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Abstract

Despite of the recent great progress on multi-person pose
estimation, existing solutions still remain challenging under
the condition of “crowded scenes”, where RGB images cap-
ture complex real-world scenes with highly-overlapped peo-
ple, severe occlusions and diverse postures. In this work, we
focus on two main problems: 1) how to design an effective
pipeline for crowded scenes pose estimation; and 2) how to
equip this pipeline with the ability of relation modeling for
interference resolving. To tackle these problems, we propose
a new pipeline named Relation based Skeleton Graph Net-
work (RSGNet). Unlike existing works that directly predict
joints-of-target by labeling joints-of-interference as false pos-
itive, we first encourage all joints to be predicted. And then, a
Target-aware Relation Parser (TRP) is designed to model
the relation over all predicted joints, resulting in a target-
aware encoding. This new pipeline will largely relieve the
confusion of the joints estimation model when seeing iden-
tical joints with totally distinct labels (e.g., the identical hand
exists in two bounding boxes). Furthermore, we introduce
a Skeleton Graph Machine (SGM) to model the skeleton-
based commonsense knowledge, aiming to estimate the tar-
get pose with the constraint of human body structure. Such
skeleton-based constraint can help to deal with the challenges
in crowded scenes from a reasoning perspective. Solid exper-
iments on pose estimation benchmarks demonstrate that our
method outperforms existing state-of-the-art methods. The
code and pre-trained models are publicly available online1.

Introduction
2D multi-person pose estimation has been a fundamental
problem in computer vision, which aims to detect human
anatomical joints (e.g., neck, wrist) from a given image. It
has attracted huge interest, since it supports wide applica-
tions, such as human parsing (Fang et al. 2018; Wang et al.
2018), human-computer interaction (Shotton et al. 2013;
Gao et al. 2020), and tracking (Xiao, Wu, and Wei 2018;
Song et al. 2018).

*Yan Dai and Xuanhan Wang contribute equally to this work.
Lianli Gao is the corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1https://github.com/vikki-dai/RSGNet

Benefiting from the success of deep convolution neural
networks (CNNs) and released large-scale datasets such as
MSCOCO (Lin et al. 2014), recent proposed pose estimation
methods have achieved great progress. They can be roughly
divided into bottom-up methods and top-down methods.
Bottom-up Methods. In general, bottom-up methods firstly
detect all human joints, and then group them into different
person instances. Although these different methods vary in
network topology, most of them (Newell, Huang, and Deng
2017; Cao et al. 2018; Papandreou et al. 2018; Jin et al.
2020; Nie et al. 2019) focus on one problem: how to group
candidate joints into individual person instance. For exam-
ple, (Cao et al. 2018) propose the Part Affinity Field (PAF) to
associate joints through their affinity scores, while (Newell,
Huang, and Deng 2017) introduce the Associative Embed-
ding that assigns different person tags to joints for group-
ing. Different from these methods, (Cheng et al. 2020) focus
on the quality of candidate joints generation, and propose
a scale-aware representation learning method that generates
candidate joints from high resolution pose embedding.
Top-down Methods. Unlike bottom-up methods, top-down
methods firstly detect out different person instances, and
then solve the single person pose estimation problem among
regions. Most current state-of-the-art top-down methods
(Sun et al. 2019; Xiao, Wu, and Wei 2018; He et al. 2017;
Chen et al. 2018; Fang et al. 2017; Li et al. 2019; Qiu et al.
2020; Golda et al. 2019; Guo et al. 2019; Wang et al. 2020b)
focus on the second step, that is, how to design a robust
neural network for single pose estimation among cropped
region images. For example, (Chen et al. 2018) propose to
estimate person joints in an easy-to-hard order. Moreover,
(Xiao, Wu, and Wei 2018) demonstrate that a simple con-
volution neural network (e.g., ResNet-50) with a couple of
deconvolutions can achieve encouraging pose estimation re-
sults. Recently, HRNet is proposed to estimate pose from
rich object details by preserving high feature resolution (Sun
et al. 2019). In addition, some works (Zhang et al. 2020;
Huang et al. 2020) focus on the heatmap-to-coordinate trans-
formation. For example, DARK improves traditional decod-
ing by a Taylor-expansion based refinement (Zhang et al.
2020), while (Huang et al. 2020) introduce a principled un-
biased data processing strategy. In a different line of these
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Figure 1: Multi-joints in one bounding box. The green lines
denote the pose-of-interest that consists of joints-of-target in
a specific bounding box, while the red lines identify pose-of-
interference that consists of joints-of-interference. The left
hand of person in orange gym shirt is viewed as false posi-
tive in the 1st bounding box, while it is set as true positive in
the 2nd bounding box.

methods, some works (Moon, Chang, and Lee 2019; Wang
et al. 2020a) construct a pipeline of pose ‘fixer’ for accu-
rate keypoints regression. For example, (Moon, Chang, and
Lee 2019) take the estimated pose with errors as input and
refine the coordinates in a coarse-to-fine manner. (Wang
et al. 2020a) follow this work, and refine the rough local-
ization results through a graph pose refinement mechanism.
Compared with bottom-up methods that are detection free,
top-down methods often have better pose estimation perfor-
mance but lower inference speed. Besides, the pipeline of
pose ‘fixer’ consists of three inference steps (e.g., detection,
estimation, fixing) which is a huge computation burden from
the inference perspective. Instead, we focus on top-down
methods without any complicated post refinements. Despite
the encouraging success that has been achieved in this area,
it still remains challenging under the condition of “crowded
scenes”, where RGB images capture complex real-world
scenes with highly-overlapped people, severe occlusions and
diverse postures. Specifically, it encounters several problems
when directly applying these methods in crowded scenes, as
analyzed below:
Multi-joints in one bounding box. The mainstream top-
down methods assume that every detected person proposal
only contains joints belong to the target person, named
joints-of-target. This is impractical especially when under
the condition of crowded scenes. As demonstrated in Fig. 1,
in addition to joints-of-target, a generated bounding box
also contains joints belong to other human instances, named
joints-of-interference. Based on above assumption applied
in conventional top-down methods, a joint of a person may
be assigned different labels. An example of this confusion
can also be shown in Fig. 1. When assigning labels to the
left hand of person in orange gym shirt, it is set as a positive
joint in the second bounding box. However, the left hand be-
comes a negative one when identifying it in the first bound-
ing box. Moreover, those pose estimators trained on such
conditions may mistake joints-of-interference for joints-of-
target, and the missing joints-of-target cannot be restored in
the post-processing step like pose-NMS. Therefore, joints

of a person existing in different proposals should keep label
consistency for relieving the confusion of joints estimation
model. To achieve this, a straightforward way is to encour-
age all joints in one bounding box to be active, leading to a
multi-joints representation.
Relation Modeling in one bounding box. Once multi-
joints from one bounding box have been detected, a joint-
to-joint relation modeling method is needed for distinguish-
ing joints-of-target from all detected ones. To address this
issue, the recent work (Li et al. 2019) proposes an off-line
relation modeling method. Specifically, they first generate
all joints within a bounding box, and then a person-joint
graph is constructed to distinguish joints-of-target. However,
this graph-based approach highly depends on the predicted
scores of multi-joints, leading to sub-optimal results. On the
other hand, human beings can well identify the joints-of-
target according to the human body structure priors. For ex-
ample, human can easily infer where the ‘neck’ is after see-
ing the ‘head’ and ‘shoulder’, even though existing other in-
terference ‘necks’. Inspired by this, (Qiu et al. 2020) adopt
the human body structure priors to enhance the joints fea-
tures only. However, how to enforce such priors during the
process of joints inference is still not explored.

Above challenges motivate us to study two problems: 1)
how to design an effective pipeline for crowded scenes pose
estimation; and 2) how to equip this pipeline with the abil-
ity of relation modeling for interference resolving. To tackle
these problems, a multi-joints representation with relation
modeling is needed. In this work, we propose a new pipeline
named Relation based Skeleton Graph Network (RSGNet).
Unlike existing works that directly predict joints-of-target
by labeling joints-of-interference as false positive, we first
encourage all joints to be predicted and generate a multi-
joints heatmap. Next, a Target-aware Relation Parser (TRP)
is designed to model the relation over all predicted joints
for interference resolving, leading to a target-aware encod-
ing. Furthermore, a Skeleton Graph Machine (SGM) is in-
troduced to model the skeleton-based commonsense knowl-
edge, aiming to enforce the constraint of human body struc-
ture during the target pose estimation. Such skeleton-based
constraint can help to deal with the challenges in crowded
scenes from a reasoning perspective.

To sum up, our work has three main contributions:
• We introduce a new and effective pipeline to tackle the

crowded problem of pose estimation, which can be cast as
an interference resolution problem. Furthermore, we de-
sign a target-aware relation parser to model the relation
of human joints for interference removal. To the best of
our knowledge, this is the first attempt to learn the joints
relation in top-down pipeline.

• Inspired by the human beings’ inferring ability to identify
the joints-of-target according to the human body structure
priors, we propose a skeleton graph machine to enforce
the constraint of human body structure during the process
of joints inference for accurate pose estimation.

• Solid experiments show that our proposed relation based
skeleton graph network (RSGNet) significantly outper-
forms current state-of-the-art pose estimation methods.
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Figure 2: The framework of our RSGNet. The CNN based visual encoder extracts visual features from a region image that
contains a target person instance with interference joints, resulting a multi-joints heatmap. The Target-aware Relation Parser
then models their relations among all extracted candidate joints by utilizing clues encoding, resulting in a target-aware encoding.
Moreover, the Skeleton Graph Machine enforces the skeleton-based commonsense knowledge for target pose estimation.

Proposed Model
Approach Overview
Problem Formulation. Top-down methods handle the pose
estimation problem in a two-stage process manner, where
it detects all person instances from an image and consecu-
tively performs single person pose estimation for each in-
stance. Given an image of size H ×W × 3, an object de-
tector is adopted to predict N person instances, resulting
in N cropped region images I =

{
Ir ∈ RHr×Wr×3

}N
r=1

.
Next, the problem of single person estimation is trans-
formed to estimate K heatmaps H ∈ RK×Hh×Wh of size
Hh × Wh, where each heatmap indicates the pixel prob-
ability of the corresponding joint category. Finally, these
predicted heatmaps will be decoded into a coordinates set
P ∈ RK×2 of K human joints.
Overview. We follow this popular two-stage pipeline and
focus on the second stage. As illustrated in Fig. 2, hu-
man region images I predicted by a human detector are
fed into the proposed Relation based Skeleton Graph Net-
work (RSGNet) for single person pose estimations. In par-
ticular, the proposed method consists of three main compo-
nents. First, a convolutional neural network (CNN) based
visual encoder is applied to extract visual features f ={
fr ∈ RHr×Wr×d

}N
r=1

from region images I . Second, a
target-aware relation parser (TRP) is designed to locate can-
didate joints. And then, it is used to generate a joint-to-joint
relation map for interference resolving, resulting in a target-
aware encoding. Third, a skeleton graph machine (SGM)

is used to infer locations of joints-of-target by utilizing the
human body structure priors. In the following sections, we
present details of each component.

Target-aware Relation Parser
Given a human region proposal Ir with a rectangle shape, it
inevitably contains multiple joints, involving joints-of-target
and joints-of-interference, especially in crowded scenes. To
address this issue, human beings can distinguish joints-of-
target from interferences by utilizing three types of human-
centered clues. Besides visual appearance, humans can infer
joints-of-target based on another two clues: 1) joint seman-
tics that indicate the difference of inter-classes (e.g., per-
son vs background); and 2) joint locations that reflect the
unique geometry relation between joints and target person,
due to the fact that the bounding box is centered on the target
person. Inspired by this, we propose a target-aware relation
parser (TRP) for target enhancing and interference resolv-
ing. In details, the TRP modular consists of two steps: 1)
Clues Encoding; and 2) Target-aware Encoding.
Clues Encoding. Given visual features fr of the correspond-
ing region image Ir, we first estimate multi-joints heatmap
Hm = Ψm(fr,Wm) from them, where Ψm is the pixel-
wise multi-joints estimator with parameters Wm. Then, a
set of Np candidate joints Pm = {Pi}

Np

i=1 can be generated
by thresholding multi-joints heatmap Hm. Different region
images results in different number Np. For each candidate
joint, we are given three types of information {bi, ci, vi}

Np

i=1,
where bi = (∆xi,∆yi, xi, yi) refers to the joint location.
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In particular, the (xi, yi) are coordinates and the (∆xi,∆yi)
are offsets between the joint and center point of human body.
Moreover, ci is the probability distribution of joint cate-
gories estimated by the multi-joints estimator Ψm, and vi
denotes the joint visual appearance features extracted from
fr at its location (xi, yi). Next, we perform a linear trans-
formation to convert these clues into feature vectors of d
dimensions, resulting in three clue encodings: 1) geometry
encoding be ∈ RNp×d; 2) category encoding ce ∈ RNp×d;
and 3) visual encoding ve ∈ RNp×d. The final clues encod-
ing Ec ∈ RNp×3d is constructed by concatenating all three
types of clue encodings.
Target-aware Encoding. Given the clues encoding Ec, our
goal is to enhance the encodings of joints-of-target and sup-
press interference ones. To achieve this, we first construct a
joint-to-joint relation encoding Er ∈ RNp×Np×d as:

Er = φ(EcV
T )� φ(EcU

T ) (1)

where V ∈ Rd×3d and U ∈ Rd×3d are linear transform
matrices. φ is the ReLU nonlinear activation and � denotes
the Hadamard product (broadcast element-wise multiplica-
tion). Then, a joint-to-joint relation map A ∈ RNp×Np is
generated by a linear function Ψa(Er,Wr) followed by the
sigmoid activation, where Wr ∈ Rd×1 is the linear trans-
form parameters. Each element Ai,j represents the proba-
bility that candidate joint i and j are grouped to the target
person. After that, the relation scores are assigned to can-
didate joints. Specifically, the target-aware encoding Et ∈
RHh×Wh×3d can be obtained through Equ. 2:

Et = ψ(AEc) (2)

where ψ(·) is the interpolation function that interpolates the
enhanced clues encoding back to the heatmap scaleHh×Wh

by the bilinear interpolation. Therefore, the possible target
joints (with higher relation score) will be enhanced, while
others (lower score) will be suppressed.

Skeleton Graph Machine
As analyzed in Introduction section, joints estimation results
should satisfy the commonsense knowledge about human
body structure priors. In this section, we introduce a skele-
ton graph machine (SGM) to enforce the constraint of hu-
man skeleton priors during the process of joints inference
for accurate pose estimation. Specifically, the SGM modular
consists of two steps: 1) Skeleton Graph Generation; and 2)
Knowledge Adaptation.
Skeleton Graph Generation. Given the target-aware en-
coding Et, we can estimate K joints heatmaps Ht ∈
RK×Hh×Wh by applying a joints-of-target estimator Ψt with
parameters Wk ∈ RK×D of size K × D. However, esti-
mating accurate locations of human joints requires the most
relative priors knowledge about human body structure. For
example, the accurate location of human left arm can help to
infer the locations of two related joints (i.e., left elbow and
left shoulder). According to such commonsense knowledge,
the estimations of human joints should be consistent with the
predictions of corresponding human limbs. Therefore, we
need to create a skeleton-based graph that provides relation

information among joints categories and limbs categories.
In particular, we define a joints-to-limbs undirected relation
graph G : G =< CK , CL,E >, where CK represents hu-
man joints with K nodes and CL denotes human limbs with
L nodes. E is the set of edges, each of which connects a
node from joints to the one of limbs and encodes a kind of
relation knowledge between these two nodes. Such graph
can be represented by an adjacent matrix Kg ∈ RK×L. For
assigning values to each edge, we introduce an identification
function I(s, k), where it outputs 1 iff the limb category and
the joint category exist a “has” relationship (e.g., the left arm
limb has the left elbow joint), as formalized in Equ.3:

Kg (i, j) = I(i, j) (3)

Given the D dimensional parameters of joints-of-target es-
timator Wk ∈ RK×D, we can obtain the relevant parsing
parameters Ws = KT

g Wk,→ RL×D with a matrix multipli-
cation operator.
Knowledge Adaptation. Given the relevant parsing pa-
rameters Ws, we need to transform them into parame-
ters of limbs-of-target estimator. To achieve this, we build
a small network with two linear functions followed by a
LeakyReLU activation. Formally, the parameters of limbs-
of-target estimator Wl ∈ RL×D are calculated as:

Wl = σ
(
WsW

1
l

)
W 2

l (4)

where W 1
l ∈ RD×D and W 2

l ∈ RD×D are linear transform
matrices, while σ(·) is the LeakyReLU nonlinear function.

The limbs-of-target heatmap Hl ∈ RL×Hh×Wh , can be
estimated from target encodings Et through a limbs-of-
target estimator with parameters Wl that transferred from
joints-of-target parsing parametersWk. During training, two
learning losses (joints and limbs) affect joints parsing pa-
rameters, resulting in consistency between joints estimations
and limbs estimations. The joints estimation results, there-
fore, can be constrained by human body structure priors.

Learning Objectives
In this section, we design our learning objectives to en-
able the proposed model to perform joints estimation in
crowded scenes. Given a human-centered region proposal,
we input its region into our proposed model and obtain four
types of outputs: 1) multi-joints heatmap Hm; 2) joints-of-
target heatmapHt; 3) relation mapA; and 4) limbs-of-target
heatmapHl. More specifically, our goal is to enhance joints-
of-target responses in joints-of-target heatmapHt, while en-
courage all joints to be active in multi-joints heatmap Hm.
To achieve this, we follow the previous works (Sun et al.
2019; Li et al. 2019) and use mean square error (MSE) as
our learning objectives, as defined in Equ. 5:

`t = 1
K

K∑
i=1

MSE(Hi
t , Ĥ

i
t)

`m = 1
K

K∑
i=1

MSE(Hi
m, Ĥ

i
m)

(5)

where Ĥt and Ĥm are the ground truth of joints-of-target
heatmap and multi-joints heatmap, respectively. In partic-
ular, Ĥt consists of single-peak Gaussian distribution for
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joints-of-target only, while Ĥm consists of multi-peak Gaus-
sian distributions for both joints-of-target and joints-of-
interference.

As for joint-to-joint relation learning objective, we take
the same strategy and calculate mean square error (MSE)
between the relation map and its ground truth as below:

`r = 1
N2

p

∑
MSE(A, Â) (6)

where Â is the ground truth of the relation map. Notably, Â
contains either 0 or 1. Each element Âi,j is 1 iff i-th joint
and j-th joint are grouped into the target person.

As for limbs-of-target learning objective, we calculate bi-
nary cross entropy (BCE) between the predicted limbs-of-
target heatmap Hl and its ground truth through Equ. 7:

`l = 1
L

L∑
i=1

BCE(Hi
l , Ĥ

i
l ) (7)

where Ĥl is the ground truth of limbs-of-target heatmap and
it contains either 0 or 1. Each element Ĥl(x, y) is 1 iff the
location (x, y) is part of corresponding limb.

Thus, the final learning objective of the whole model can
be written as:

L = α`t + β`m + θ`r + γ`l (8)
where α, β, θ and γ are hyperparameters, and respectively
set to 1, 1, 1 and 0.01 for balancing training.

Experiment
In this section, we first introduce datasets and our implemen-
tation details. Then, we report our results and comparisons
with state-of-the-art approaches. Next, we conduct ablation
studies on the proposed components in our method and pro-
vide qualitative results with visualization analysis.

Datasets
CrowdPose. We conduct validation experiments on the re-
cently introduced CrowdPose dataset (Li et al. 2019). It con-
tains 20K images and 80k human annotations in total. For
each human instance, it is annotated with 14 human joints.
Moreover, it is split into two subsets: a training set and a test
set with 12K images and 8K images, respectively. Follow-
ing the previous work (Li et al. 2019), we divide the Crowd-
Pose dataset into three crowding levels by crowd index and
report standard mean average precision over the test set: 1)
mAP (the mean of AP scores at a number of object keypoints
similarity (OKS) ranging from 0.5 to 0.95); 2) APEasy for
objects with easy crowding level; 3) APMedium for objects
with medium crowding level; 4) APHard for objects with
hard crowding level.
MSCOCO. We also report our results on MSCOCO dataset
(Lin et al. 2014). It contains over 60K images and 250K per-
son instances annotated with 17 human joints. Moreover, it
is divided into three subsets: 1) train2017 with 57K images
and 150K person instances; 2) val2017 with 5K images; 3)
test-dev2017 with 20K images. We report standard mean av-
erage precision on the val set and test-dev set: 1) mAP (the
mean of AP scores at a number of object keypoints similar-
ity (OKS) ranging from 0.5 to 0.95); 2) APM for objects
with medium size; 3) APL for objects with large size.

Implementation Details
Training. We adopt Adam optimization algorithm to learn
the network parameters, where the batch size is set to 32.
The initial learning rate is set to 1e-3 and decays in sub-
sequent iterations. Following the previous work (Sun et al.
2019), we extend the human proposal to a fixed aspect ratio
(i.e., height : width = 4 : 3), and crop the region from the im-
age. The cropped region image is further resized to a fixed
size (e.g., 256 × 192). Data augmentation techniques, such
as random rotation, random scale and random flipping, are
used during training for reducing the risk of over-fitting.
Inference. Our method follows the top-down framework:
detects person first, and then performs single person esti-
mation. Since the human detector is not what we focus on,
we simply adopt ResNet101-FPN (Lin et al. 2017) as our
human detector and re-train it on CrowdPose dataset. As
for COCO dataset, we simply use the same person detec-
tor provided by HRNet (Sun et al. 2019) for fair compari-
son. For heatmap-to-coordinates decoding method, we fol-
low the previous works (Sun et al. 2019; Xiao, Wu, and Wei
2018; Li et al. 2019), and simply compute the final joints-
of-target heatmap by averaging the heatmaps of the original
and flipped images. The coordinates of joints are adjusted
from the heatmap’s highest value location.

We implement our method based on PyTorch deep learn-
ing library on a server with 4 NVIDIA RTX GPUs, and
adopt HRNet (Sun et al. 2019) as our backbone for all exper-
iments. Other details are identical as details in HRNet (Sun
et al. 2019). More network design details are seen in supple-
mentary materials.

Comparison with State-of-the-art Methods
Comparisons on CrowdPose Dataset. Quantitative results
of the proposed method and current state-of-the-art meth-
ods on CrowdPose test set are listed in Tab. 1. As shown
in Tab. 1, our RSGNet with HRNet-W32 achieves the best
performance in all the measure metrics, outperforming other
methods with the same input size or same backbone. Com-
pared to HRNet (Sun et al. 2019), the proposed RSGNet,
with the same input size and the same backbone, achieves
1.9%, 0.8%, 1.3% and 0.5% gains, respectively. When com-
pared to previous best-performed OPEC-Net (Qiu et al.
2020), our method with the small backbone of HRNet-w32
and the input size of 256 × 192, can obtain significant im-
provements, reaching 3.0% gains.
Comparisons on MSCOCO Dataset. We also evaluate
our method with current state-of-the-art methods on COCO
val set. The results are given in Tab. 2. Without bells and
whistles, our RSGNet with HRNet-W32 backbone achieves
75.7% mAP. More specifically, our approach improves
HRNet-32 by 1.3% mAP (74.4 to 75.7) and 0.9% mAP (75.1
to 76.0) when input region images with the size of 256×192
and 384× 288, respectively. Similar gains (0.8% and 0.6%)
can also be observed when applying HRNet-W48 backbone.
This shows that our method can perform improvement on
general pose estimation problem as well.

We also evaluate our method on the test-dev set and the re-
sults are summarized in Tab. 3. As Tab. 3 reports, our method
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Method Backbone Input size AP AP50 AP75 APEasy APMedium APHard

Bottom-up methods
OpenPose(Cao et al. 2018) CPM - - - - 62.7 48.7 32.3
HihgerHRNet (Cheng et al. 2020) HRNet-W48 - 67.6 87.4 72.6 75.8 68.1 58.9

Top-down methods
Mask-RCNN (He et al. 2017) ResNet-101 - 57.2 83.5 60.3 69.4 57.9 45.8
SimpleBaseline (Xiao, Wu, and Wei 2018) ResNet-50 256 × 192 60.8 81.4 65.7 67.3 86.3 71.8
AlphaPose (Li et al. 2019) ResNet-101 320 × 256 66.0 84.2 71.5 75.5 66.3 57.4
OPEC-Net (Qiu et al. 2020) ResNet-101 320 × 256 70.6 86.8 75.6 - - -
HRNet (Sun et al. 2019) HRNet-W32 256 × 192 71.7 89.8 76.9 79.6 72.7 61.5
RSGNet (Ours) HRNet-W32 256 × 192 73.6 (+1.9) 90.7 79.0 81.3 74.6 63.4
HRNet (Sun et al. 2019) HRNet-W32 384 × 288 73.5 90.7 78.9 81.2 74.5 63.2
RSGNet (Ours) HRNet-W32 384 × 288 74.3 (+0.8) 90.7 79.7 81.8 75.3 64.6
HRNet (Sun et al. 2019) HRNet-W48 256 × 192 73.3 90.0 78.7 81.0 74.4 63.4
RSGNet (Ours) HRNet-W48 256 × 192 74.6 (+1.3) 90.9 80.1 82.0 75.6 64.5

Table 1: Comparison with the state-of-the-art methods on CrowdPose test dataset.

Method Backbone Input size # Params GFLOPs AP AP50 AP75 APM APL AR
CPN (Chen et al. 2018) ResNet-50 256 × 192 27.0M 6.20 68.6 - - - - -
SimpleBaseline (Xiao, Wu, and Wei 2018) ResNet-152 256 × 192 68.6M 15.7 72.0 89.3 79.8 68.7 78.9 77.8
HRNet (Sun et al. 2019) HRNet-W32 256 × 192 28.5M 7.10 74.4 90.5 81.9 70.8 81.0 79.8
RSGNet (Ours) HRNet-W32 256 × 192 29.2M 8.31 75.7 (+1.3) 90.5 82.0 71.8 82.5 80.8
HRNet (Sun et al. 2019) HRNet-W32 384 × 288 28.5M 16.0 75.8 90.6 82.7 71.9 82.8 81.0
RSGNet (Ours) HRNet-W32 384 × 288 29.2M 18.7 76.6 (+0.8) 91.0 82.9 72.8 83.3 81.6
HRNet (Sun et al. 2019) HRNet-W48 256 × 192 63.6M 14.6 75.1 90.6 82.2 71.5 81.8 80.4
RSGNet (Ours) HRNet-W48 256 × 192 64.5M 16.9 76.0 (+0.9) 90.8 82.6 72.1 82.9 81.1
HRNet (Sun et al. 2019) HRNet-W48 384 × 288 63.6M 32.9 76.3 90.8 82.9 72.3 83.4 81.2
RSGNet (Ours) HRNet-W48 384 × 288 64.5M 38.0 77.0 (+0.7) 91.0 83.6 72.9 83.9 81.7

Table 2: Comparison with the state-of-the-art methods on COCO val dataset.

Method Backbone Input size # Params GFLOPs AP AP50 AP75 APM APL AR
Mask-RCNN (He et al. 2017) ResNet-50 - - - 63.1 87.3 68.7 57.8 71.4 -
CPN (Chen et al. 2018) ResNet-152 384 × 288 - - 72.1 91.4 80.0 68.7 77.2 78.5
AlphaPose (Fang et al. 2017) PyraNet 320 × 256 28.1M 26.7 72.3 89.2 79.1 68.0 78.6 -
Posefix (Moon, Chang, and Lee 2019) ResNet-152 384 × 288 68.6M 35.6 73.6 90.8 81.0 70.3 79.8 79.0
OPEC-Net (Qiu et al. 2020) ResNet-101 320 × 256 - - 73.9 91.9 82.2 - - -
SimpleBaseline (Xiao, Wu, and Wei 2018) ResNet-152 384 × 288 68.6M 35.6 73.7 91.9 81.1 70.3 80.0 79.0
HRNet (Sun et al. 2019) HRNet-W32 256 × 192 28.5M 7.10 73.5 92.2 81.9 70.2 79.2 79.0
RSGNet (Ours) HRNet-W32 256 × 192 29.2M 8.31 74.7 (+1.2) 92.3 82.3 71.4 80.5 79.9
HRNet (Sun et al. 2019) HRNet-W32 384 × 288 28.5M 16.0 74.9 92.5 82.8 71.3 80.9 80.1
RSGNet (Ours) HRNet-W32 384 × 288 29.2M 18.7 75.7 (+0.8) 92.5 83.1 71.9 81.7 80.9
HRNet (Sun et al. 2019) HRNet-W48 256 × 192 63.6M 14.6 74.3 92.4 82.6 71.2 79.6 79.7
RSGNet (Ours) HRNet-W48 256 × 192 64.5M 16.9 75.1 (+0.8) 92.3 82.7 71.6 80.9 80.3
HRNet (Sun et al. 2019) HRNet-W48 384 × 288 63.6M 32.9 75.5 92.5 83.3 71.9 81.5 80.5
RSGNet (Ours) HRNet-W48 384 × 288 64.5M 38.0 76.0 (+0.5) 92.6 83.4 72.3 82.0 81.2

Table 3: Comparison with the state-of-the-art methods on COCO test-dev dataset.

with HRNet-w48 backbone at the input size of 384 × 288
achieves the best, and it outperforms HRNet-w48 with the
same input size by 0.5%. Similar gains also can be observed
in other experimental settings, demonstrating the effective-
ness and generalizability of our approach.

Ablation Study
In this section, we conduct diagnostic experiments to per-
form component analysis of our proposed Relation based
Skeleton Graph Network (RSGNet). In particular, we use
the HRNet-W32 with the input resolution of 256×192 (Sun
et al. 2019) as our baseline and compare three different mod-
els: 1) HRNet-W32, which is the baseline approach pre-
trained on ImageNet. 2) HRNet-W32 with the Target-aware

Relation Parser (TRP) but without the Skeleton Graph Ma-
chine (SGM). In this setting, the final estimation of joints-
of-target heatmap is estimated from the target-aware encod-
ing by directly applying the joints-of-target estimator. 3)
HRNet-W32 with the TRP module and the SGM module
simultaneously, which is our proposed RSGNet. In this set-
ting, we enforce the constraint of human body structure dur-
ing the target pose estimation. Furthermore, more detailed
component analyses for the TRP and SGM modulars are pre-
sented in supplementary materials.

Component Ablation Studies on CrowdPose. Our ablation
study on CrowdPose test set from the baseline gradually to
all components incorporated is summarized in Tab. 4. From
the results, we can observe that the whole framework has the
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Figure 3: Qualitative results comparison on CrowdPose test set, which across various overlaps with different difficulty levels.
The first two rows show some miss-detected joints-of-target while the second two rows show some cases of mistaking joints-of-
interference for joints-of-target, when it encounters more complex crowded scenes. The red circles spot the cases that HRNet
fails to estimate, while the green circles spot the corresponding estimations produced by our RSGNet.

CrowdPose test dataset
HRNet-w32 TRP SGM AP APEasy APMedium APHard

X 71.7 79.6 72.7 61.5
X X 73.1 80.9 74.2 62.8
X X X 73.6 81.3 74.6 63.4

Gains +1.9 +1.7 +1.9 +1.9
COCO minival dataset

HRNet-w32 TRP SGM AP APM APL AR
X 74.4 70.8 81.0 79.8
X X 74.9 71.3 81.5 80.1
X X X 75.7 71.8 82.5 80.8

Gains +1.3 +1.0 +1.5 +1.0

Table 4: Ablation Study. Investigating the effect of proposed
modules.

best performance with 73.6% mAP scores, improving base-
line model by 1.9%. More specifically, HRNet-W32 with
the TRP module outperforms the baseline by 1.4% on mAP
metric, 1.3% on easy crowding setting, 1.5% and 1.3% on
medium and hard crowding setting, respectively. It indicates
that the proposed TRP module can effectively alleviate the
effect of interference joints. Furthermore, slight gains can be
obtained after enforcing the constraint of human body struc-
ture during the target pose estimation, implying the necessity
of applying joints-to-limbs constraint.
Component Ablation Studies on COCO. We also gradu-
ally add proposed components for ablation studies on COCO
val set. The results are also shown in Tab. 4. The proposed
RSGNet is also improving for COCO dataset, which yields

1.3 improvements in terms of mAP. For more details, it im-
provesAPM by 1.0%,APL by 1.5% andAR by 1.0%. This
clearly indicates the effectiveness and generalizability of the
proposed RSGNet.
Visualization. We provide qualitative results across various
crowded scenes and compare the proposed RSGNet with the
HRNet in Fig. 3. As shown in Fig. 3, the first two rows are
qualitative comparisons across various overlaps with differ-
ent difficulty levels. As it can be seen, the HRNet fails to es-
timate some human joints when the crowded scenes become
complex. The second two rows present qualitative compar-
ison for interference resolving. For example, the column 1
shows that the HRNet wrongly connects a woman’s right
leg to her left ankle due to the complex overlapping, while
the RSGNet can well resolve these interferences. Similar
cases also can be observed even under higher complexity
of crowded scenes (Seen in column 2-5).

Conclusion
In this paper, we propose a novel relation based skeleton
graph network (RSGNet) for multi-person pose estimation
in crowded scenes. In particular, we design a target-aware
relation parser to address the issue of interference resolv-
ing. Furthermore, we introduce a skeleton graph machine to
enforce the constraint of human body structure during the
joints inference for accurate pose estimation. Extensive ex-
periments on CrowdPose and MSCOCO benchmarks prove
the effectiveness of our approach.
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