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Abstract

An important challenge for neural networks is to learn incre-
mentally, i.e., learn new classes without catastrophic forget-
ting. To overcome this problem, generative replay technique
has been suggested, which can generate samples belonging
to learned classes while learning new ones. However, such
generative models usually suffer from increased distribution
mismatch between the generated and original samples along
the learning process. In this work, we propose DeepCollabo-
ration (D-Collab), a collaborative framework of deep gener-
ative and discriminative models to solve this problem effec-
tively. We develop a discriminative learning model to incre-
mentally update the latent feature space for continual classi-
fication. At the same time, a generative model is introduced
to achieve conditional generation using the latent feature dis-
tribution produced by the discriminative model. Important-
ly, the generative and discriminative models are connected
through bidirectional training to enforce cycle-consistency of
mappings between feature and image domains. Furthermore,
a domain alignment module is used to eliminate the diver-
gence between the feature distributions of generated images
and real ones. This module together with the discriminative
model can perform effective sample mining to facilitate in-
cremental learning. Extensive experiments on several visual
recognition datasets show that our system can achieve state-
of-the-art performance.

Introduction
Deep neural networks trained end-to-end have achieved en-
couraging results on supervised learning tasks (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016). Typically all the
samples and labels must be available for training these sys-
tems. However, intelligent systems should be able to learn
continually, in other words, sequentially learn new tasks
without access to the past data, while preserving the knowl-
edge learned from old tasks. For incremental representa-
tion learning, the new task means classifying samples from
new classes together with old classes. Catastrophic forget-
ting (McCloskey and Cohen 1989) is the core problem with
class incremental learning. The networks are severely biased
by the data of new classes as the past data are not available
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Figure 1: (a) Problem of generative replay (Shin et al. 2017)
based incremental learning: when new classes 3 and 4 come,
raw training data for class 1 and 2 are not available. Using
samples generated from a GAN (Goodfellow et al. 2014)
with distribution shift from raw data for training, will re-
sult in mis-classfication. (b) Our D-Collab model can dra-
matically alleviate the domain shift between the generated
data and raw samples, meanwhile drop the performance-
harming generated samples. Red: features of generated sam-
ples; Blue: features of raw samples; Black line: decision
boundaries for the incremental learning task; Triangle, Cir-
cle, Star and Diamond indicate four different classes, respec-
tively.

during training. So the classification accuracy for old classes
may quickly deteriorate. To alleviate this problem, most of
previous approaches need to store exemplars for old class-
es and utilize knowledge distillation technique. Storing past
samples results in increasing memory cost as new classes
come. To handle this, generative replay technique has been
proposed (Shin et al. 2017). Using standard deep generative
model, generative replay generates pseudo-samples for old
classes and mixes them with new samples for further incre-
mental learning. But this method suffers from the distribu-
tion shift between the generated data and original samples.
Typically the generated samples are visually quite different
from natural images. What’s more, large distribution diver-
gence exists between the generated samples and real images
in feature space, as illustrated in Figure 1. If using them di-
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Figure 2: System overview. We propose to use col-
laborative generative and discriminative models M =
{E,G,D,Ar, Ag} for incremental learning. The whole sys-
tem consists of three parts, the discriminative model E,
the generative model G, and the domain alignment mod-
ule {D,Ar, Ag}. E and G are connected with incremental-
ly updated vMF distributions. They evolve as a whole along
the learning stages while the domain classifier D and fea-
ture adaptors Ar, Ag are re-initialized at every stage. For
stage s + 1 a model Ms+1 is trained using real images of
class s + 1 and generated samples from model Ms, to clas-
sify n0 + ...+ ns+1 classes. The domain alignment module
{D,Ar, Ag} from stage s can also perform sample selection
collaborated with E.

rectly for incremental learning, the system cannot classify
accurately on all classes.

In this paper, we propose DeepCollaboration, a collabora-
tive framework of deep generative and discriminative mod-
els to solve the problem. A discriminative learning model is
designed to incrementally update the feature embedding s-
pace. Meanwhile a generative model is proposed to achieve
conditional generation using the latent feature distribution
from the discriminative model. Then through bidirectional
training the two models are connected and collaborate with
each other. The resulted cycle-consistency between feature
domain and image domain will alleviate the domain shift
problem. As can be seen in Figure 1, we illustrate the bene-
fits of our designs.

In summary, the contributions of this work include: (1) To
address the problem of distribution shift in generative replay
systems for incremental representation learning, we propose
a novel method to connect deep generative and discrimi-

native models and train them end-to-end in a collaborative
way. A domain alignment module is further introduced to
alleviate the divergence between generated samples and real
ones. (2) We propose an effective and efficient sample min-
ing method for generated samples through the collaboration
of discriminative model and domain alignment module. (3)
We experimentally demonstrate that the DeepCollaboration
model can achieve state-of-the-art performance on standard
class incremental learning tasks, with a large margin above
naive generative replay method.

Related Work
Overcoming Catastrophic Forgetting
In recent years overcoming catastrophic forgetting in DNNs
has drawn much attention from researchers. Different ap-
proaches aim to solve the problem in different task settings.
For general settings, regularization-based methods are the
main-stream. EWC (Kirkpatrick et al. 2017) employed Fish-
er information guided regularization technique to protect the
most important weights for past tasks from drastic changes,
and make the less important weights plastic to adapt for new
tasks. Different from EWC, SI (Zenke, Poole, and Ganguli
2017) computed the per-synapse consolidation strength over
learning trajectory in an online fashion, instead of comput-
ing synaptic importance offline. A novel orthogonal weight
modification algorithm, OWM, was proposed to enable the
weights of a network only be modified in the directions or-
thogonal to the subspace spanned by all previously learned
tasks (Zeng et al. 2019). These general methods are not de-
signed specifically for incremental representation learning,
and regularization-based methods like EWC typically can-
not generalize well on convolutional networks.

Class Incremental Learning
Among methods for class incremental learning, LwF (Li
and Hoiem 2016) was the first to use knowledge distilla-
tion method (Hinton, Vinyals, and Dean 2015). Using only
images of newest classes to train the network, the knowl-
edge distillation loss encourages the outputs of new network
to approximate the outputs of older one. However the per-
formance of LwF deteriorated after incremental learning of
several stages. To enhance the performance, iCaRL (Rebuffi
et al. 2017) further stored selected exemplars of old classes.
While using combination of classification loss and knowl-
edge distillation loss, iCaRL performed nearest mean clas-
sification during testing. As a result, iCaRL achieved very
good incremental learning accuracies. EEiL (Castro et al.
2018) improved iCaRL by learning the classifier and the fea-
tures jointly, in an end-to-end fashion.

Knowledge distillation methods for class incremental
learning need to store past samples to achieve good per-
formance. To be more memory efficient, generative replay
methods have been proposed. Shin et al. proposed to use
class-conditional GAN to replay the samples for old classes
(Shin et al. 2017), however the method was only tested on
digits datasets. FearNet (Kemker and Kanan 2018) utilized
a brain-inspired dual-memory system to replay the past fea-
tures, while the feature extractor was pre-trained on large
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Figure 3: Latent feature distributions on MNIST dataset of cGAN (top) and our D-Collab model (bottom). At every stage 2 new
classes are added. The dimensions of features are reduced to 3 using t-SNE (Van Der Maaten 2014).

datasets and fixed. Xiang et al. extended the framework of
FearNet to convolutional networks (Xiang et al. 2019), but
the parameters of most convolution layers were still fixed.
Some recent replay-based methods (Iscen et al. 2020; Hayes
et al. 2020; Liu et al. 2020) were also designed to replay fea-
tures. Our D-Collab model can replay images and achieve
similar classification accuracies with iCaRL on end-to-end
class incremental (representation) learning, without storing
past samples.

The DeepCollaboration Framework
Problem Definition and System Overview
We define the class incremental learning task as follows.
There are totally s sequential stages in the learning process.
At stage 0 a classification modelM0 is trained on datasetX0

with n0 classes. For stage j a model Mj is trained to clas-
sify on accumulated

∑j
m=0 nm classes also with only the

newest dataset Xj . Let us denote the new dataset as Xj =

{(xi; yi), 1 ≤ i ≤ Nj , yi ∈ [1+
∑j−1
m=0 nm, ...,

∑j
m=0 nm]}

where Nj is the size of the dataset, xi and yi are the image
and the label, respectively.

We propose to use collaborative deep generative and dis-
criminative models M = {E,G,D,Ar, Ag} to solve this
problem. The whole system consists of three parts, the dis-
criminative model E, the generative model G, and the do-
main alignment module {D,Ar, Ag}. The discriminative
model E is in fact an encoder which can perform represen-
tation learning and create good feature embeddings for clas-
sification. The generative model aims to generate pseudo-
images X̂ at stage j + 1 to serve as the training data for
old classes. To solve the distribution mismatch problem, the
discriminative model Ej and the generative model Gj are
connected through a unified feature distribution design and
bidirectional joint training. In addition, the domain align-
ment module is introduced. The discriminator Dj and adap-
tors {Arj , A

g
j} try to minimize the discrepancy between gen-

erated samples and real ones in image domain and feature
domain, respectively. After appropriate training of the col-
laborative models, the domain alignment module can also

serve as a sample selection module for stage j+1, providing
high-quality samples to Mj+1 with Gj . The overall frame-
work is shown in Figure 2.

So the collaboration of the generative and discriminative
models are three-fold. Firstly, E and G are collaborated to
achieve joint discriminative learning and conditional genera-
tion, and can evolve as a whole to achieve incremental learn-
ing. Secondly, all models inM are collaborated to reduce the
domain distribution shift between generated images and raw
images, in both the image space and feature space. Thirdly,
models in stage j are collaborated to perform sample selec-
tion for current stage, and stage j + 1.

The Discriminative Model

Using a discriminative model E we can get the feature em-
bedding of an image: f = E(x). Many representation learn-
ing approaches normalize their features to be on the unit hy-
persphere (Wang and Isola 2020). L2 normalization elim-
inates the influence of magnitudes of features, making di-
rections of features the major component to optimize. Here
we use a mixture of von Mises-Fisher (vMF) distribution-
s (Banerjee et al. 2005) to model the feature distribution
of images explicitly. For a d dimensional feature vector
f = [f1, ..., fd] (‖f‖2 = 1), the density function of the vM-
F distribution is defined as: q(f |µ, κ) = Cd(κ)exp(κµ

T f),
and ‖µ‖2 = 1. Here µ is the mean vector and κ is the con-
centration parameter (with κ ≥ 0). Cd(κ) is the normaliza-
tion constant. Cd(κ) = κd/2−1/(2π)d/2Id/2−1(κ), where
Iv(∗) is the modified Bessel function of the first kind with
order v. The shape of the vMF distribution depends on the
value of the concentration parameter κ. The larger value of
κ is, the more strongly the distribution is concentrated to
the mean direction. In contrary, for low values of κ, the l2
normalized features are more uniformly distributed on the
hypersphere. The two parameters can be effectively estimat-
ed through maximum likelihood estimates (Banerjee et al.
2005) .

Given a training set with n classes, in this probability s-
pace, a sample x with feature f is assigned to class c with
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the following normalized probability:

P (c|f , {κi,µi}ni=1) =
Cd(κc)exp(κcµ

T
c f)∑n

i=1 Cd(κi)exp(κiµ
T
i f)

. (1)

Then for all samples in X = {(xj ; yj), 1 ≤ j ≤ N}, the
discriminative loss is defined as:

Ldis = −
1

N

N∑
j=1

log
Cd(κyj )exp(κyjµ

T
yj fj)∑n

i=1 Cd(κi)exp(κiµ
T
i fj)

. (2)

Note that for new classes in stage s + 1, new distributions
are learned from scratch, while old distributions are adapted
using the saved statistics from stage s. We show this in Fig-
ure 3. Thus the discriminative model is expanded by storing
new class mean vectors and estimated concentration param-
eters. During testing each sample will be classified to a class
which has the highest probability computed using equation
(1).

The Generative Model
For replay-based incremental learning, a generative model is
needed to do the inverse mapping of a discriminative model:
x̂ = G(f). GAN (Goodfellow et al. 2014) and VAE (King-
ma and Welling 2014) are the mostly used deep generative
models. There are also works combined the advantage of
these two models, e.g, (Larsen et al. 2016). As we use von
Mises-Fisher (vMF) distributions to model the distributions
of the latent space explicitly, we can connect our discrimi-
native model with these generative models efficiently.

Connect Discriminative Model with Conditional GAN
The conditional GAN (cGAN) (Mirza and Osindero 2014)
consists of a class-conditional generator G(z, c) associated
with a class-conditional discriminator D(x, c). Typically c
is the (discrete) class label and sampled from the categorical
distribution Pπ , and z is random noise sampled from normal
distribution. The generator and discriminator are trained to
optimize the following adversarial objective:

LGAN (G,D) = E
c∼Pπ

[
E

x∼πc
[logD(x, c)]+

E
z∼N (0,I)

log(1−D(G(z, c), c))]

]
.

(3)

Here we propose to use the class centers {µi}ni=1 of the
learned mixture distributions from the discriminative mod-
el as the conditional signals. These mean vectors are infor-
mative and explicitly connected to the feature distributions.
Also the random noise z will be sampled from the vMF dis-
tribution with mean vector µ. Note that we already have the
encoderE that can classify the real and generated samples to
corresponding classes, so the generator G and domain clas-
sifier D can be trained using the following loss:

LGAN (G,D) = E
c∼Pπ

[
E

x∼πc
[logD(x)]+

E
z∼vMF (0,κc)

log(1−D(G(z+ µc)))]

]
.

(4)

Connect Discriminative Model with VAE Different from
GAN, the VAE model first uses encoder E to map images
to the latent space: f = E(x), then recovers the raw da-
ta through a generator x̂ = G(f). The training objective
for VAE consists of two parts, a reconstruction loss and a
KL loss. The reconstruction loss can be l1 loss or l2 loss
between the recovered images and raw data. While KL loss
represents the divergence between the generated and expect-
ed distributions of feature space. According to (Hashimoto
et al. 2018), the KL divergence between two vMF distribu-
tions, vMF1(µq, κ) and vMF2(µc, κ), is:

KL(vMF1||vMF2) = E[κfTµq − κfTµc]
= κE[f ]Tµq − κE[f ]Tµc
= Cκ(1− µTq µc), (5)

where the two vMFs denote the posterior qE(f |x) and the
prior pG(f) accordingly, and Cκ denotes the constant inte-
grated in this equation. This means for our vMF distribu-
tion, the solution for KL loss is equivalent to minimizing the
Euclidean distance between the features and the mean vec-
tor µc of the corresponding class c. Then for all samples in
X = {(xj ; yj), 1 ≤ j ≤ N}, the KL loss is defined as:

LKL =
Cκ
2N

N∑
j=1

‖fj − µyj‖
2
2. (6)

To encourage the output of the generator to match the input,
we use an l1 loss between the output and the input image as
the reconstruction loss, defined as:

Limage1 =
1

N

N∑
j=1

‖G(E(xj))− xj‖1. (7)

Cyclic Consistency in Training
After the initial training for encoder E we get the feature
distributions for raw images. With these vMF distributions
we can sample and train the GAN model, in other word-
s G and D will be trained in an adversarial way. To elim-
inate the domain mismatch between the generated images
and the real images, inspired by the recent work on image-
to-image translation (Zhu et al. 2017a), we propose to use
bi-directional training to enforce the cycle consistency.

The first cycle consistency enables a model to reconstruct
raw images from the latent vectors with high quality, i.e., we
try to get G(E(x)) → x. The system can be trained in a
joint manner with D connected to G to improve the quality
of generated images. The objective is

E∗G∗D∗ = argmin
G,E

max
D
LGAN (G,D,E)

+λLimage1 (G,E) + λKLLKL(E).
(8)

The other cycle consistency encourages the latent represen-
tation of generated images to be similar with the feature vec-
tors sampled from: E(G(f)) → f . We try to optimize the
following objective:
G∗D∗E∗ = argmin

G,E
max
D
LGAN (G,D) + λdisLdis(G,E).

(9)

1178



Algorithm 1 Training of D-Collab model

1: Input: Sequence of image set {X0, X1, ...Xs−1}.
2: Output: Incrementally learned models M =
{E,G,D,Ar, Ag}.

3: Train E using X0 based on equation (2), calculate s-
tatistics {µi, κi}

n0
i=1 of normalized embeddings for ini-

tial classes, and get test results at the same time.
4: Initialize D for current stage. Sample in learned distri-

butions, train G and D using loss in equation (4).
5: TrainE,G andD jointly in a cycle consistent way using

objectives in equation (8) and (9), two losses for gener-
ated samples are weighted using equation (14) and (15).

6: Initialize Ar and Ag . Further train E, G, Ar, Ag jointly
using equation (13), where domain alignment losses in
equation (10, 11, 12) are added to the training process.

7: for j = 1 to s− 1 do
8: Generate and select samples using Mj−1. Form

batches after sample selection using acceptance rate
in equation (16), together with new data Xj . Train E

to get the new feature distributions {µi, κi}
∑j
m=0 nm

i=1 ,
and perform classification on test set.

9: Repeat step 4-6 using mixed images and updated dis-
tributions.

10: end for

The Domain Adaptors
As discussed above, bi-directional training of E and G is
used to alleviate the domain shift between generated images
and real images. However distribution mismatch may still
exist in feature space. Domain-invariant features should be
able to be translated from one domain to the other (Li et al.
2019). To this end, we propose to train feature adaptors Ar
and Ag separately which are applied to features of real and
generated images, fr and fg , to translate the features from
one domain to the other. We use domain adversarial loss to
train them, with Dg and Dr respectively:

min
Ar

max
Dg
Lg = E[logDg(fg)]+E[log(1−logDg(Ar(fr)))],

(10)
min
Ag

max
Dr
Lr = E[logDr(fr)]+E[log(1−logDr(Ag(fg)))].

(11)
The desired property of Ar and Ag is cycle-consistency be-
tween the features of generated and real samples. The objec-
tive we try to optimize is:

Lc = E
[
||Ag(Ar(fr))− fr||22] + E[||Ar(Ag(fg))− fg||22

]
.

(12)
The overall loss for this training phase is:

Lada = Lg + Lr + Lc + Ldis. (13)

Generated Sample Selection
The sample selection is performed at two different phases.
The first phase is the joint training phase of D-Collab mod-
el (encoder and generator) at stage j. With confidence s-
cores computed from the collaborative models, the system
can gradually learn from more confident samples to less

20 40 60 80 100
Finetuning 81.23 42.29 28.26 22.45 17.23
Frozen 81.45 47.31 33.52 26.89 22.76
LwF 81.74 62.23 50.01 41.50 34.98
iCaRL 81.43 72.19 65.21 59.43 54.38
EEIL 81.51 74.49 66.17 59.34 54.22
BiC 81.26 74.35 67.52 62.27 57.12
AE 81.93 68.32 54.17 43.03 36.79
AE-cGAN 81.67 71.46 55.48 45.58 40.65
cGAN 81.82 70.06 58.24 49.03 44.79
Ours 81.55 74.45 67.82 62.01 56.92

Table 1: Incremental learning results (accuracy %) on
CIFAR-100 dataset with 20 new classes at every stage.

confident samples. This helps to stable training process and
achieve good performance (Zhang et al. 2018). The second
phase is the pseudo-image generation phase at stage j + 1.
Selecting samples generated by the D-Collab model trained
from stage j should take both diversity and confidence into
account.

Sampling and Weighting for the Current Stage
We use a core-set based method (Sener and Savarese 2018)
to generate initial samples which can cover the distribution
of the real data, i.e., sample with high diversity. Let Ec de-
note the encoder with a classifier, the classification score
for generated sample x̂ with assigned label ŷ is Ec(ŷ|x̂),
while the domain score is set to 1 − D(x̂). Then at each
epoch we select samples with high classification and do-
main scores. Along with the training process we dynamical-
ly adjust the proportion of selected samples and set proper
weights for them. For domain adversarial loss, at training e-
poch nepoch from total ntotal epoches, acceptance rate is set
to rd = max(0.2,min(nepoch/ntotal, 0.8)), which means
the generated samples with highest scores according to this
proportion parameter are used for training. If a sample is ac-
cepted, then its selection indication sd(x̂) = 1, otherwise
sd(x̂) = 0. The weight for an accepted sample x̂ is set to
wd(x̂) = 2(1 − D(x̂)). The weighted domain adversarial
loss for Ng generated samples is:

LwGAN =
1

Ng

Ng∑
j=1

sd(x̂j)wd(x̂j)LGAN . (14)

Similarly, for discriminative loss, acceptance rate is set to
re = max(0.2,min(nepoch/ntotal, 0.6)). The weight for an
accepted sample x̂ with feature f̂ = E(x̂) is set to we(x̂) =
Ec(ŷ|x̂). The weighted discriminative loss is:

Lwdis = −
1

Ng

Ng∑
j=1

se(x̂j)we(x̂j)logP (ŷj |f̂j , {κi,µi}ni=1).

(15)

Guided Sampling for the Next Stage Sample selection
is also used to build a reliable pseudo-image pool for the
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Figure 4: Incremental learning results on CIFAR-100 with
10 classes added at every stage.

next stage, which should take sample diversity and confi-
dence into account. We modify the GOLD estimator (Mo
et al. 2019), which is simple yet effective approach measur-
ing the generation quality and class accuracy of generated
samples. For a given generated sample x̂ = G(f) with the
corresponding class ŷ, let f̂ denoteE(x̂), the acceptance rate
for such a sample is designed as follows:

r(x̂) =
1

H
exp
(
log

D(x̂)

1−D(x̂)
+ log

Dr(Ag(f̂))

1−Dr(Ag(f̂))

+ logEc(ŷ|x̂)
)
, (16)

where H is the normalization parameter. Using this accep-
tance function we can select accurate samples without losing
diversity. The whole training procedure of D-collab is sum-
marized in Algorithm 1.

Experiments
In this section, we first introduce the datasets and describe
implementation details. We then show comparisons with the
state-of-the-art methods, followed by the ablation study.

Datasets
Experiments are conducted on three datasets: CIFAR-100,
MNIST, and CUB-200. CIFAR-100 (Krizhevsky 2009) con-
tains 100 object classes. MNIST (LeCun et al. 1998) con-
tains 10 digits classes. CUB-200 is a fine-grained image
classification dataset containing high resolution images of
200 different bird species (Welinder et al. 2010). Follow-
ing the class incremental benchmark protocol in iCaRL on
CIFAR-100, 100 classes are arranged in a random order and
come in as s parts. A multi-class classifier is adapted to rec-
ognize all seen classes along the incremental learning pro-

2 4 6 8 10
EWC 98.79 73.67 66.92 44.43 31.01
iCaRL 98.91 96.55 93.56 90.03 86.89
cGAN 98.81 98.56 98.23 98.16 98.21
Ours 98.82 98.63 98.51 98.46 98.34

Table 2: Incremental learning results (accuracy %) on M-
NIST dataset with 2 new classes at every stage.

40 80 120 160 200
LwF 83.53 64.43 54.35 44.67 39.42
iCaRL 83.22 76.43 72.54 69.14 64.56
cGAN 83.42 74.06 66.16 58.31 52.60
Ours 83.46 78.52 74.31 71.82 66.28

Table 3: Incremental learning results (accuracy %) on CUB-
200 dataset with 40 new classes at every stage.

cess. We have performed experiments for s = 5 and s = 10.
For MNIST and CUB-200 we set s = 5.

Implementation Details
Our incremental learning strategy is applicable to commonly
used deep networks, e.g., GoogLeNet (Szegedy et al. 2015)
and ResNet (He et al. 2016). A ResNet with 32 layers is
used as the encoder for CIFAR-100 and CUB-200, as it’s
the base-network of iCaRL. We follow the designs in (Gong
et al. 2019) to implement the generator and the discrimina-
tor. The encoder for MNIST is also implemented following
this work. The adaptors in the system are implemented us-
ing fully connected networks with 3 layers. Only during the
initial training phase we use mini-batch stochastic gradien-
t descent (SGD) to train the encoder for 90 epoches, with
weight decay set to 0.0001. We set the initial learning rate
to 0.05 and momentum to 0.9 for the encoder. After each 20
epochs, the initial learning rate is divided by 10. After that
all the models are optimized using Adam (Kingma and Ba
2015) with learning rate of 0.0002 and β = (0.0, 0.999).
The samples within a minibatch are randomly and uniform-
ly picked from the set of images of new classes and gener-
ated images of old classes. The hyperparameter κ used by
the discriminative model is set to 10 at the initial stage and
increased by 10 at every new stage. Other hyperparameters
include the weights for different losses. We set λimage = 10,
λdis = 0.5, λKL = 0.1 in all experiments.

Results
We compare our approach with naive baselines, distillation-
based approaches and generative replay methods. One of the
naive baselines we use is Finetuning, which directly trains
all the layers of a neural network using new data only. The
other one, denoted by Frozen, freezes the feature extractor
and only finetune the classifier. Distillation-based method-
s to which we compare include LwF (Li and Hoiem 2016),
iCaRL (Rebuffi et al. 2017), EEiL (Castro et al. 2018) and
BiC (Wu et al. 2019). LwF utilizes distillation loss with on-
ly real images of the current stage. Differently, iCaRL keeps
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20 40 60 80 100
cGAN 81.82 70.06 58.24 49.03 44.79
cGAN(w/ GS) 81.65 72.24 61.52 51.10 46.29
Ours (base) 81.51 72.46 64.23 57.72 50.38
Ours (w/o GS) 81.43 73.21 65.26 59.14 52.34
Ours (w/o DA) 81.57 74.06 66.94 60.76 54.84
Ours (w/o SW) 81.49 74.18 67.12 61.07 55.16
Ours (full) 81.55 74.45 67.82 62.01 56.92

Table 4: Ablation study results (accuracy %) on CIFAR-100
dataset with 20 new classes at every stage.

a sample set to store a small portion of old data. EEiL is
similar with iCaRL, however it achieves unified feature and
classifier learning. Compared with iCaRL, BiC tries to alle-
viate the data imbalance between a few stored old samples
and a large amount of new ones. We implement a condition-
al GAN (Shin et al. 2017) as a baseline generative replay
method, denoted by cGAN. We also implement an autoen-
coder (AE) following FearNet (Kemker and Kanan 2018),
and AE+cGAN (Xiang et al. 2019) which combines AE
with cGAN. As incremental representation learning models
have to be trained in an end-to-end manner, we use AE and
AE+cGAN to replay images rather than features here. All
experiment results are averaged by 5 repeats.

Comparison with the State-of-the-Art Methods We di-
vide the 100 classes of CIFAR-100 to 5 or 10 groups and the
models need to learn incrementally. Table 1 shows the re-
sults of 5-stages learning setting. Performance of the naive
baselines, Finetuning and Frozen, drop quickly. With knowl-
edge distillation, LwF improves the accuracy of networks a
lot. Combining knowledge distillation with storing samples,
iCaRL is one of the state-of-the-art methods. Compared to
iCaRL, the accuracy of our method is 2%-3% above this
strong baseline. The performance of our approach is on par
with the state-of-the-art methods which are developed by
improving iCaRL, such as BiC and EEiL. What’s more, our
method outperforms cGAN by a large margin throughout
the continual learning process. While AE and AE+cGAN
perform worse than cGAN in this end-to-end incremental
learning setting. We also test our model for 10-stages learn-
ing. As shown in Figure 4, the classification accuracy on all
current learned classes are calculated and plotted. It can be
seen from the plots that our method outperforms iCaRL by a
consistent margin along the incremental classification accu-
racy curve. The overall performance on the total 100 classes
is improved by more than 4% compared with iCaRL. Com-
pared with cGAN, the best of the previous generative replay
method, our method has about 80% improvement on the fi-
nal classification accuracy.

Table 2 shows the results of 5-stages learning on MNIST.
The regularization-based method EWC (Kirkpatrick et al.
2017) is also serving as a baseline. Our method outperform-
s iCaRL by a large margin. As images in MNIST dataset
have compact background, even simple cGAN method can
achieve good performance. However, our method results
in clearly defined clusters for each class and appropriately

aligned distributions in feature space, which is good for both
classification and conditional generation. We show this in
Figure 3 by plotting the latent space learned by our method
and the cGAN.

The experiment results on CUB-200, as shown in Table 3,
are consistent with those on CIFAR-100. Our method out-
performs iCaRL and cGAN, with a large margin to the latter.
In a word, we carry out experiments on simple digits dataset,
complex natural image dataset and more challenging fine-
grained image dataset. The results show that our method
can achieve state-of-the-art performance, while significantly
outperforms existing generative replay methods.

The inference time of our method is almost the same with
other baselines. However the training time of our method is
1.1 and 2.5 times as long as that of cGAN and iCaRL.

Ablation Study We carry out experiments on CIFAR-100
with incremental learning of 5 stages, to verify the effec-
tiveness of the components of our collaborative framework.
The results are shown in Table 4. We implement a base mod-
el, which only contains {E,G,D}. The classification accu-
racy of this base model at the end of incremental learning
is 50.38%, which is much better than what cGAN achieves
(44.79%), showing the superiority of the base model. Guid-
ed sampling (GS) enables the model to learn from informa-
tive generated samples only. If we remove guided sampling
from our full model, which means pseudo-images generat-
ed from previous stage are randomly sampled, the accuracy
drop is about 4.6%. It’s worth noticing that our guided sam-
pling method can also boost the performance of cGAN. Sim-
ilarly, when we remove sampling and weighting (SW), the
performance degrades by 1.8%. This is because with SW, the
system can start learning from the easy samples and grad-
ually select the harder ones, thereby achieving better con-
vergence. Domain adaptors (DA) designed for feature align-
ment are good supplements for the base model to alleviate
domain shift. Without DA the performance of the system de-
grades by 2.1%. The experimental results show that each of
these components plays important role in the whole system.

Conclusion
This work develops a novel framework to train neural net-
works end-to-end for class incremental learning. We use
a well-designed deep generator to generate samples from
learned data distribution. Meanwhile, a discriminative learn-
ing model is developed to incrementally update the latent
feature space. More importantly, the generator and the dis-
criminative model are connected through invertible mapping
between latent feature space and real image space. To ease
the training process of the collaborative models and provide
high-quality samples for the training of following stage, an
effective sample selection method is proposed. With col-
laboration of these components, our system can effective-
ly preserve the previous learned knowledge and reduce the
ambiguities between old and new classes. Extensive experi-
ments on visual classification datasets demonstrate that our
approach outperforms or is on par with strong distillation
based approaches, and brings significant improvements over
existing generative replay methods.
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