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Abstract

Face anti-spoofing approach based on domain generalization
(DG) has drawn growing attention due to its robustness for
unseen scenarios. Existing DG methods assume that the do-
main label is known. However, in real-world applications, the
collected dataset always contains mixture domains, where the
domain label is unknown. In this case, most of existing meth-
ods may not work. Further, even if we can obtain the domain
label as existing methods, we think this is just a sub-optimal
partition. To overcome the limitation, we propose domain dy-
namic adjustment meta-learning (D2AM) without using do-
main labels, which iteratively divides mixture domains via
discriminative domain representation and trains a generaliz-
able face anti-spoofing with meta-learning. Specifically, we
design a domain feature based on Instance Normalization
(IN) and propose a domain representation learning module
(DRLM) to extract discriminative domain features for cluster-
ing. Moreover, to reduce the side effect of outliers on cluster-
ing performance, we additionally utilize maximum mean dis-
crepancy (MMD) to align the distribution of sample features
to a prior distribution, which improves the reliability of clus-
tering. Extensive experiments show that the proposed method
outperforms conventional DG-based face anti-spoofing meth-
ods, including those utilizing domain labels. Furthermore, we
enhance the interpretability through visualization.

Introduction
Despite recent significant progress, the security of face
recognition systems is still vulnerable to presentation at-
tacks (PA), e.g., photo, video replay, or 3D facial mask. To
cope with these presentation attacks, face anti-spoofing (Tan
et al. 2010; Liu, Jourabloo, and Liu 2018) is deployed as a
pre-step prior to face recognition. Various face anti-spoofing
methods have been proposed, which assume that there are
inherent differences between live and spoof faces, such as
color textures (Boulkenafet, Komulainen, and Hadid 2016),
image distortion cues (Wen, Han, and Jain 2015), tempo-
ral variation (Shao, Lan, and Yuen 2017), or deep features
(Yang, Lei, and Li 2014; Zhang et al. 2020). Although these
methods achieve promising performance in intra-dataset ex-
periments, the performance dramatically degrades under a
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Figure 1: Unlike conventional DG method that requires do-
main labels, our method can iteratively assign pseudo do-
main labels and be trained using meta-learning by D2AM.

cross-domain dataset. To improve generalization ability un-
der unseen situations, a variety of domain generalization
(DG)-based methods (Wang et al. 2020; Shao, Lan, and
Yuen 2020; Qin et al. 2019; Jia et al. 2020; Saha et al.
2020) are proposed by leveraging domain labels from mul-
tiple source domains.

These DG-based methods require domain labels that indi-
cate where each sample in multiple source domains comes
from. However, in a more practical scenario, we may obtain
a mixture domain dataset, in which the domain label of each
sample is unknown as shown in Figure 1. The existing DG
methods may not work if the domain label is not available.
There are mainly three challenges to relax the constraint: (1)
While it could be solved by assigning the domain label man-
ually, it can be very expensive and time-consuming; (2) Even
worse, since the domain information of face acti-spoofing
is composed of various factors such as illumination, back-
ground, camera type, etc., it is not clear how to define the do-
main and divide the mixture domains; (3) Further, even if we
can obtain the domain label which defined as the dataset to
which the sample belongs, as existing methods, we think this
is just a suboptimal partition. The reason is that the samples
among different datasets may partially overlap in distribu-
tion, especially when the model can extract a certain degree
of domain invariant features in the middle stage of training,
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which may cause the model to be unable to focus on better-
generalized learning directions due to the small distribution
difference between domains.

To relax the constraint that DG-based methods need do-
main labels, and ensure more difficult and abundant domain
differences, as shown in Figure 1, we propose a general-
izable face anti-spoofing method, named domain dynamic
adjustment meta-learning (D2AM), which iteratively di-
vides mixture domains via discriminative domain repre-
sentation for meta-learning. Specifically, to define the do-
main information, considering that Instance Normalization
(IN) in the networks can alleviate the domain discrepancy
(Zhou et al. 2019), we exploit a stack of convolutional fea-
ture statistics (i.e., mean and standard deviation) to get do-
main representation. To extract the domain-discriminative
feature, we design a domain representation learning mod-
ule (DRLM) to extract discriminative domain features under
the guidance of the channel attention mechanism. Further,
a domain enhancement entropy loss is added to DRLM to
enhance the confusion of task discrimination information in
domain channels. Once discriminative domain representa-
tion is obtained, our method iteratively assigns pseudo do-
main labels by clustering, and trains a domain-invariant fea-
ture extractor by meta-learning. In addition, to prevent out-
liers from affecting the performance of clustering, we intro-
duce an MMD-based regularization in the adaptation layer,
i.e., the previous layer of the output layer, to reduce the dis-
tance between the sample feature distribution and the prior
distribution. Furthermore, the embedding of MMD-based
regularization can encourage the model to learn to correct
the distribution of unseen samples through meta-learning.

The main contributions of this work are summarized
as follows: (1) We propose a novel and realistic mix-
ture domain face anti-spoofing scenario and design domain
dynamic adjustment meta-learning (D2AM) to address
this scenario. (2) Domain representation learning module
(DRLM) and MMD-based regularization are designed for
better dynamic adjustment. (3) Extensive experiments and
visualizations are presented, which demonstrates the effec-
tiveness of D2AM against the state-of-the-art competitors.

Related Work
Face Anti-Spoofing Recent face anti-spoofing approaches
can be roughly classified into three categories: conventional
approaches, deep learning approaches, and domain gener-
alized approaches. Conventional approaches detect attacks
by texture cues, which adopt hand-craft features to differ-
entiate real/fake faces, such as LBP (de Freitas Pereira et al.
2014), HOG (Gragnaniello et al. 2015), SURF (Boulkenafet,
Komulainen, and Hadid 2016), SIFT (Patel, Han, and Jain
2016), etc. With the recent success of deep learning in com-
puter vision, various deep methods are employed. In (Yang,
Lei, and Li 2014), discriminative deep features are extracted
by CNN for real/fake faces classification. Liu et al. (Liu,
Jourabloo, and Liu 2018) propose a CNN-RNN architec-
ture, which leverages face depth and rPPG signal estima-
tion as auxiliary supervision to assist in attacks detect. And
the work in (Jourabloo, Liu, and Liu 2018) inversely de-
compose a spoof face into a live face and a noise of spoof

for classification. Although these methods work well un-
der intra-dataset scenarios, their performance becomes de-
graded in unseen scenarios. In light of this, some domain
generalized approaches are proposed. Shao et al. (Shao et al.
2019) propose to learn domain-invariant representation by
multi-adversarial deep domain generalization for face anti-
spoofing, while Jia et al. (Jia et al. 2020) design the single-
side adversarial learning and the asymmetric triplet loss to
further improve the performance. The most related work to
ours is proposed in (Shao, Lan, and Yuen 2020), where meta-
learning is explored with domain knowledge for generaliz-
able face anti-spoofing. However, this method requires do-
main labels, which are not satisfied in the novel scenario,
i.e., mixture domain face anti-spoofing.

Deep Domain Generalization Several deep DG methods
have been proposed. Ghifary et al. (Ghifary et al. 2015)
match the feature distributions among multiple source do-
mains by using an auto-encoder. The work in (Li et al.
2018b) aligns multiple domains to a pre-defined distribu-
tion via adversarial learning. MLDG (Li et al. 2018a) de-
signs a model-agnostic meta-learning for DG. Note that, the
work (Matsuura and Harada 2020) has achieved DG by clus-
tering a mixture of multiple latent domains. However, the
domain features they extracted may contain task discrimi-
native information because they did not consider distilling
that information, which may hinder the domain clustering.
While our method designs a DRLM with style enhancement
entropy loss, which encourages model to extract domain-
discriminative features for better domain dividing.

Our Approach
Problem Definition and Notations Conventional gener-
alizable face anti-spoofing methods train the model that ac-
curately works for the unseen domain Dt by using multiple
source domains Dms = {(xsi , ysi , dsi )}

ns
i=1, where xsi is the

input image, ysi is the task label and dsi is the domain label.
However, as mentioned above, the dataset may be a mix-
ture of multiple latent domains, in which case it is difficult
to get domain labels manually. Our goal is to improve gen-
eralization of the model through a mixture domain dataset
Ds = {(xsi , ysi )}

ns
i=1 without the domain label dsi .

Overiew of D2AM Figure 2 shows the overall flowchart
of our framework. Our method iteratively clusters domain-
discriminative representation to reassign pseudo domain la-
bel to each sample, which can achieve simultaneously more
abundant and more difficult domain shift scenarios for meta-
learning. In summary, in each epoch, our method consists
of two stages. In the first stage (blue flow), the pseudo do-
main label is assigned by clustering with discriminative do-
main representation. Specifically, due to the clustering fea-
tures extracted directly from the network without processing
contain more task discrimination information, we process
the features extracted by the model based on IN and convert
them into domain features. Moreover, we design the DRLM
module with domain enhancement entropy loss to encour-
age the model to extract discriminative domain features that
without task discrimination information, so as to avoid the
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Figure 2: Overview of our method. Each epoch consists of two stages. In the first stage (blue flow), the pseudo domain label is
assigned by clustering with discriminative domain representation. In the second stage (red flow), we train a face anti-spoofing
model with meta-learning based on pseudo domain label. The green box is DRLM, which utilizes a Squeeze-and-Excitation
(SE)-like framework to extract task-discriminative features F+ and domain-discriminative features F−.

model’s ability to extract domain invariant features from hin-
dering the extraction of domain-discriminative features. In
the second stage (red flow), we train a face anti-spoofing
model with meta-learning based on pseudo domain label.
We also incorporate an MMD-based regularization into fea-
ture learning process, which regularizes the feature space for
better clustering and promotes the model to correct the dis-
tribution of unseen samples. The whole process is summa-
rized in Algorithm 1, and details are described as follows.

Dynamically Assigning Pseudo Domain Labels
Domain Feature Define We assume the domain informa-
tion of an image can be represented by its style. IN performs
a form of style normalization by normalizing feature statis-
tics (Huang and Belongie 2017), which can be formed as:

IN(F ) = γ(
F − µ(F )

σ(F )
) + η, (1)

where F ∈ RH×W×C is the convolutional feature and
H,W,C denote the height, width, and number of channels,
respectively, γ, η ∈ RC are learnable parameters, mean
µ(·) ∈ RC and standard deviation σ(·) ∈ RC are computed
across spatial dimensions independently for each channel.

µc(F ) =
1

HW

H∑
h=1

W∑
w=1

(Fhwc), (2)

σc(F ) =

√√√√ 1

HW

H∑
h=1

W∑
w=1

(Fhwc − µc(F ))2 + ε. (3)

Since the normalization by µ and σ can alleviate domain
discrepancy, we exploit a stack of convolutional feature
statistics getting from multiple layers of the feature extractor

to represent domain features. Hence, the domain feature can
be defined as: df(x) = {µ(F1), σ(F1), ..., µ(FM ), σ(FM )},
where M represents the M th convolutional layer.

Domain Representation Learning Module To obtain
more discriminative domain features df(x), we design the
DRLM to extract domain-discriminative convolutional fea-
ture. Specifically, as shown Figure 2, it is a SE-like frame-
work, which is expected that channels with high attention
contain more task information, while channels with low at-
tention contain more domain information. Therefore, the
module can be used to extract the task-discriminative fea-
ture F+ and domain-discriminative feature F− by:

a = Sigmoid(W2ReLu(W1pool(F ))), (4)

F+ = a · F, (5)

F− = (1− a) · F, (6)

where F+ ∈ RH×W×C and F− ∈ RH×W×C are extracted
through masking F by a learned channel attention vector
a = [a1, a2...., aC ] ∈ RC . pool is a global pooling layer,
W1 ∈ RC×(C/τ) andW2 ∈ R(C/τ)×C are trainable weights,
and τ is the dimension reduction ratio.

Minimizing the entropy regularization −p log p favors a
low-density separation between classes and increases task
discrimination (Grandvalet and Bengio 2005; Chen et al.
2020). Hence, we utilize reverse entropy loss, named do-
main enhancement entropy loss, to regularize F− to dis-
card task discrimination information for better clustering.
The loss can be formed as:

Lp = P (F−) logP (F−),

P (F−) = Sigmoid(Wppool(F
−)),

(7)

where P (·) represents the probability of whether it is a pos-
itive sample, and Wp ∈ RC×1 is the trainable weights. Note
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that whether it is a positive sample or a negative sample, Lp
can constrain P (·) to around 0.5, which means the task dis-
crimination information of F− may be discarded, so as not
to hinder domain clustering.

Clustering with Discriminative Domain Representation
For obtaining pseudo domain labels, since channels with low
attention weights contain more domain information, we sort
the attention weights in ascending order and select the chan-
nel features of F− corresponding to the first C/2 values to
form the discriminative domain convolutional feature F−d .
To further remove task discrimination information, after ob-
taining domain features {df(xi)}ns

i=1 through F−d for all
samples, we perform K-means clustering (MacQueen et al.
1967) on the positive and negative samples respectively, as-
sign a domain label to each sample, and finally, combine the
positive and negative samples with the same domain label
into one domain. The problem here is that clustering cannot
properly decide which domain label should be assigned to
each cluster, which may lead to a mismatch between positive
and negative domains and negatively affects the training.

To solve this problem, in the first epoch, we use the
ResNet (He et al. 2016) pre-trained on ImageNet to extract
domain features to divide all samples into K domains for
correct positive and negative domain matching. After that, in
each epoch, positive and negative samples are clustered us-
ing domain-discriminative features of our face anti-spoofing
model and then combined. Based on (Matsuura and Harada
2020), we use Kuhn-Munkres algorithm (Munkres 1957) to
ensure the reassigned pseudo domain labels are not shifted
largely with those from the previous epoch.

MMD-Based Regularized Meta-Learning
After obtaining pseudo domain labels, we randomly useK−
1 domains as the meta-train Ds

i (i = 1, ...,K − 1) and the
remaining one domain as the meta-test Dt in each iteration.

Meta-Train We sample the batches Bi(i = 1, ...,K − 1)
in each meta-train domain, and perform cross-entropy clas-
sification in each meta-train domain as follows:

LCls(Bi)
θE ,θM

=
∑

(x,y)∈Bi

y logM(E(x)) + (1− y) log(1−M(E(x)),

(8)

where θE and θM represent the parameters of the feature ex-
tractor and the meta learner. To avoid the harmful influence
of outliers on clustering, we propose the MMD-based regu-
larization to constrain the feature space, which narrows the
distance between outliers and sample dense areas, and en-
courages the meta-learner to correct unseen samples distri-
bution. Specifically, this regularization reduces the distance
between the sample feature distribution and the prior distri-
bution on the adaptation layer, i.e., the previous layer of the
output layer in the meta leaner, which can be formed as:

LMMD(Bi)
θE ,θM

= ‖ 1

bi

bi∑
j=1

φ(hsj )− 1

bi

bi∑
j=1

φ(htj )‖2H, (9)

where bi is the batch size, φ is the kernel function, H is
the reproducing kernel Hilbert space (RKHS), hsj is the

Algorithm 1 The optimization strategy of our D2AM

1: Input: Mixture domain dataset Ds = {(xsi , ysi )}
ns
i=1

2: Initialize model parameters θE , θM , θD, and determine
K by pre-clustering with ResNet

3: while not end of epoch do
4: if epoch==1
5: Calculate {df(xi)}ns

i=1 using pre-trained ResNet
6: else
7: Calculate {df(xi)}ns

i=1 using feature extractor E
8: Obtain {di}ns

i=1 by clustering {df(xi)}ns
i=1

9: while not end of minibatch do
10: Randomly useK−1 domains as the meta-train and

the remaining one domain as the meta-test
11: Meta-train: Sample the batches Bi(i = 1, ...,K −

1) in each meta-train domain
12: for each batch Bi do
13: CalculateLCls(Bi)(θE , θM ),LDep(Bi)(θE , θD),

LMMD(Bi)(θE , θM ) and LP (Bi)(θE) as Eq. 8, 9, 10, 7,
respectively

14: Inner update θM ′
i

with LCls(Bi)(θE , θM ),
LMMD(Bi)(θE , θM )

15: Meta-test: Sample the meta-test batches Bt
16: Use θM ′

i ,E,D
to calculate LDep(Bt)(θE , θD),

ΣK−1i=1 (LCls(Bt)(θE , θM ′
i
) + λmLMMD(Bt)(θE , θM ′

i
))

17: Meta-optimization with Eq. 11, 12, 13
18: Return: Model parameters θE , θM , θD

sample feature output by adaptation layer, and htj is the
feature of the same dimension as hsj , which randomly
generated from prior distribution. In each meta-train do-
main, the inner-update of meta leaner’s parameters can be
calculated as θM ′

i
= θM − α∇θM (LCls(Bi)(θE , θM ) +

λmLMMD(Bi)(θE , θM )), λm is the hyper-parameter. Mean-
while, we incorporate face depth maps as auxiliary informa-
tion to guide learning of extractor, which can be formed as:

LDep(Bi)
θE ,θD

=
∑

(x,y)∈Bi

‖D(E(x))− I‖2, (10)

where θD is the parameter of depth estimator and I is the
face depth map of face image, which estimated by PRNet
(Feng et al. 2018) for real face and set zeros for fake face.

Meta-Test We sample batch Bt in the one remaining
meta-test domain Dt. We encourage our face anti-spoofing
model trained in each meta-train domain can simultane-
ously perform well on the unseen cross-domain meta-test
domain. Hence, we calculate ΣK−1i=1 (LCls(Bt)(θE , θM ′

i
) +

λmLMMD(Bt)(θE , θM ′
i
)) with inner-updated meta learners.

Also, LDep(Bt)(θE , θD) is incorporated like meta-train.

Meta-Optimization We jointly train the three modules in
our network in a meta-learning framework as follows:

θM ← θM − β∇θM (

K−1∑
i=1

(LCls(Bi)
θE ,θM

+λm LMMD(Bi)
θE ,θM

+ LCls(Bt)
θE ,θM′

i

+λm LMMD(Bt)
θE ,θM′

i

)),
(11)
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(a) O&C&M to I (b) O&C&I to M (c) O&M&I to C (d) I&C&M to O

AuxiliaryMMD-AAE Binary CNN Color_TextureIDA MS_LBPLBPTOP MADDGRFM SSDG Ours

Figure 3: ROC curves of four testing sets for domain generalization on face anti-spoofing.

Method O&C&M to I O&C&I to M O&M&I to C I&C&M to O
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MS LBP 50.30 51.64 29.76 78.50 54.28 44.98 50.29 49.31
Binary CNN 34.47 65.88 29.25 82.87 34.88 71.94 29.61 77.54

IDA 28.35 78.25 66.67 27.86 55.17 39.05 54.20 44.59
Color Texture 40.40 62.78 28.09 78.47 30.58 76.89 63.59 32.71

LBPTOP 49.45 49.54 36.90 70.80 42.60 61.05 53.15 44.09
Auxiliary (Depth) 29.14 71.69 22.72 85.88 33.52 73.15 30.17 77.61

Auxiliary (All) 27.6 - - - 28.4 - - -
MMD-AAE 31.58 75.18 27.08 83.19 44.59 58.29 40.98 63.08

MADDG 22.19 84.99 17.69 88.06 24.5 84.51 27.98 80.02
SSDG-M 18.21 90.61 16.67 90.47 23.11 85.45 25.17 81.83

RFM 17.30 90.48 13.89 93.98 20.27 88.16 16.45 91.16
D2AM 15.43 91.22 12.70 95.66 20.98 85.58 15.27 90.87

Table 1: Comparison to face anti-spoofing methods on four testing sets for domain generalization on face anti-spoofing.

θE ← θE − β∇θE (LDep(Bt)
θE ,θD

+

K−1∑
i=1

(LCls(Bi)
θE ,θM

+λm LMMD(Bi)
θE ,θM

+LCls(Bt)
θE ,θM′

i

+λm LMMD(Bt)
θE ,θM′

i

+

3∑
j=1

λp L
j
P (Bi)
θE

+LDep(Bi)
θE ,θD

)),

(12)

θD ← θD − β∇θD (LDep(Bt)
θE ,θD

+

K−1∑
i=1

(LDep(Bi)
θE ,θD

)), (13)

where LjP (Bi)
denotes the domain enhancement entropy

loss for the jth DRLM in feature extractor E. Since we
iteratively re-assign the domain label with the largest do-
main shift to the sample by clustering with discriminative
domain representation in each epoch, this can simulate more
abundant and difficult cross-domain scenarios and make the
model focus on better-generalized learning directions. The
detailed training process is shown in Algorithm 1.

Experiments
Datasets Four public face anti-spoofing datasets are uti-
lized to evaluate the effectiveness of our method: OULU-
NPU (Boulkenafet et al. 2017) (denoted as O), CASIA-
FASD (Zhang et al. 2012) (denoted as C), Idiap Replay-
Attack (Chingovska, Anjos, and Marcel 2012) (denoted as

I), and MSU-MFSD (Wen, Han, and Jain 2015) (denoted as
M). We randomly select three datasets as a mixture source
domain for training, and the remaining one is the unseen do-
main for testing. Unlike existing methods that assume each
dataset represents a domain, the source domain we select is
a mixture of multiple latent domains without domain labels.

Implementation Details Our method is implemented via
PyTorch and trained with Adam optimizer. We extract the
RGB and HSV channels of each input image, thus, the input
size is 256× 256× 6. The learning rates α, β are set as 1e-
3, 1e-4, respectively, and the prior distribution for MMD is
defined as the standard normal distribution. For other hyper-
parameters, we set λp as 0.1 and λm as 0.05. In our method,
K determines the number of subdomains that the model
needs to be divided. We found that converting the convolu-
tional features extracted by pre-trained ResNet into domain
features for clustering can clearly divide the sample into sev-
eral clusters, so we can determine the value of K as 3. We
use the Half Total Error Rate (HTER) and the Area Under
Curve (AUC) as the evaluation metrics.

Result and Discussion
As shown in Figure 3, Tables 1 and 2, our method out-
performs all state-of-the-art methods under most of tasks.
We make the following observations from the results. (1)
DG-based face anti-spoofing methods perform better than
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(a) RFM (b) D2AM (c) F+ (d) F−

Figure 4: The t-SNE visualization of the O&C&M to I task. Each color represents a domain (blue points in (a), (b) represent the
unseen target domain), square points and triangle points represent live faces and fake faces, respectively. Note that, for better
comparison, the domain label in the visualization is consistent with RFM, not the pseudo domain label assigned by D2AM.

Method M&I to C M&I to O
HTER(%) AUC(%) HTER(%) AUC(%)

MS LBP 51.16 52.09 43.63 58.07
IDA 45.16 58.80 54.52 42.17
CT 55.17 46.89 53.31 45.16

LBPTOP 45.27 54.88 47.26 50.21
MADDG 41.02 64.33 39.35 65.10
SSDG-M 31.89 71.29 36.01 66.88

RFM 36.34 67.52 29.12 72.61

D2AM 32.65 72.04 27.70 75.36

Table 2: Comparison to methods with limited domains.

conventional methods. This proves that the distribution of
target domain is different from source domain, while con-
ventional methods only focus on the differentiation cues
that only fit source domain. (2) The proposed method out-
performs other DG-based methods, including RFM uti-
lizing domain labels. We believe the reason is that our
method can iteratively cluster mixture domains to find sub-
domains with the largest distribution difference, which al-
lows the model to find better optimization directions with
more abundant and difficult domain shift scenarios. Be-
sides, we jump out of the box and evaluate it on sin-
gle domain (protocol 3 of Oulu-NPU). The average results
are: D2AM (HTER=0.023±0.014, AUC=0.976±0.018) and
RFM (HTER=0.031±0.016, AUC=0.947±0.025), which
indicate that D2AM has the strong ability to capture domain
information.

Method HTER(%) AUC(%)

D2AM w/ d 18.24 89.28
D2AM w/o d 27.05 73.57

D2AM w/o select 16.57 89.98
D2AM w/o Lp 15.89 90.81

D2AM w/o LMMD 16.11 90.24

D2AM(K=2) 17.16 90.03
D2AM(K=3) 15.43 91.22
D2AM(K=4) 16.82 90.57

Table 3: Evaluations of different components of the pro-
posed method on O&C&M to I task.

Ablation Study We perform ablation study to verify the
efficacy of each component. Several observations can be
made from Table 3. (1) D2AM w/o d means that D2AM
randomly selects meta-train and meta-test from mixture do-
mains, and its performance is worse than D2AM w/ d, which
utilizes domain label as existing methods. This is because
there is no domain shift between the randomly selected do-
mains. Hence, we think it is important to simulate diffi-
cult and abundant domain shift scenarios for meta-learning.
(2) D2AM w/o select means that features of all channels
are used instead of only the channel features with low at-
tention weight for clustering, which performs worse than
D2AM. These results indicate that features with low atten-
tion weights contain more domain information to achieve
better clustering. (3) We conduct a sensitivity analysis for
K, and the results show that determining K based on the
number of clusters divided by pre-trained ResNet can get
the best results. (4) D2AM yields the best performance, con-
firming that each component contributes to the final results.

Visualization and Analysis
Adaptation Feature Visualization We visualize the fea-
tures of adaptation layer using t-SNE (Donahue et al. 2014).
As shown in Figures 4a and 4b, several observations can be
made. (1) From the perspective of domain information, com-
paring Figure 4a and 4b, we can find that D2AM is more
powerful to extract domain invariant features, which proves
that our method is more robust to unseen samples. (2) From
the perspective of task discriminative information, D2AM
makes features more dispersed in the feature space com-
pared to RFM. Therefore, a better class boundary can be
achieved by D2AM. (3) There are no outliers in the feature
space of D2AM, which shows that MMD-based regulariza-
tion can effectively constrain outliers to dense sample areas.

Convolutional Feature Visualization In Figures 4c and
4d, we visualize the distribution of the features from the 3rd
DRLM via t-SNE. It can be seen that df(x) with F+ con-
tains more task discriminative information, while df(x) with
F− contains more domain information. This result validates
that the domain enhancement entropy loss Lp can encourage
model to extract domain-discriminative features.

Attention Map Visualization To verify that channels
with low attention weight in F contain more domain infor-
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Real   Real   Fake  Real  Fake Real   Real   Fake  Real   Fake

Low attention weight High attention weight

Figure 5: Attention map visualization for F .

Epoch 3                  Epoch 6

Figure 6: The t-SNE cluster visualization on O&C&M to I.
Each color represents a domain divided by our method.

mation, we visualize attention maps of 3rd DRLM by the
Global Average Pooling (GAP) method (Zhou et al. 2016).
As shown in Figure 5, we find that attention maps with
low attention weight focus on specific attack differentiation
cue, backgrounds, overall styles, etc, which are not gener-
alized because they will be changed if data comes from a
new scene. For example, in the second row of low attention
weight, there is a type of attack that mimics eye blinking
through two pieces of paper, so the type can be judged by
locating a specific difference in the eye region, but other at-
tacks do not have this difference, and in the third row of low
attention weight, the background is focused. While attention
map with high attention weight always focuses on the re-
gion of the internal face, which are more likely to be intrin-
sic and generalized. Therefore, better domain dividing can
be achieved by selecting features with low attention weight.

Cluster Visualization To provide more insights on why
our iterative clustering can perform better than other with
known domain labels, we randomly sample 10,000 samples
and cluster them according to df(x) with F−d . The results
are shown in Figure 6. We can find that D2AM can dynami-
cally adjust the basis of division, so as to simulate richer do-
main shifts for better meta-learning. For example, Epoch 3 is
mainly clustered by illumination, while the blue points in the
Epoch 6 contain samples of different illumination, so Epoch
6 is mainly clustered by background. The reason why our
method can dynamically adjust is that meta-learning learns

(a)  More difficult scenarios (b) More abundant scenarios

Figure 7: On O&C&M to I, (a) The MMD calculated with
actual domains or pseudo domains. (b) NMI between pseudo
domain and previous assignments or actual domain.

from the scene of current epoch to improve the robustness
of this kind of shift, so in the next epoch, the model will ex-
tract domain invariant features for this scene, so as to guide
clustering to focus on other domain information that is not
yet robust and construct new scenarios.

Cluster Analysis To verify the effectiveness of our it-
erative clustering, we adopt MMD to calculate the differ-
ence between domains, and Normalized Mutual Informa-
tion (NMI) 1 to measure the changes of pseudo-domain la-
bels to evaluate the difficulty and diversity of domain shift
scenarios, respectively. As shown in Figure 7a, compared
with domain label which indicates the dataset each sample
comes from, the subdomain obtained by pseudo domain la-
bel given by D2AM has a larger domain difference, which
shows that our method can simulate more difficult scenar-
ios for better optimization direction. As shown in Figure 7b,
we found that NMI between pseudo domain labels and pre-
vious assignments is almost between 0.6 and 0.8, indicat-
ing that the pseudo-domain label of the sample is constantly
changing, especially in the middle stage of training, which
indicates that D2AM can generate richer domain shift sce-
narios to further improve the generalization. To measure the
difference between the pseudo-domain and actual domain,
we calculated the NMI between them and found that the
pseudo-domain label and domain label only overlap about
64.9%±5.7%, which indicates that the pseudo-domain label
is different from the actual domain label.

Conclusion
In this paper, to the best of our knowledge, this is the first
wok to address mixture domain face anti-spoofing, where
the domain label is unknown. Specifically, we design the
D2AM, which iteratively clusters mixture domains via dis-
criminative domain representation and trains a generalizable
feature extractor by meta-learning. A DRLM and MMD-
based regularization are designed for better dynamic adjust-
ment to simulate more difficult and abundant domain shift
scenes. Comprehensive experiments show that D2AM out-
performs conventional DG-based face anti-spoofing meth-
ods, including those utilizing domain labels. Furthermore,
we enhance the interpretability through visualization.

1The smaller the NMI, the greater the difference betwee them.
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