
A Unified Multi-Scenario Attacking Network for Visual Object Tracking

Xuesong Chen1, Canmiao Fu2, Feng Zheng∗4, Yong Zhao3,
Hongsheng Li1, Ping Luo5, Guo-Jun Qi6

1The Chinese University of Hong Kong 2WeChat AI, Tencent 3Peking University
4Depatment of Computer Science and Engineering, Southern University of Science and Technology

5The University of Hong Kong 6Laboratory for MAPLE, Futurewei Technologies
{cedarchen, fcm, yongzhao}@pku.edu.cn, zhengf@sustech.edu.cn

Abstract
Existing methods of adversarial attacks successfully gener-
ate adversarial examples to confuse Deep Neural Networks
(DNNs) of image classification and object detection, resulting
in wrong predictions. However, these methods are difficult
to attack models of video object tracking, because the track-
ing algorithms could handle sequential information across
video frames and the categories of targets tracked are nor-
mally unknown in advance. In this paper, we propose a Uni-
fied and Effective Network, named UEN, to attack visual ob-
ject tracking models. There are several appealing characteris-
tics of UEN: (1) UEN could produce various invisible adver-
sarial perturbations according to different attack settings by
using only one simple end-to-end network with three inge-
nious loss function; (2) UEN could generate general visible
adversarial patch patterns to attack the advanced trackers in
the real-world; (3) Extensive experiments show that UEN is
able to attack many state-of-the-art trackers effectively (e.g.
SiamRPN-based networks and DiMP) on popular tracking
datasets including OTB100, UAV123, and GOT10K, making
online real-time attacks possible. The attack results outper-
form the introduced baseline in terms of attacking ability and
attacking efficiency.

Introduction
Deep Neural Networks (DNNs) has made important break-
throughs in many applications over the past decade. How-
ever, recent researches on adversarial attacks (Carlini and
Wagner 2017; Goodfellow, Shlens, and Szegedy 2014; Ku-
rakin, Goodfellow, and Bengio 2016) have revealed that
deep learning models, e.g., classification, detection, and se-
mantic segmentation networks, are vulnerable to adversarial
perturbations, which are in the form of some slight distur-
bances on images causing models to output wrong results.
For example, (Szegedy et al. 2013) first shows that adver-
sarial examples, generated by adding visually impercepti-
ble perturbations to the original images, could make classi-
fication models predict a wrong label with high confidence.
Further, (Thys, Van Ranst, and Goedemé 2019) successfully
generates adversarial patches that can hide a person from a
person detector while (Jia et al. 2019) studies adversarial at-
tacks against the visual perception pipeline in autonomous
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Figure 1: The framework of our UEN, which consists of a
generator G and a attacked victim model F . Three different
losses are developed for the multi-scenario attacks.

driving. However, compared with classification, detection,
one of the security-critical problems in computer vision—
Single Object Tracking (SOT), has attracted limited research
efforts for different attack scenarios. Therefore, we study the
efficient multi-scenario adversarial attack algorithm against
SOT in this paper.

Using typical attack methods (Jia et al. 2019; Szegedy
et al. 2013; Thys, Van Ranst, and Goedemé 2019) to gener-
ate adversarial perturbations against SOT is difficult and we
analyze and summarize several reasons for it. Firstly, SOT
algorithms could handle information across frames in real-
time to locate the trajectory of the target in videos. Conse-
quently, it is unreasonable to attack only one video frame to
fail the tracker, although it works for attacks of classification
or detection. Secondly, the requirements of attacks against
SOT are different from image classification and detection.
For example, targeted and non-targeted attack of classifi-
cation tasks only need to make the network output a spe-
cific or arbitrary wrong category, while non-targeted attack
on tracking should make the output box of a tracker deviate
from the target area continuously. For the targeted attack,
the attacker should hijack the output frame of the network
to the specified distracter, which put demands on attacking
ability of the confidence score, position, and shape of candi-
date boxes. Thirdly, for the real-world attacks, trackers’ pre-
processing of input images like downsampling, will cause
information loss and the change of camera angle may affect
the appearance of adversarial examples, which puts an ob-
stacle to the robustness of the real-world adversarial attacks.

Recently, a few existing works relevant to SOT attacks,
such as PAT (Wiyatno and Xu 2019) and SPARK (Guo et al.
2020), are both optimization-based methods and therefore
have many limitations. By adapting existing attack methods
for classification attacking, they generate adversarial exam-
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Figure 2: Comparative generated adversarial examples (the second column) and attacking results of UEN and other adapted
baselines for non-target attacks against SiamRPN++. Green boxes mean the ground-truth, while red boxes denote the tracker’s
output and numbers represent the frame index. UEN makes the tracker fail within 20 frames.

ples online through forward-backward iterations, which re-
quires access to the network weight to compute the gradi-
ent and is a really time-consuming and computationally in-
tensive process. In addition, One-Shot Attack (Chen et al.
2020) only perturb the initial frame of a tracker, which
means that it cannot attack a running tracker. At the same
time, CSA (Yan et al. 2020a) employs an end-to-end net-
work for non-targeted attack only, which enjoys higher ef-
ficiency than iterative methods and does not require model
weight during attacking. All these methods focus on limited
scenes, that is, assuming that the data in the tracking pro-
cess is available so it is feasible to add disturbance to digi-
tal input images. However, for the real-world attack that has
wider applications and can cause greater potential risks than
online attacks, we cannot take the information for granted.
Specifically, we cannot online utilize much information (like
model weights and outputs) used in forward-backward itera-
tion attacks and need to produce a physical adversarial patch
in advance rather than online optimization.

In this paper, we present a unified and effective end-to-end
network, named UEN, for multi-scenario adversarial attack-
ing against SOT, as shown in Figure 1. Optimization meth-
ods generate examples slowly by accessing the parameters
of the victim tracker in a white-box manner. Whereas we de-
velop a semi white-box attack manner, which means that our
UEN can generate adversarial perturbations for input images
in real-time without interaction with the victim tracker once
the generator is trained. Furthermore, to deal with differ-
ent attack scenarios, including target, non-target and real-
world attack, we propose three new losses corresponding to
the property of the tracking task, namely GIoU-guided non-
targeted loss, attribute-disentangled targeted loss and gen-
eral adversarial patch loss. Specifically, for the non-targeted
attack, the GIoU loss is used to guide the generator to gen-
erate adversarial examples, which induces the victim tracker
to lose its tracking target as fast as possible (see Figure 2).
For targeted attack, the attribute-disentangled targeted at-
tack loss is explored to guide the generator to produce per-
turbations that can precisely control the output of the tracker,
including the shape and locations of the bounding box, to
mislead the victim tracker to track specific wrong distracter
objects in real-time. Finally, compared with PAT that opti-
mizes the adversarial patches for a specific instance by on-
line iteration, the proposed UEN can generate robust general
attack patches with transferability to different categories due

to the prior knowledge brought by large amounts of off-line
training. For example, the object stuck with a pre-generated
adversarial patch can easily blind the tracking system. In
summary, our main contributions are as follows:

1. We propose a unified and effective encoder-decoder ad-
versarial attacker UEN to generate multi-scenario adver-
sarial examples against SOT, which can be deployed to
different attacking scene and enjoys high efficiency and
strong attacking ability.

2. We employ the novel GIoU-guided non-targeted loss
to perform non-targeted attack and use the attribute-
disentangled targeted loss for targeted attack. And UEN
achieves excellent attacking performance against state-of-
the-art trackers for both tasks .

3. UEN is able to successfully perform the general visible
adversarial patch attack in real-world in a one-shot man-
ner. The object with the generated adversarial patch can
easily blind the system like SiamRPN trackers.

Related Work
Adversarial Examples The adversarial examples can be
roughly divided into two categories. The first is based on
imperceptible perturbations, which can mislead the neural
network but are not easily detectable by human vision. The
second is adversarial attack patches that can be employed
in the real-world to mislead DNNs in various scenarios.
Early iterative-based attack strategies, such as C&W (Carlini
and Wagner 2017), BIM (Kurakin, Goodfellow, and Ben-
gio 2016), FGSM (Goodfellow, Shlens, and Szegedy 2014)
and MI-FGSM (Dong et al. 2018) produce adversarial ex-
amples in the white-box setting, which assumes the victim
model’s structure and parameters are available, and achieve
a high success rate on the classification task. Then, inves-
tigations of adversarial attacks are promoted to higher-level
tasks like object detection and semantic segmentation. How-
ever, the optimization process suffers from problems of low
efficiency and cannot satisfy the real-time request in video
tasks. Recently, end-to-end methods like GANs (Liu et al.
2019; Xiao et al. 2018) are adopted to approximate adver-
sarial perturbation distribution and achieve state-of-the-art
attacking performance while enjoying high efficiency.
Attack Of Single Object Tracking SOT is a fundamen-
tal problem in computer vision. Before the rise of deep
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learning, correlation filtering played an important role in
SOT (Danelljan et al. 2017; Lukezic et al. 2017). But in
recent years, methods based on convolutional neural net-
works (CNNs) have achieved the state-of-the-art perfor-
mance. These trackers can be roughly summarized into
two categories: one is online update trackers, including
DiMP (Bhat et al. 2019) and others (Jung et al. 2018;
Nam and Han 2016; Danelljan et al. 2019), while another
is off-line trained trackers, such as SiamRPN (Li et al.
2018) with AlexNet (Krizhevsky, Sutskever, and Hinton
2012) backbone and SiamRPN++ (Li et al. 2019) with Mo-
bileNetv2 (Sandler et al. 2018) and ResNet50 (He et al.
2016) backbones. However, there are limited papers that
care about SOT related attacks, especially for real-world at-
tack. Specifically, PAT, One-Shot Attack, Spark and Hijack-
ing Attack (Yan et al. 2020b) generate digital adversarial ex-
amples by iteration to make trackers lose the object. CSA
employs an end-to-end network to produce perturbations for
the non-targeted attack only. But all these methods cannot
generate adversarial patches for real-world attack.

Unified and Effective Network
Our Unified and Effective Network (UEN) is conceptually
simple and perspicuous: an encoder-decoder generator is
built upon a tracking model to generate adversarial pertur-
bations or adversarial patches for multi-scenario attacking.
Next, we will introduce our method in detail, including prob-
lem definition, model architecture and loss function.

Problem Definition
SOT correlates the information across frames, so it is al-
most impossible to make a tracker failure by only attack-
ing one single video frame. We argue that a practical strat-
egy is misleading the model to break away from the tracked
target over time. Therefore, we consider an input video se-
quence X ∈ RT×W×H×C with the ground truth bounding
box bgt

t ∈ R4×1 of object’s location in tth frame, where T
is the number of video frames, W , H and C are the width,
height, and channel of the video frames, respectively. As-
suming a tracker F initialized by a cropped object template
z, for the frame xt in a video, the tracker F will sample
N bounding boxes as candidates set {b1

t ,b
2
t , ...,b

N
t } from

the search region that is usually determined by the target’s
position in the last frame. After calculating the confidence
scores set {(yit,bi

t)} = F (z,xt), where 1 ≤ i ≤ N , the
bounding box bp

t , where p = argmax1≤i≤N (yit), with the
highest score ypt will be adopted as the tracker’s output.

The goal of an adversarial attack against tracking in this
work is causing the tracker to lost its target by adversarial ex-
amples. Specifically, there are two main types of attacks: (1)
Adversarial perturbation attack. Employing this attack, we
can induce different behaviors of victim trackers over time,
such as simply breaking away from their target or focus-
ing on other specific distracters of the scene. For the former
case, we name it Non-targeted Attack (NA), aiming to make
bp
t far away from bgt

t . For the latter, we name it Targeted At-
tack (TA), which aims to hijack tracker’s output from bp

t to
bat
t , where bat

t is the bounding box of other distracters. (2)

Adversarial patch attacks. We aim to generate well-designed
general attack patches to suppress the target’s classification
confidence by sticking the patch on the target, which can be
employed to perform the real-world attack.

Framework
The overall architecture of our UEN is shown in Figure 1.
Our UEN contains two components: a generator G and the
target victim tracker F .

For G, we add several cascaded residual blocks and
skip connections in the generator’s encoder-decoder archi-
tecture to break through the information bottleneck, which
is analogous to (Chen et al. 2019). Specifically, the struc-
ture can be represented by {c64s1, ?c128s2, ?c256s2 ×
4, rc256s1×4, ?c256u2×3, ?c128u2, c64u2, c3s1}, where
c denotes channel, ? denotes skip connection, s/u denotes
stride/upsampling rate and r means residual block. And the
kernel sizes for convolution and transpose convolution are
3 and 4, respectively. Given an input image, the generator
G takes the cropped search region x as its input and then
generate the output G(x). The final output we feed into the
tracker is x�B +G(x), where B is a binary mask.

Note that our method can perform various attacks: (1)
when generating adversarial perturbation examples, G(x) is
clipped in the range of [-16,16], and the value of B is all 1.
In particular, instead of using one branch for NA, UEN uses
different convolution branches in parallel at the last layer of
the decoder to efficiently generate adversarial perturbations
with different attack attributes for TA. And each branch is
supervised by its own unique targeted attack loss so that
it can simultaneously generate attribute-disentangled adver-
sarial examples; (2) when generating an adversarial patch,
only value in the location of the patch is 0 for B, then the
resized G(x) (without clip) can be added to x.

Loss Function
GIoU-Guided Non-targeted Loss IoU is an important indi-
cator for measuring the performance of a tracker. If the IoU
between the output and ground truth is less than 0.5, it will
be considered as a failure instance. To this end, for attacks,
we aim to make the predicted box as far away from the target
as possible. Note that, when two boxes are at different dis-
tances (without overlap), the IoU indicator cannot provide
a distinguishing measure for them. Therefore, we introduce
a generalized concept of IoU — GIoU (Rezatofighi et al.
2019). This is served as a new metric or loss for bound-
ing box regression and the value of IoU is extended from
(0, 1) to (-1, 1), where -1 means that the two boxes are in-
finitely far apart. Specifically, the box in the corner always
has the smallest GIoU value due to the largest position drift.
Inspired by One-Shot Attack, we choose the candidate an-
chor sets with the largest drift position (at corner) and tar-
get’s position (at center) as the optimization object:

Lna = yp +
1

M

∑
({ygt}M1 − {yk}M1 ), (1)

where p = argmax1≤i≤N (yi) for original input x, k =
argmin1≤i≤N GIoU(bp,bi) for adversarial input x�B+

G(x). {ygt}M1 and {yk}M1 denote anchor score sets, with
size of M, at positions of bgt (at center) and bk (at corner).
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Vitim
Models Attacker

Non-targeted Attack
OTB100 UAV123 GOT10K

Suc(%) Pre(%) Time(ms) Suc(%) Pre(%) Suc(%) Pre(%)

SiamRPN(Alex)

Original 66.6 87.6 * 58.6 76.9 60.8 45.6
FGSM 38.5 50.6 14.5 45.7 56.2 48.7 25.2
C&W 41.4 4.6 83.6 44.8 47.9 45.7 24.9

MI-FGSM 6.2 6.4 109.3 9.1 11.6 7.6 3.3
BIM 4.6 4.6 99.3 4.7 7.2 6.4 2.8

UEN(ours) 3.6 2.9 2.25 1.9 4.4 4.5 1.6

SiamRPN++(Mob)

Original 65.8 86.4 * 61.0 80.1 64.1 50.2
FGSM 47.1 61.0 31.6 42.3 61.7 47.2 28.5
C&W 38.1 43.9 208.9 28.5 41.6 40.7 25.7

MI-FGSM 28.6 31.9 240.9 18.2 28.0 32.8 18.1
BIM 11.9 13.7 225.5 8.4 13.5 14.2 7.0

UEN(ours) 0.3 0.3 2.25 1.2 2.8 2.8 1.0

SiamRPN++(Res50)

Original 69.6 91.4 * 61.2 79.4 65.1 52.7
FGSM 58.1 79.4 212.6 51.4 71.8 54.1 37.0
C&W 48.3 63.3 1224.7 43.6 59.3 49.7 33.6

MI-FGSM 36.6 49.4 1264.7 32.4 46.6 42.7 26.8
BIM 33.7 44.8 1249.4 27.5 40.0 37.2 20.5

UEN(ours) 8.9 10.5 2.25 7.0 10.1 17.7 4.5
Capture Confidence Time(ms) Capture Confidence Capture Confidence

DiMP(Res18)

Original 97.5 89.2 * 89.3 89.2 96.4 85.1
FGSM 70.1 52.7 31.5 72.2 62.3 76.6 49.4
C&W 20.7 18.9 143.5 22.9 19.6 30.8 25.2

MI-FGSM 0.9 10.3 180.2 0.3 5.8 14.0 17.1
BIM 3.8 12.9 140.7 1.4 8.3 23.5 20.7

UEN(ours) 0.0 0.1 2.31 0.0 0.0 0.0 0.0

Table 1: The non-targeted attack results of the proposed UEN on OTB100, UAV123 and GOT10K datasets. The cost time (on
NVIDIA P40 GPU) and attack results of 4 adapted iteration-based attack methods are also reported for a more comprehensive
comparison. UEN achieves the best performance on 4 state-of-the-art victim trackers.

Attribute-disentangled Targeted Loss This loss is intro-
duced to supervise targeted attacks, which aims to guide
the generator to produce specific adversarial examples that
mislead different attributes of the victim model’s output,
such as location and shape. Suppose we want to fool a
tracker to track a distracter in the scene, we need to mis-
lead the tracker’s output frame by frame through generat-
ing a specific sequence of adversarial examples. Specifically,
considering bp = {cx, cy, w, h} for original input x and
bat = {c′xc

′

y, w
′
, h
′} for adversarial input x � B + G(x),

we employ 8 attribute losses Lattribute as:

Lc−x
/Lc+x

= min (c
′

x − cx ± 16, 0) + ‖c
′

y − cy‖1+

‖w
′
− w‖1 + ‖h

′
− h‖1;

Lc−y
/Lc+y

= min (c
′

y − cy ± 16, 0) + ‖c
′

x − cx‖1+

‖w
′
− w‖1 + ‖h

′
− h‖1;

Lw−/Lw+ = min (w
′

x − wx ± 16, 0) + ‖c
′

x − cx‖1+

‖c
′

y − cy‖1 + ‖h
′
− h‖1;

Lh−/Lh+ = min (h
′

x − hx ± 16, 0) + ‖c
′

x − cx‖1+

‖c
′

y − cy‖1 + ‖w
′
− w‖1.

(2)

Here, we set the upper offset value of a single frame to
16. And each of the eight losses supervises a correspond-
ing decoder branch. Through the combination of a series
of attribute-specific adversarial examples, our method can
perform trajectory targeted attacks with supervision: Lta =

α · 1
M

∑
({ygt}M1 − {yat}M1 ) + Lattribute, where α is a

hyper-parameter to balance different losses. {ygt} and {yat}
denote score sets of anchors locate at bgt (at center) and bat

(with offset to center), respectively. For shape targeted at-
tack branches, ygt = yat (without location offset) so the
loss comes to Lta = Lattribute.
General Adversarial Patch Loss One of the challenges of
real-world attack is to disturb the tracker’s recognition of
target with a limited attacking patch area. To meet this chal-
lenge, we restrict the patch’s area to 0.25 of the target box’s
area through the binary mask B. Trackers will pre-process
images captured by the camera such as resizing under dif-
ferent scenes so we resize G(x) to the restricted area to
improve patches’ robustness against shape change and in-
formation loss caused by downsampling. Another challenge
of the real-world attack is that the generation of the adver-
sarial patch should be performed in advance. This means
that given only one target input, the generator is expected
to produce the general patch that has attacking ability in dif-
ferent real-world scenes in a one-shot manner. Therefore,
what we can do in training is using a large amount of offline
data to learn how to reduce the tracker’s confidence of tar-
gets with limited disturbance area. So for adversarial input
x�B +G(x), the loss can be written as:

Lpatch =
1

M

∑
{ycon}M1 , (3)

where {ycon}M1 is the score set that includes the topM rank
indexes of all candidate boxes’ scores for original input x.
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Figure 3: Some intuitive NA results for UEN and the second image is an instance of generated adversarial examples. Green
boxes mean the ground-truth, while red boxes denote attacked outputs and the numbers denote the frame indexes. For the
SiamRPN++, the perturbations produced by UEN cause the tracker to drift and output wrong boxes. Meanwhile, DiMP exhibits
completely different behavior, dying and not updating the output.

Perturbations
from

OTB100
Alex Mob Res50

SiamRPN(Alex) 94.6/96.7 24.5/22.6 38.9/35.3
SiamRPN++(Mob) 59.9/58.5 99.5/99.7 62.0/60.0

SiamRPN++(Res50) 38.5/37.0 27.0/25.5 85.6/88.5

Table 2: Transferability of adversarial examples between
victim trackers on OTB100 datasets. Values in the table are
success rate drop and precision rate drop, respectively.

Experimental Results
In this section, we describe our experimental settings and
perform a thorough analysis of the attack results of our UEN
about the targeted attack (TA), non-targeted attack (NA) and
general adversarial patch attack.
Datasets We choose 3 popular benchmarks as our exper-
imental datasets, including OTB100 (Wu, Lim, and Yang
2013), UAV123 (Mueller, Smith, and Ghanem 2016) and
GOT10K (Huang, Zhao, and Huang 2019). Besides, for
SiamRPN-based trackers, we employ COCO (Lin et al.
2014) as the training dataset for NA and TA, while the Re-
ID dataset—MSMT17 (Wei et al. 2018) is transformed for
the training of adversarial patch attacks in real-world. For
DiMP, we use GOT10K as our training datasets.
Experimental Setting We train the generator for 20 epochs,
employing an Adam optimizer and cosine decay scheduler
with the initial value of 5e-3. For hyper-parameter, we set
α = 10, M = 5. Considering the adversarial input x�B +
G(x), G(x) is perturbation with shape of 256 × 256 and
value of [-16,16] for TA and NA, while for real-world attack,
G(x) is resized into a patch whose area does not exceed 1/4
of the target box. In training and testing, we both put the
resized patch on center of the target’s box.
Victim Trackers We attack the state-of-the-art tracking al-
gorithms in the current, including those with/without online
updates. For the off-line trained algorithms, SiamRPN-based
trackers are adopted to evaluate the attacking ability of UEN.
For the online update tracking algorithms, we choose DiMP
as the victim model which trains an IoU predictor and a con-
fidence classifier to perform tracking. In testing, DiMP first
uses a classifier to obtain the rough position of the target and
then online optimizes the IoU confidence of candidate boxes
to obtain the precise position.
Non-targeted Attack Metric For SiamRPN-based trackers,
we employ the standard evaluation metrics to measure our
non-targeted attack performance. Specifically, we applied
the one-pass evaluation (OPE) with the precision (Pre), with
the threshold of 20 pixels, and success plot (Suc) metrics.

For DiMP, however, we use confidence and capture rate to

evaluate the impact of the non-targeted attack on the tracker.
More specifically, the confidence reflects the determination
degree of DiMP to the current tracking target. 0 means that
the tracker believes the target is completely lost and 1 de-
notes that the tracker completely determines the target cur-
rently being tracked. For online updating trackers, they usu-
ally set a confidence threshold to measure the statement of
the current frame. When the confidence of the current frame
is lower than the threshold, the tracker will set the confi-
dence flag to ‘not found’ and not update the output box,
which means the tacker is dead and fail to track objects.
However, the un-updated box may still have a high IoU value
with the target because the motion trajectory of most targets
in the evaluation dataset is around the center of images. At
the same time, the capture rate reflects the ratio of the num-
ber of frames in which DiMP has not dead to the total num-
ber of frames in the video.
Targeted Attack Metric In practice, we decompose the tar-
geted attack into two sub-tasks, namely trajectory attack and
shape attack. For trajectory attack, we set a targeted tra-
jectory {btr

t }, which is generated by adding random off-
set value 4t to the targeted position of the previous frame,
btr
t = btr

t−1 +4t. For shape attack, we add random offset
value4s to the width or height of the model’s predicted box
bp
t . Following SPARK, given the predicted bounding box

bp
t , if ‖ce(bp

t )− ce(btr
t )‖ < η, where ce means the center

location of box and η is the threshold, we define the trajec-
tory attack as success at frame t. Similarly, for the shape
attack, we define the attacker succeeded at frame t when
‖sh(bp

t ) − sh(bgt
t )‖ > ε, where sh means the width or

height of the box and ε is the threshold. According to the
above rules, we define trajectory attack success rate (TR)
and shape attack success rate (SR) as targeted attack met-
rics. TR is equal to the ratio of the number of frames where
trajectory attack is successful to the total number of attacked
frames in the video and SR is similar to TR.

Results of Adversarial Perturbation Attack
Non-targeted Attack To demonstrate the advantages of
UEN on efficiency and attack strength, we adapt several
optimization-based attack algorithms commonly used in
classification tasks as the baseline of NA. Specifically, we
change the original loss function of these methods. This
means that the generated perturbation aims to make the
box that has the greatest confidence among all candidate
boxes and with GIoU <= 0 as the output. Table 1 shows a
thorough comparison between UEN and other optimization-
based baselines. We report the non-targeted attacking results
of the four state-of-the-art trackers on three datasets. We ob-
serve that: For attackers, compared to iterative-based meth-

1101



Figure 4: One frame to show the attribute-disentangled adversarial perturbations (the first row) against SiamRPN and attacked
results (the second row). Green boxes mean the ground-truth, while yellow boxes denote attacking outputs. Employing different
convolution layers in the last layer of the decoder, UEN can generate 8 attribute-specific attack examples simultaneously.

Figure 5: We adopt the video example Basketball from the OTB100 dataset to illustrate the targeted attack against SiamRPN.
Green boxes mean the ground-truth, while yellow boxes denote attacked outputs. As shown, employing different hijacking
trajectories (the left half and the right half) can mislead the tracker to focus on different distracters.

Vitim
Model

OTB100 UAV123 GOT10K
TR(10)(%) TR(15) SR(%) TR(10)(%) TR(15) SR(%) TR(10)(%) TR(15) SR(%)

SiamRPN(Alex) 35.6 86.9 55.9 37.2 85.8 52.2 15.0 33.6 43.7
SiamRPN++(Mob) 74.2 83.1 45.3 59.5 65.4 29.2 14.1 21.1 34.1

SiamRPN++(Res50) 37.6 55.7 58.8 20.3 66.5 51.5 14.7 30.6 38.9

Table 3: The TR and SR results of targeted attacks of UEN on OTB100, UAV123 and GOT10K datasets. Different thresholds
are reported for comprehensive evaluation.

ods, UEN achieves the highest attack performance among
all victim trackers, whether the off-line trained methods like
SiamRPN or the updating method DiMP. The trackers at-
tacked by UEN all fail, which means they are almost im-
possible to track targets. This destructive attack power is
more obvious for attacks against the online updating tracker.
DiMP fails completely on the three datasets in the experi-
ments, with confidence and capture rates decaying to 0.

For trackers, we can draw two conclusions. Firstly, from
different accuracy drop of SiamRPN-based methods, we can
see that more parameters result in better resistance to at-
tack. Secondly, the off-line trained siamese-based trackers,
without online updating, have greater perturbation tolerance.
Because once these trackers are initialized, their template
targets’ information is fixed. Although this strategy limits
the siamese networks’ ability to online adapt to target ap-
pearance changes, it helps to prevent the siamese-based net-
works’ target information from being disturbed when the
networks face adversarial examples, resulting in a robust
performance. In contrast, DiMP can update the classifier on-
line during the tracking phase, so it can adapt to the target’s
appearance change thus gain higher performance. But when
maliciously adding well-designed disturbances on the target,
DiMP is more likely to be misled.

Table 1 also shows the average cost time of 5 different at-
tackers on OTB100 dataset. UEN has the highest efficiency
and absolutely meets the real-time requirements for the SOT
task. Whereas iterative baselines calculate the gradients by
back-propagation to update perturbations, making it difficult
to run in real-time. In addition, the consumption of these
methods increases in line with the network’s capacity. The
deeper the network, the slower the speed. Conversely, UEN
generates adversarial examples in an end-to-end manner,

and its speed only relies on the input image size. Once the
generator has been trained and deployed for attacks, UEN
does not needs to access the trackers while iterative-based
methods always require access to them.

Figure 3 presents UEN’s NA results against different
trackers. For SiamRPN++, the location result of the current
frame is an interpolation from the previous result, which
makes the tracker’s outputs more smooth. But when the
tracker encounters attacks that make it deviates from the tar-
get, the error will be accumulated, causing the tracker to drift
eventually. Meanwhile, DiMP does not update the tracking
box when the confidence is low so it will lose its tracking
ability when the target leaves the search area.
Transferability & Non-targeted Attack We also discuss
the transferability across tracker models, that is, employing
perturbations generated from one model to attack another
different model. We define the success rate drop and preci-
sion rate drop to evaluate the transferability. Table 2 shows
the transferability performance of UEN on OTB100 dataset.
And it should be noted that the diagonal results indicate the
white-box attack settings and the others indicate the black-
box attack. Our UEN has excellent transferability compared
to iterative methods like SPARK.
Targeted Attack Compared with non-targeted attacks, tar-
geted attacks are more challenging. In practice, for trajectory
attack, we set a targeted trajectory {btr

t } with the random
offset value 4t = ±15 to the target’s position of the previ-
ous frame. Similarly, for shape attack, we add random offset
value 4s = ±15 to the width or height of the ground truth
bounding box. In particular, when the scale of the tracked
target is small, we only add a positive offset to the box to
enlarge its scale.

Table 3 reports the targeted attack results on three
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Figure 6: An example of adversarial patch attacks against SiamRPN and DiMP in the real-world. For SiamRPN, when faces
an object with the adversarial patch, it will track other similar distracters. For DiMP, due to the online update strategy, it will
gradually adapt to the appearance of the adversarial patch, leading the network to focus on the patch rather than the target itself.

Models Patch Attack

SiamRPN(Alex)

Suc/Pre(%) (*)Suc/Pre(%)
66.6/87.6 19.4/25.6

Suc/Pre(P)(%) (*)Suc/Pre(P)(%)
66.1/80.4 24.0/28.3

DiMP(Res18) Suc/Pre(%) (*)Suc/Pre(%)
67.6/87.2 44.1/78.3

Table 4: The adversarial patch attack results of the proposed
UEN on OTB100 dataset. ∗ means attacked results and P
denotes a person-subset of OTB100 dataset.

datasets. As mentioned above, online updating trackers will
‘dead’, which means that they will not update the output box
when adversarial examples making the confidence below the
threshold. Therefore, we only perform targeted attacks on
SiamRPN-based methods that regress the output box frame-
by-frame. We can see that UEN has good performance on
both trajectory attacking (η = 10 or 15) and shape attack-
ing (ε = 15) against siamese networks using different back-
bones.

Eight qualitative attribute-disentangled adversarial in-
stances for one video frame are shown in Figure 4. We can
observe that the adversarial examples generated by UEN
successfully disentangle the attributes of the tracker’s out-
put box. Furthermore, after obtaining this ability, we can
perform targeted attacks through attacking sequences. As
shown in Figure 5, this kind of attack is more concealed than
non-target attacks that directly destroy tracking systems, and
the system owner cannot even realize that the system has
been misled by the attacker.

Results of Adversarial Patch Attack
Table 4 reports the results of our adversarial patch attack
experiments on the OTB100 dataset. Our experiments show
very interesting phenomena: the response of the two track-
ing algorithms to perturbation attacks and patch attacks is
completely different.

Firstly, for SiamRPN, we train an attacking patch gen-
erator for pedestrians with the help of the dataset genera-
tion method used in SiamRPN and also evaluate its trans-
ferability to other categories. As shown in Table 4, for the
pedestrian sub-dataset of OTB100, the patch generated on
one frame of each tracking target reduces the precision of
SiamRPN by 52.1%. Furthermore, models trained on the
pedestrian dataset have strong transferability to other cat-
egories, reducing the precision of SiamRPN by 62.0% on
the whole dataset. These experimental results show that the
training and tracking strategy of siamese networks makes
their learned features too ‘general’ to discriminate different

instances. To be specific, due to the heavy off-line learn-
ing, siamese networks can integrate general prior knowledge
which makes it possible to have a certain generalization abil-
ity when dealing with untrained categories. However, with-
out online updating, this off-line tracking strategy makes
the features of siamese networks lack discrimination. When
faced with adversarial patch attacks, the target’s confidence
is suppressed so SiamRPN will track other distracters.

Secondly, DiMP shows better resistance to adversarial
patch attacks than SiamRPN, especially for precision metric,
although it is more sensitive to non-target attacks. We infer
the reasons are as follows: (1) Compared with the global
perturbation, the adversarial patch has a limited area, so it
will not have a destructive global impact on the feature and
the tracker will not fail immediately. (2) The online update
strategy increases the robustness of the model to a certain ex-
tent, but also makes the tracker faces the problem of target
information pollution or even loss. To demonstrate our con-
clusions, we deploy UEN in real-world scenes. As shown
in Figure 6, when facing real-world attacks, SiamRPN will
immediately track other similar targets. But when the at-
tack patch disappears, SiamRPN may find the target again
because its target information is not polluted. By contrast,
DiMP will gradually update to adapt to the target’s appear-
ance change, causing the tracker to focus more on the well-
designed attack patch rather than the target itself.

Finally, we believe that after enjoying the prior knowl-
edge brought by big datasets and the bonus of CNN’s pow-
erful feature extraction capabilities, how to design a better
update strategy for tracking is a question worthy of atten-
tion by researchers. In addition, based on our experimental
results, we claim that a long short-term update strategy may
be a suitable choice.

Conclusions
In this work, we propose a unified, effective yet simple
framework, named UEN, for adversarial attacks against
SOT. Through an encoder-decoder generator, UEN can gen-
erate adversarial perturbations of arbitrary tracking objects
for both targeted attack and non-targeted attack. Further-
more, our UEN can efficiently generate adversarial patches
to deal with real-world attacking. Extensive experiments
conducted on popular large datasets show the excellent per-
formance of our model in terms of attacking ability and ef-
ficiency, and it is also instructive to develop well-designed
new tracking algorithms with high-performance.
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