
ternative, cutting-edge DG approaches (Song et al. 2019;

Jia et al. 2019). Quantitative results show that DDAN
achieves state-of-the-art performance, where the rank-1
accuracy on VIPeR, PRID, GRID, and i-LIDS is 56.5%,
62.9%, 50.6%, and 78.5%, respectively.

2 Related Work
2.1 Person Re-Identification (Re-ID)
Existing supervised person Re-ID methods typically learn a
distance metric (Köstinger et al. 2012; Xiong et al. 2014;
Zheng, Gong, and Xiang 2013), a subspace (Wang et al.
2016; Chen et al. 2018), or view-invariant discriminative
features (Zheng et al. 2015; Liao et al. 2015; Gray and Tao
2008). Along with the success of deep CNNs, person Re-ID
methods have achieved remarkable performance under the
i.i.d. assumption between training and test data (Cheng et al.
2016; Paisitkriangkrai et al. 2015; Matsukawa et al. 2016;
Chen et al. 2017; Bak and Carr 2017; Bai, Bai, and Tian
2017; Li, Zhu, and Gong 2017). However, the learned mod-
els generally overfit to the training data and perform poorly
on new unseen datasets.

To this end, UDA was introduced in person Re-ID (Peng
et al. 2016; Lin et al. 2018; Wang et al. 2018; Bak et al.
2018). Such a setting typically involves a labeled source do-
main to help the model fit an unlabeled target domain’s dis-
tribution. For instance, an asymmetric multi-task dictionary
learning scheme was proposed to learn discriminative rep-
resentations for the target domain (Peng et al. 2016). An-
other group of UDA-based person Re-ID methods exploited
generative adversarial networks (GANs). They employed
CycleGAN (Zhu et al. 2017) to translate images from the
source domain to the target one (Deng et al. 2018) or gener-
ated images with different camera styles in the target domain
to enforce invariance (Zhong et al. 2018). Recent works at-
tempted to improve domain alignment performance. For in-
stance, a transferable model was proposed to learn attribute-
identity discriminative representation for the target domain
jointly (Wang et al. 2018). Some works also investigated
the clustering of samples in the target domain for similar-
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ity measurement (Zhong et al. 2019), which was later ex-
tended to finer-grained with pedestrian’s part-level features
(Fu et al. 2019). However, all the above UDA approaches
generally require a large amount of target data to avoid over-
fitting and achieve satisfactory results.

2.2 Domain Generalization (DG)
DG aims to learn a generalizable model, which tries to re-
move the domain-shift without needing the target domain’s
data during training. In this regard, many DG methods have
been proposed for classification. For example, learning a
model for each source domain and select the best one for
each target domain in the test phase (Xu et al. 2014).

There exist more efficient choices, which learn a model
to extract task-specific and domain-invariant features. These
methods typically involved advanced ML techniques, such
as kennel-based optimization (Muandet, Balduzzi, and
Schölkopf 2013), multi-task auto-encoder (Ghifary et al.
2015), domain-distance regularization based on canonical
correlation analysis (Yang and Gao 2013), and model-
agnostic meta-learning (Li et al. 2019; Dou et al. 2019).

Another group of works adopted adversarial feature align-
ment to learn a domain-invariant model by reducing pair-
wise domain discrepancy (Li et al. 2018a,b). However, there
is a statistical trade-off between domain-invariance and clas-
sification accuracy (Akuzawa, Iwasawa, and Matsuo 2019).
Since the variation among Re-ID datasets is usually massive,
the pairwise domain alignment can cause extensive reduc-
tions in feature discriminability.

To handle DG in person Re-ID, DIMN (Song et al. 2019)
adopted meta-learning to learn a model from gallery images,
which outputs matching scores between gallery and probe
image features. But this meta-learning scheme can increase
optimization complexity and significantly decrease the test
speed correspondingly. As a more efficient solution, Dual-
Norm (Jia et al. 2019) employs both instance and batch nor-
malization to improve the feature extractor’s performance.
Unfortunately, these methods naively mix all source do-
mains without associating similar samples from different do-
mains. As such, two pedestrian features maybe even closer
than visually-similar ones solely because the former ones are
from the same domain.

In this paper, we have identified two fundamental chal-
lenges in DG for person Re-ID: domain-wise variations and
identity-wise similarities. Therefore, our DDAN is distin-
guished from the above methods in two folds. At the domain
level, instead of adopting the pairwise alignment, we selec-
tively reduce the discrepancy between a central domain and
other peripheral domains, thus minimizing the loss of dis-
tinguishability. At the identity level, instead of mixing all
source domain data directly, we also recognize the inter-
domain similarities between identities in different domains.
We have quantitatively proven its effectiveness in improving
the feature discriminability.

3 The Proposed Method
For DG in person Re-ID, we have access to M datasets
(source domains) with non-overlapping labels in the training

phase, as we assume disjoint IDs among different datasets.
In the test phase, we “freeze” and apply the trained model
directly to a new unseen dataset (target domain) without fur-
ther model updating or retraining. Let Xs = {(xsi , ysi )}

Ns
i=1

denote inputs from the source domain s, where Ns is the
number of labeled data in domain s. As shown in Fig.1, the
encoder E(x; θe) parameterized by θe maps an image x to
a feature map z. M(z; θm) is a mapping network parame-
terized by θm, which maps z from different distributions to
the one in a shared feature space (denoted by m). We denote
the feature extractor as the composition of the encoder and
mapping network, that is, F = M ◦ E, which is parameter-
ized by θf = {θm, θe}. We then use a domain discrimina-
torD(m; θd) parameterized by θd to distinguish the domain
to which the inputs belong, and an identity discriminator
I(m; θi) parameterized by θi to increase the effectiveness
of learned features. For simplicity, we only write parameters
that are updated through back-propagation on the left-hand
side of equations in the following of this section.

3.1 Baseline Configuration
We choose the standard aggregation DG method as our base-
line, which learns a model with all source domains. In per-
son Re-ID with labeled training data, an effective strategy is
to learn identity-discriminative embeddings (IDE) (Zheng,
Yang, and Hauptmann 2016). It converts Re-ID into classi-
fication by cross-entropy loss J , as shown below.

Lide(X; θf , θi) =
1

nbs

nbs∑
n=1

J
(
I
(
F (xn; θf ); θi

)
, yn

)
, (1)

where nbs denotes the number of samples in a mini-batch
X = {(xn, yn)}nbs

n=1. After training, the feature extractor
Fθf is used to extract features from input images.

As another common and useful criterion for similarity
learning in person Re-ID, the triplet loss Ltri can reduce
intra-class distance while extending inter-class distances
(Hermans, Beyer, and Leibe 2017), as shown below.

Ltri(X; θf ) =
∑

xa∈F (X)

(d(xa,xp)− d(xa,xn) +m), (2)

where d denotes the Euclidean distance, m is the margin,
xa denotes the anchor point of its hardest positive xp and
negative xn samples within a mini-batch. In other words,
xp is the farthest sample with the same label as xa, and xn
is the nearest sample with a different label as xa.

3.2 Domain-wise Adversarial Feature Learning
We adopt a novel adversarial learning scheme to tackle the
first challenge we have observed in DG for person Re-ID:
domain-wise variations. Specifically, we reduce the over-
all discrepancy of all source domains to learn a mapping
from inputs to a domain-invariant feature space. Notably, we
shift various domains’ distributions towards a uniform one.
Towards an important early exploration, most methods re-
duce the overall discrepancy by aligning each pair of source
domains (Li et al. 2018a,b). However, there is a statistical
trade-off between domain-invariance and classification ac-
curacy (Akuzawa, Iwasawa, and Matsuo 2019). Since the
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variation among Re-ID datasets is usually massive, the pair-
wise alignment can spoil learned features, as they have to be
heavily shifted to align outlying domains. To explain, some
domains in person Re-ID may exceptionally differ from the
other domains. In such a case, the pair-wise alignment can
introduce unnecessary distributional shifts towards the out-
lying domain and decrease accuracy.

To overcome this problem, we choose the most “gener-
alizable” domain as the central domain and refer the re-
maining as the peripheral domains. Here, the central do-
main should have a similar distribution to most peripheral
domains. In other words, a central domain is the one that
minimizes the distributional shift needed for aligning the
other peripheral domains to it. We then determine an effi-
cient way to align source domains with minimum negative
impacts: Instead of pair-wisely aligning every two domains,
we only align the peripheral domains to the central one. Such
a setting generalizes better while minimizing the negative
impact, as discussed above. We now formally explain our
definition of the central and peripheral domains as follows.

We employ Wasserstein distance dWS (Arjovsky, Chin-
tala, and Bottou 2017) and Sinkhorn’s approximation (Cu-
turi 2013) to quantify the needed distributional shift for
aligning domains, as dWS is symmetric and supports non-
overlapping distributions. The central domain is defined as

c∗ = arg min
c∈S

∑
i∈S\{c}

dWS

(
Xc, Xi

)
, (3)

where S is the set of all source domains, Xc and Xi are the
samples from domains c and i, respectively. In this way, the
remaining peripheral domains are determined accordingly
and aligned with minimized overall distributional shifts. Ad-
ditionally, we define the “domain label” of each domain by
checking if it is central (1) or peripheral (0). The chosen cen-
tral domain will be specified in Sec.4.3.

Once determining the central and peripheral domains, our
adversarial feature learning scheme involves a generator and
discriminator pair. We regard the mapping network Mθm
as the generator, which maps the peripheral domains’ dis-
tributions to a uniform one similar to the central domain.
We learn the discriminator Dθd by minimizing the follow-
ing cross-entropy loss to correctly distinguish whether an
example belongs to the central or peripheral domains.

LDA−D(X; θd) =
1

nbs

nbs∑
n=1

J(D(F (xn; θf ); θd), cn), (4)

where X = {(xn, cn)}nbs
n=1 is the input mini-batch with do-

main labels. The mapping network Mθm is trained to fool
the discriminator Dθd by generating domain-invariant fea-
tures. It can be achieved by minimizing the negative entropy
of the predicted domain distributions w.r.t. θm as

LDA−T(X; θm) = − 1

nbs

nbs∑
n=1

logD
(
F
(
xn; θf

)
; θd

)
. (5)

The above learning process adversarially aligns the periph-
eral domains’ feature distributions to a uniform one similar
to the central domain. Unlike previous methods that pair-
wisely align domains, our alignment conducts in a specific

way from peripheral domains to the central domain. Thus,
our method minimizes negative impacts on learned features,
especially for commonly outlied person Re-ID domains.

3.3 Identity-wise Similarity Enhancement
The above domain-wise adversarial learning scheme effec-
tively aligns domains with minimal distributional shifts,
but cannot tackle the second challenge we have observed:
identity-wise similarities. Therefore, we derive another con-
straint from a real-world scenario: Two visually-similar
pedestrians are more likely to be (incorrectly) identified as
the same person. In other words, features of these two pedes-
trians should be closer than less similar ones, even if these
two features are from different domains, thus forcing the
identity discriminator I to distinguish them.

To this end, we accumulate the learned knowledge with an
ID pool. We store all IDs’ representations and enhance the
distributional similarity between newly incoming examples
and their visually-similar IDs in other domains. We summa-
rize the representation of each ID µ by computing its run-
ning mean representation r̄µ in an iterative fashion as

r̄(e,t+1)
µ =

1

t+ 1

(
t · r̄(e,t)µ + F (x; θf )

)
, (6)

where x is an input image of ID µ, and the superscript (e, t)
denotes the t-th update of r̄µ in the e-th epoch. We further
accumulate this mean representation over epochs, leading to
the final effective representation r̂µ as:

r̂(e+1,t)
µ = α · r̂(e,\)µ + (1− α) · r̄(e+1,t)

µ , (7)

where r̂
(e,\)
µ denotes the final mean representation obtained

in epoch e and α ∈ [0, 1] controls the updating rate. All the
variables in Eqs. (6) and (7) are initialized to zero.

The mean representation r̂µ conveys how samples of a
particular ID are generally represented. As such, we asso-
ciate the representation of each incoming instance with its
similar IDs (from different domains) in the ID pool. Since
these paired representations are from different domains with
exceptionally unmatched entries due to domain variations,
we cannot directly make them close in some distance met-
rics (e.g., `1 and `2). Therefore, we normalize these features
with softmax and minimize their symmetric KL-divergence.

Specifically, given an image xn from the peripheral do-
main, we search for its top-k similar IDs in other domains
with cosine similarity. For xn from the central domain, we
search in the same domain instead to stabilize the central do-
main’s distribution. In short, we align the domains in a par-
ticular way from peripheral ones to the central one, instead
of pair-wisely or the other way around. Then, we minimize

LSE(X; θm) =

nbs∑
n=1

[
1

k

k∑
i=1

[
`KL

(
sm
(
F (xn; θf )

)∥∥∥sm
(
r̂i
))

+`KL

(
sm
(
r̂i
)∥∥∥sm

(
F (xn; θf )

))]]
,

(8)
where `KL(p‖q) =

∑
r pr log(pr/qr) is the KL-divergence

and sm(x) = softmax(x/τ) is the softmax function at
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temperature τ . This setting eliminates identity-wise domain-
shifts further, thus forcing the network to learn discrimina-
tive domain-invariant features.

3.4 Overall Objective Function
To tackle the two fundamental challenges we have observed
in DG for person Re-ID, our DDAN consists of three com-
ponents: a baseline model (Sec. 3.1), a novel domain-wise
adversarial learning scheme (Sec.3.2), and an identity-wise
similarity enhancement (Sec.3.3). The overall loss function
in a training mini-batch X is thus defined as the sum of:
L1(X; θf , θi) = Lide(X; θf , θi) + λ1 · Ltri(X; θf ),

L2(X; θm) = λ2 · LDA−T(X; θm) + λ3 · LSE(X; θm),

L3(X; θd) = LDA−D(X; θd),
(9)

where λ1, λ2 and λ3 are the trade-off parameters. For
simplicity, we only write parameters that will be updated
through back-propagation on both sides of Eq. (9). To sum-
marize, we set the above loss functions to embed input im-
ages into a discriminative domain-invariant feature space, in
which our model generalizes better to new unseen domains.

4 Experiments
4.1 Datasets and Settings
Datasets. We conduct experiments on the large-scale DG
Re-ID benchmark (Song et al. 2019) to evaluate our DG
model for person Re-ID. Specifically, CUHK02 (Li and
Wang 2013), CUHK03 (Li et al. 2014), Market-1501 (Zheng
et al. 2015), DukeMTMC-ReID (Zheng, Zheng, and Yang
2017) and CUHK-SYSU PersonSearch (Xiao et al. 2016)
are taken as the source datasets. All images in these source
datasets, regardless of their train/test splits, are used for
training, in total 121,765 images of 18,530 identities. The
datasets VIPeR (Gray and Tao 2008), PRID (Hirzer et al.
2011), GRID (Loy, Xiang, and Gong 2010), and i-LIDS
(Zheng, Gong, and Xiang 2009) are used as the target
datasets for testing, in which we follow the single-shot
setting with the numbers of probe/gallery images set to:
316/316 on VIPeR, 100/649 on PRID, 125/900 on GRID,
and 60/60 on i-LIDS.
Settings. We implement our model with PyTorch and train it
on a single 1080-Ti GPU. The MobileNetV2 (Sandler et al.
2018) with a width multiplier of 1.0 is used as the backbone
network for feature extractor Fθf with ImageNet-pretrained
weights. Note that the mapping networkMθm is actually the
last convolution layer of MobileNetV2. The learning rate is
initially set to 0.1 and multiplied by 0.1 per 40 epochs. Our
domain discriminator Dθd consists of a 128-D and a 2-D
fully connected (FC) layers with batch normalization (BN),
while the identity discriminator Iθi is a 18,530-D (i.e., the
number of identities) FC layer with BN. The updating rate α
in Eq. (7) is set to 0.05. The triplet loss margin in Eq. (2) is
0.3. The τ of softmax in Eq. (8) is 2× 10−3. The weights of
the losses in Eq. (9) are set to λ1 = 1.0, λ2 = 0.18 and λ3 =
0.05. The model is trained for 100 epochs with a batch size
of 64 (each identity comes with 4 images). We enable LSE

after the 4th epoch to stabilize learned representations. Test
results are averaged over 10 random probe/gallery splits.

4.2 Comparison with State-of-the-Arts
As shown in Tab.1, we compare DDAN with other methods
on VIPeR, PRID, GRID and i-LIDS. The compared methods
include 7 supervised training (S), 3 unsupervised domain ad-
patation (U), and 2 domain generalization (DG) ones.

Although many supervised methods have achieved high
performance on large-scale datasets, like CUHK03, Market-
1501 or DukeMTMC-ReID, their performance is unfortu-
nately not satisfied on small-scale ones. Many methods were
proposed to deal with this problem, among which SSM (Bai,
Bai, and Tian 2017) and JLML (Li, Zhu, and Gong 2017)
achieve satisfactory results. Nevertheless, given the limited
target data, our DDAN achieves better performance since the
compared methods suffer from severe over-fitting problems.

Some UDA approaches have shown good results for per-
son Re-ID. However, UDA requires unlabeled data from
the target domain and cannot adapt when given insuffi-
cient training data. In contrast, DDAN fully utilizes source
datasets and outperforms all UDA methods in Tab.1.

Quantitatively, with MobileNet as the backbone network,
the Rank-1 accuracy of DDAN is 52.3%, 54.5%, 50.6% and
78.5% for VIPeR, PRID, GRID, and i-LIDs, respectively. It
outperforms the DG method DIMN (Song et al. 2019) in all
test datasets, and DualNorm (Jia et al. 2019) in GRID and
i-LIDs. Since DualNorm adopts a stronger backbone with
MobileNetV2 and normalization layers, we conduct another
experiment with the same settings as DualNorm. Results
show that DDAN outperforms DualNorm in all test datasets.

4.3 Analysis
Domain-wise Adversarial Feature Learning. We use the
baseline model to extract features from each domain, and
compute the distance dWS in Eq. (3) between every two do-
mains in Tab.2. As for the pairwise alignment (All domains),
since there is no fixed central domain, we instead com-
pute the distance between features extracted by the base-
line model and the model trained with pairwise alignment.
Notice that the shortest distance appears between CUHK02
and CUHK03, which is consistent with the fact that these
two datasets are collected from the same location (CUHK)
and thus share some sort of similarities. The PersonSearch
dataset also shows a relatively small distance to the CUHK
datasets, since a part of this dataset is also collected in the
same location as CUHK02 and CUHK03.

In contrast, we find that a significant discrepancy appears
between the Duke and Market datasets. This is consistent
with our visualization results in Fig.2(a). Since the minimum
cost is achieved by PersonSearch, we set it as the central
domain in all the experiments.

In addition, Tab. 3 shows the test performance when tak-
ing each dataset as the central domain. These results are
generally consistent with the above observations in Tab. 2.
For example, when setting Duke as the central domain, the
cost of aligning the peripheral domains is large. Therefore,
the effectiveness of the learned the features could be hurt
due to the unsuitable alignment of the peripheral domains to
the central domain. Indeed, the resulting model cannot per-
form well on any of the four test datasets. In contrast, the
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Method Type VIPeR PRID GRID i-LIDS
R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP R-1 R-5 R-10 mAP

ImpTrpLoss (Cheng et al. 2016) S 42.3 71.5 82.9 - 29.8 52.9 66.0 - - - - - - - - -
GOG (Matsukawa et al. 2016) S 49.7 79.7 88.7 - - - - - 24.7 47.0 58.4 - - - - -
MTDnet (Chen et al. 2017) S 47.5 73.1 82.6 - 32.0 51.0 62.0 - - - - - 58.4 80.4 87.3 -
OneShot (Bak and Carr 2017) S 34.3 - - - 41.4 - - - - - - - 51.2 - - -
SSM (Bai, Bai, and Tian 2017) S 53.7 - 91.5 - - - - - 27.2 - 61.2 - - - - -
JLML (Li, Zhu, and Gong 2017) S 50.2 74.2 84.3 - - - - - 37.5 61.4 69.4 - - - - -
TJAIDL (Wang et al. 2018) UDA 38.5 - - - 34.8 - - - - - - - - - - -
MMFAN (Lin et al. 2018) UDA 39.1 - - - 35.1 - - - - - - - - - - -
Synthesis (Bak et al. 2018) UDA 43.0 - - - 43.0 - - - - - - - 56.5 - - -
DIMN (Song et al. 2019) DG 51.2 70.2 76.0 60.1 39.2 67.0 76.7 52.0 29.3 53.3 65.8 41.1 70.2 89.7 94.5 78.4
DDAN (Ours) DG 52.3 60.6 71.8 56.4 54.5 62.7 74.9 58.9 50.6 62.1 73.8 55.7 78.5 85.3 92.5 81.5
DualNorm (Jia et al. 2019) DG 53.9 62.5 75.3 58.0 60.4 73.6 84.8 64.9 41.4 47.4 64.7 45.7 74.8 82.0 91.5 78.5
DDAN+DualNorm (Ours) DG 56.5 65.6 76.3 60.8 62.9 74.2 85.3 67.5 46.2 55.4 68.0 50.9 78.0 85.7 93.2 81.2

Table 1: Comparing Accuracy (%) with Baselines. “R”: rank; “S”: supervised training with the target dataset; “-”: no report.

Center Peripheral domains SumCuhk02 Cuhk03 Duke Market Person
Cuhk02 0 0.69 1.61 1.37 0.87 4.54
Cuhk03 0.69 0 1.58 1.44 0.72 4.43
Duke 1.61 1.58 0 1.69 1.20 6.08
Market 1.37 1.44 1.69 0 1.10 5.60
Person 0.87 0.72 1.20 1.10 0 3.89
All domains 1.81 1.91 1.92 1.78 1.93 9.35

Table 2: Wasserstein distance dWS of different domains.

Center VIPeR PRID GRID i-LIDs
Cuhk02 48.4 48.5 46.6 74.8
Cuhk03 49.0 45.2 48.4 75.0
Duke 49.2 47.3 45.1 72.5
Market 49.5 48.2 46.5 74.1
Person 50.6 50.0 47.6 74.6
All domains 48.7 45.4 44.2 74.5

Table 3: Rank-1 Accuracy with Different Central Domains
for “Baseline + LDA” (top-2 accuracies are bolded).

central domain PersonSearch demonstrates a better perfor-
mance. In particular, the resulting rank-1 accuracy on PRID
is 4.8% higher than the lowest one. Furthermore, we also
evaluate the multi-domain approach (All domains) by pair-
wisely aligning the domains, leading to unsatisfactory per-
formance in all the test datasets.
Identity-wise Similarity Enhancement. We demonstrate
the effectiveness of this component in Tab. 4 by comparing
the cosine similarity between three representative images. In
a general scenario without LSE, this similarity is dominated
by the domain variations; non-similar images (A and B) turn
out to be closer than the similar ones (A and C) in the feature
space, only because they are in the same domain, which may
have a similar hue and lighting. In contrast, the similarities
with LSE can correctly reflect the relationships among A,
B and C, even if the (incorrectly) large similarity between
non-similar same-domain images is not penalized. It suc-
cessfully presents a real-world scenario, where the pedestri-
ans in A are more likely to be the same identity as those in C
than B, even if A and B are from the same domain, as long

Image A Image B Image C LSE? cs(A,B) cs(A,C)Duke Duke Others

7 0.67 0.59

3 0.65 0.83

7 0.78 0.75

3 0.86 0.91

7 0.76 0.71

3 0.77 0.85

Table 4: Cosine Similarity (cs) of Representative Images.

as A and C share more similar appearances than A and B.
Therefore, it captures the local similarity between A and C
and effectively reduces the domain-shift. Notice that we do
not compare by the rows, because the features learned with
and without identity-wise enhancement are in different sub-
spaces since the two different models are trained separately.
Still, the improvement of row-wise similarities between A
and C is larger than A and B, demonstrating that our en-
hancement is as ideal as described from another perspective.
Visualization. We use t-SNE to visualize the distribution
of the features obtained by the networks with different loss
functions. In Fig. 2, we sample 64 examples from differ-
ent datasets (denoted by different colors). To better demon-
strate the distributional change, we list the sum of Wasser-
stein distances between every two domains in each caption.
For the baseline network with only LIDE, the distribution in
Fig. 2(a) shows clear discrepancy among all domains with
few overlaps. Particularly, the features of Market, Duke, and
PersonSearch are clearly distinguished from each other. The
triplet loss in Fig. 2(b) shortens the intra-class distance and
widens the inter-class one, thus the model learns discrimi-
native features while also relatively increasing the distance
between each domain, as the labels of each domain are dif-
ferent. In particular, despite the properly aligned CUHK02
and CUHK03, the PersonSearch dataset can be seen as two
parts: one well aligned with CUHK02 and CUHK03 that are

1059



(a) Base (LIDE, 30.45) (b) Base (LIDE + LTriplet, 24.54)

(c) DDAN (LDA, 22.36) (d) DDAN (LDA + LSE, 20.60)

Figure 2: Feature distribution in source domains. Market
(m), Duke (d), Person (p), CUHK03/02 (c-3/2). Features are
extracted by models trained with specified losses. Numbers
are the sum of pair-wise Wasserstein distances.
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Figure 3: Evaluation with different k and τ in Eq. (8).

collected from the same location, and the other relatively
more independent one collected from movie snippets. Also,
the features from Duke are distinguished from the others.

With also the domain-wise adversarial feature learning
loss LDA in Fig.2(c), the distributions of different domains
are better aligned and more instances tend to be consistent
with each other. However, the local distribution of Duke
and part of PersonSearch are still distinguished. Lastly,
the identity-wise similarity enhancement loss in Fig. 2(d)
achieves the ideal scenario expected by DDAN, in which
the distributions of similar IDs from different domains are
closer. Moreover, the domain shift is greatly reduced to im-
prove the generalization as compared against the baseline.

4.4 Important Parameters
We study the impact of two important hyper-parameters: the
temperature τ and the number k of similar IDs in Eq. (8).
We change one parameter while fixing the other.
Temperature τ of softmax. In Eq. (8), we use softmax to

Loss functions VIPeR PRID GRID i-LIDs
LIDE 41.4 30.8 38.1 66.2
LIDE + LTriplet 47.2 46.4 45.3 72.3
LIDE + LTriplet + LDA 50.6 50.0 47.6 74.6
LIDE + LTriplet + LSE 50.8 48.8 49.6 73.7
LIDE + LTriplet + LDA + LSE 52.3 54.5 50.6 78.5

Table 5: Ablation Study (Rank-1 Accuracy (%)).

reduce the influence of exceptionally unmatched entries ap-
pearing in the paired representations. We also add a tempera-
ture parameter to preserve the distinguishability of features,
otherwise the softmax outputs could be small due to the large
number of dimensions. We empirically observe that τ < 1
leads to better results in Fig. 3(b). However, the network is
hard to converge with a small τ like 2 ∗ 10−5. We obtain the
best results with τ ≈ 2 ∗ 10−3.
Number k of similar IDs. We study the number k of simi-
lar IDs for identity-wise similarity enhancement in Fig.3(a).
k = 0 disables this mechanism. For k ≥ 1, the enhancement
generally improves the performance with relatively small
values of k. However, setting a large k may incorrectly cap-
ture non-similar examples, which could have deleterious ef-
fects on the performance. Overall, k = 8 achieves the best
rank-1 accuracy and mAP in most datasets.

4.5 Ablation Study
We study each component’s effectiveness on the full test
set, as shown in Tab. 5. LTriplet with BNNeck (Luo et al.
2019) greatly improves the effectiveness of learned repre-
sentations.LDA aligns all source domains to learn a domain-
invariant feature space, whose improved performance in un-
seen datasets indicates a better generalization of learned
features. LSE enforces a real-world distribution, capturing
identity-wise similarity to reduce the local domain shift. We
also study the effectiveness of LDA by disabling it. We ob-
serve that all components are effective and jointly contribute
to domain-invariant features that are discriminative, and in-
sensitive to domain- and identity-wise variations.

5 Conclusion
This paper identifies two fundamental challenges in DG
for person Re-ID: domain-wise variations and identity-wise
similarities. We propose an end-to-end Dual Distribution
Alignment Network (DDAN) to learn domain-invariant fea-
tures with two constraints: the domain-wise adversarial fea-
ture learning and the identity-wise similarity enhancement.
At the domain level, we align peripheral domains towards
the central domain to reduce the domain discrepancy with
minimum distributional shifts. At the identity level, we re-
duce the domain shift by capturing identity-wise similarity
with an ID pool across domains. It realizes an ideal sce-
nario, where any group of visually-similar IDs, though from
different domains, are closer than non-similar ones from
the same domain. Quantitative results on a large-scale DG
Re-ID benchmark demonstrate the superior performance of
DDAN against other recent methods.
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