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Abstract

Video style transfer is attracting increasing attention from the
artificial intelligence community because of its numerous ap-
plications, such as augmented reality and animation produc-
tion. Relative to traditional image style transfer, video style
transfer presents new challenges, including how to effectively
generate satisfactory stylized results for any specified style
while maintaining temporal coherence across frames. To-
wards this end, we propose a Multi-Channel Correlation net-
work (MCCNet), which can be trained to fuse exemplar style
features and input content features for efficient style transfer
while naturally maintaining the coherence of input videos to
output videos. Specifically, MCCNet works directly on the
feature space of style and content domain where it learns to
rearrange and fuse style features on the basis of their simi-
larity to content features. The outputs generated by MCC are
features containing the desired style patterns that can further
be decoded into images with vivid style textures. Moreover,
MCCNet is also designed to explicitly align the features to in-
put and thereby ensure that the outputs maintain the content
structures and the temporal continuity. To further improve the
performance of MCCNet under complex light conditions, we
also introduce illumination loss during training. Qualitative
and quantitative evaluations demonstrate that MCCNet per-
forms well in arbitrary video and image style transfer tasks.
Code is available at https://github.com/diyiiyiii/MCCNet.

Introduction
Style transfer is a significant topic in the industrial com-
munity and research area of artificial intelligence. Given a
content image and an art painting, a desired style trans-
fer method can render the content image into the artistic
style referenced by the art painting. Traditional style transfer
methods based on stroke rendering, image analogy, or im-
age filtering (Efros and Freeman 2001; Bruckner and Gröller
2007; Strothotte and Schlechtweg 2002) only use low-level
features for texture transfer (Gatys, Ecker, and Bethge 2016;
Doyle et al. 2019). Recently, deep convolutional neural net-
works (CNNs) have been widely studied for artistic image
generation and translation (Gatys, Ecker, and Bethge 2016;
Johnson, Alahi, and Fei-Fei 2016; Zhu et al. 2017; Huang
and Serge 2017; Huang et al. 2018; Jing et al. 2020).
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(a) Image style transfer (b) Video style transfer

Figure 1: The proposed method can be used for stable video
style transfer with high-quality stylization effect: (a) image
style transfer results using images in different domains; (b)
video style transfer results using different frames from Sin-
tel. The stylization results of the same object in different
frames are the same. Hence, the rendered effects for the
same content are stable between different frames.

Although existing methods can generate satisfactory re-
sults for still images, they lead to flickering effects between
adjacent frames when applied to videos directly (Ruder,
Dosovitskiy, and Brox 2016; Chen et al. 2017). Video style
transfer is a challenging task that needs to not only gen-
erate good stylization effects per frame but also consider
the continuity between adjacent frames of the video. Ruder,
Dosovitskiy, and Brox (2016) added temporal consistency
loss on the basis of the approach proposed in Gatys, Ecker,
and Bethge (2016) to maintain a smooth transition between
video frames. Chen et al. (2017) proposed an end-to-end
framework for online video style transfer through a real-time
optical flow and mask estimation network. Gao et al. (2020)
proposed a multistyle video transfer model, which estimates
the light flow and introduces temporal constraint. However,
these methods highly depend on the accuracy of optical flow
calculation, and the introduction of temporal constraint loss
reduces the stylization quality of individual frames. More-
over, adding optical flow to constrain the coherence of styl-
ized videos makes the network difficult to train when applied
to an arbitrary style transfer model.

In the current work, we revisit the basic operations in
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state-of-the-art image stylization approaches and propose a
frame-based Multi-Channel Correlation network (MCCNet)
for temporally coherent video style transfer that does not in-
volve the calculation of optical flow. Our network adaptively
rearranges style representations on the basis of content rep-
resentations by considering the multi-channel correlation of
these representations. Through this approach, MCCNet is
able to make style patterns suitable for content structures.
By further merging the rearranged style and content rep-
resentations, we generate features that can be decoded into
stylized results with clear content structures and vivid style
patterns. MCCNet aligns the generated features to content
features, and thus, slight changes in adjacent frames will not
cause flickering in the stylized video. Furthermore, the illu-
mination variation among consecutive frames influences the
stability of video style transfer. Thus, we add random Gaus-
sian noise to the content image to simulate illumination vari-
eties and propose an illumination loss to make the model sta-
ble and avoid flickering. As shown in Figure 1, our method
is suitable for stable video style transfer, and it can gener-
ate single-image style transfer results with well-preserved
content structures and vivid style patterns. In summary, our
main contributions are as follows:
• We propose MCCNet for framed-based video style trans-

fer by aligning cross-domain features with input videos to
render coherent results.

• We calculate the multi-channel correlation across content
and style features to generate stylized images with clear
content structures and vivid style patterns.

• We propose an illumination loss to make the style trans-
fer process increasingly stable so that our model can be
flexibly applied to videos with complex light conditions.

Related Work
Image style transfer. Image style transfer has been widely
studied in recent years. Essentially, it enables the generation
of artistic paintings without the expertise of a professional
painter. Gatys, Ecker, and Bethge (2016) found that the in-
ner products of the feature maps in CNNs can be used to
represent style and proposed a neural style transfer (NST)
method through continuous optimization iterations. How-
ever, the optimization process is time consuming and can-
not be widely used. Johnson, Alahi, and Fei-Fei (2016) put
forward a real-time style transfer method to dispose of a
specific style in one model. Dumoulin, Shlens, and Kudlur
(2016) proposed conditional instance normalization (CIN),
which allows the learning of multiple styles in one model
by reducing a style image into a point in the embedded
space. A number of methods achieve arbitrary style trans-
fer by aligning the second-order statistics of style and con-
tent images (Huang and Serge 2017; Li et al. 2017; Wang
et al. 2020b). Huang and Serge (2017) proposed an arbi-
trary style transfer method by adopting adaptive instance
normalization (AdaIN), which normalizes content features
using the mean and variance of style features. Li et al. (2017)
used whitening and coloring transformation (WCT) to ren-
der content images with style patterns. Wang et al. (2020b)
adopted deep feature perturbation (DFP) in a WCT-based

model to achieve diversified arbitrary style transfer. How-
ever, these holistic transformations lead to unsatisfactory re-
sults. Park and Lee (2019) proposed a style-attention net-
work (SANet) to obtain abundant style patterns in generated
results but failed to maintain distinct content structures. Yao
et al. (2019) proposed an attention-aware multi-stroke style
transfer (AAMS) model by adopting self-attention to a style
swap-based image transfer method, which highly relies on
the accuracy of the attention map used. Deng et al. (2020)
proposed a multi-adaptation style transfer (MAST) method
to disentangle content and style features and combine them
adaptively. However, some results are rendered with uncon-
trollable style patterns.

In the current work, we propose an arbitrary style transfer
approach, which can be applied to video transfer with better
stylized results than other state-of-the-art methods.

Video style transfer. Most video style transfer methods
rely on existing image style transfer methods (Ruder, Doso-
vitskiy, and Brox 2016; Chen et al. 2017; Gao et al. 2020).
Ruder, Dosovitskiy, and Brox (2016) built on NST and
added a temporal constraint to avoid flickering. However,
the optimization-based method is inefficient for video style
transfer. Chen et al. (2017) proposed a feed-forward network
for fast video style transfer by incorporating temporal in-
formation. Chen et al. (2020) distilled knowledge from the
video style transfer network with optical flow to a student
network to avoid optical flow estimation in the test stage.
Gao et al. (2020) adopted CIN for multi-style video transfer,
and the approach incorporated one FlowNet and two Con-
vLSTM modules to estimate light flow and introduce a tem-
poral constraint. The temporal constraint aforementioned is
achieved by calculating optical flow, and the accuracy of op-
tical flow estimation affects the coherence of the stylized
video. Moreover, the diversity of styles is limited because of
the used basic image style transfer methods used. Wang et al.
(2020a) proposed a novel interpretation of temporal consis-
tency without optical flow estimation for efficient zero-shot
style transfer. Li et al. (2019) learned a transformation ma-
trix for arbitrary style transfer. They found that the normal-
ized affinity for generated features are the same as that for
content features, and is thus suitable for frame-based video
style transfer. However, the style patterns in their stylized
results are not clearly noticeable.

To avoid using optical flow estimation while maintaining
video continuity, we aim to design an alignment transform
operation to achieve stable video style transfer with vivid
style patterns.

Methodology
As shown in Figure 2, the proposed MCCNet adopts an
encoder-decoder architecture. Given a content image Ic and
a style image Is, we can obtain corresponding feature maps
fc = E(Ic) and fs = E(Is) through the encoder. Through
MCC calculation, we generate fcs that can be decoded into
stylized image Ics.

We first formulate and analyze the proposed multi-
channel correlation in Sections and and then introduce the
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Figure 2: Overall structure of MCCNet. The green block represents the operation of the feature vector multiplied by the trans-
pose of the vector. ⊗ and ⊕ represent the matrix multiplication and addition. Ic, Is and Ics refer to the content, style and
generated images, respectively.

Figure 3: Correlation matrix CO. R is the element of CO.

configuration of MCCNet involving feature alignment and
fusion in Section .

Multi-Channel Correlation
Cross-domain feature correlation has been studied for image
stylization (Park and Lee 2019; Deng et al. 2020). It fuses
the multiple content and style features by using several adap-
tion/attention modules without considering the inter-channel
relationship of the content features. In SANet (Park and Lee
2019), the generated features can be formulated as

fcs = F (fc, fs) ∝ exp(f(fc), g(fs))h(fs). (1)

Slight changes in input content features can lead to a large-
scale variation in output features. MAST (Deng et al. 2020)
has the same issue. Thus the coherence of input content fea-
tures cannot be migrated to generated features, and the styl-
ized videos will present flickering artifacts.

In this work, we propose the multi-channel correlation
for frame-based video stylization, as illustrated in Figure 3.
For channel i, the content and style features are f ic ∈
RH×W and f is ∈ RH×W , respectively. We reshape them
to f ic ∈ R1×N , f ic = [c1, c2, · · · , cN ] and f is ∈ R1×N , f is =
[s1, s2, · · · , sN ], whereN = H×W . The channel-wise cor-
relation matrix between content and style is calculated by

COi = f iTc ⊗ f is. (2)

Then, we rearrange the style features by

f irs = f is ⊗ COiT = ‖f is‖2f ic , (3)

where ‖f is‖2 =
∑N

j=1 s
2
j . Finally, the channel-wise gener-

ated features are

f ics = f ic + f irs = (1 + ‖f is‖2)f ic . (4)

Figure 4: Loss function.

However, the multi-channel correlation in style features
is also important to represent style patterns (e.g., texture and
color). We calculate the correlation between each content
channel and every style channel. The i-th channel for gener-
ated features can be rewritten as

f ics = f ic + f irs = (1 +
C∑

k=1

wk‖fks ‖2)f ic , (5)

where C is the number of channels and wk represents the
weights of the k-th style channel. Finally, the generated fea-
tures fcs can be obtained by

fcs = Kfc, (6)

where K is the style information learned by training.
From Equation (6), we can conclude that MCCNet can

help to generate stylized features that are strictly aligned to
content features. Therefore, the coherence of input videos
is naturally maintained to output videos and slight changes
(e.g., objects motions) in adjacent frames cannot lead to vi-
olent changes in the stylized video. Moreover, through the
correlation calculation between content and style represen-
tations, the style patterns are adjusted according to content
distribution. The adjustment helps generate stylized results
with stable content structures and appropriate style patterns.

Coherence Analysis
A stable style transfer requires that the output stylized video
to be as coherent as the input video. As described in Wang
et al. (2020a), a coherent video should satisfy the following
constraint:

‖Xm −WXn→XmXn‖< δ, (7)
where Xm, Xn are the m-th and n-th frames, respectively;
andWXn→Xm is the warping matrix fromXm toXn. δ is a
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minimum so that humans are not aware of the minor flicker-
ing artifacts. When the input video is coherent, we obtain the
content features fc of each frame. And the content features
of the m-th and n-th frame satisfy

‖fmc −Wfnc ‖< δ. (8)

For corresponding output features fmcs and fncs:

‖fmcs −Wfncs‖ = ‖Kfmc −WKfnc ‖
= |K| · ‖fmc −Wfnc ‖< |K| · δ.

(9)

Then, the output video also satisfies:

‖fmcs −Wfncs‖< γ, (10)

where γ is a minimum. Therefore, our network can migrate
the coherence of the input video frame features to the styl-
ized frame features without additional temporal constraints.
We further demonstrate that the coherence of stylized frame
features can be well-transited to the generated video despite
the convolutional operation of the decoder in Section . Such
observations prove that the proposed MCCNet is suitable for
video style transfer tasks.

Network Structure and Training
In this section, we introduce how to involve MCC in the
encoder-decoder based stylization framework (Figure 2).
Given fc and fs, we first normalize them and feed them to
the 1× 1 convolution layer. We then stretch fs ∈ RC×H×W

to fs ∈ RC×1×N , and fsfTs = [‖f1s ‖2, ‖f2s ‖2, ..., ‖fCs ‖2]
is obtained through covariance matrix calculation. Next, we
add a fully connected layer to weigh the different channels
in fsfTs . Through matrix multiplication, we weigh each con-
tent channel with a compound of different channels in fsfTs
to obtain frs. Then, we add fc and frs to obtain fcs defined
in Equation 5. Finally, we feed fcs to a 1 × 1 convolutional
layer and decode it to obtain the generated image Ics.

As shown in Figure 4, our network is trained by minimiz-
ing the loss function defined as

L = λcontentLcontent + λstyleLstyle

+ λidLid + λillumLillum.
(11)

The total loss function includes perceptual loss Lcontent and
Lstyle, identity loss Lid and illumination loss Lillum in the
training procedure. The weights λcontent, λstyle, λid, and
λillum are set to 4, 15, 70, and 3, 000 to eliminate the impact
of magnitude differences.

Perceptual loss. We use a pretrained VGG19 to extract
content and style feature maps and compute the content and
style perceptual loss similar to AdaIN (Huang and Serge
2017). In our model, we use layer conv4 1 to calculate
the content perceptual loss and layers conv1 1, conv2 1,
conv3 1, and conv4 1 to calculate the style perceptual loss.
The content perceptual loss Lcontent is used to minimize the
content differences between generated images and content
images, where

Lcontent = ‖φi(Ics)− φi(Ic)‖2. (12)

Image size 256 512 1024

Ours 0.013 0.015 0.019
MAST 0.030 0.096 0.506

CompoundVST 0.049 0.098 0.285
DFP 0.563 0.724 1.260

Linear 0.010 0.013 0.022
SANet 0.015 0.019 0.021
AAMS 2.074 2.173 2.456
AdaIN 0.007 0.008 0.009
WCT 0.451 0.579 1.008
NST 19.528 37.211 106.372

Table 1: Inference time of different methods.

The style perceptual loss Lstyle is used to minimize the style
differences between generated images and style images:

Lstyle =
L∑

i=1

Li
style, (13)

Li
style = ‖µ(φi(Ics))− µ(φi(Is))‖2

+ ‖σ(φi(Ics))− σ(φi(Is))‖2,
(14)

where φi(·) denotes the features extracted from the i-th layer
in a pretrained VGG19, µ(·) denotes the mean of features,
and σ(·) denotes the variance of features.

Identity loss. We adopt the identity loss to constrain the
mapping relation between style features and content fea-
tures, and help our model to maintain the content structure
without losing the richness of the style patterns. The identity
loss Lid is defined as:

Lid = ‖Icc − Ic‖2+‖Iss − Is‖2, (15)

where Icc denotes the generated results using a common nat-
ural image as content image and style image and Iss denotes
the generated results using a common painting as content
image and style image.

Illumination loss. For a video sequence, the illumination
may change slightly that is difficult to be discovered by hu-
mans. The illumination variation in video frames could in-
fluence the final transfer results and result in flicking. There-
fore, we add random Gaussian noise to the content images
to simulate light. The illumination loss is formulated as

LIllum = ‖G(Ic, Is)−G(Ic + ∆, Is)‖2, (16)

where G(·) is our generation function, ∆ ∼ N (0, σ2I).
With illumination loss, our method can be robust to com-
plex light conditions in input videos.

Experiments
Typical video stylization methods use temporal constraint
and optical flow to avoid flickering in generated videos.
Our method focuses on promoting the stability of the trans-
form operation in the arbitrary style transfer model on
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Figure 5: Comparison of image style transfer results. The first column shows style images, the second column shows content
images. The remaining columns are stylized results of different methods.

Figure 6: Classification accuracy.

the basis of single frame. Thus, the following frame-based
SOTA stylization methods are selected for comparison:
MAST (Deng et al. 2020), CompoundVST (Wang et al.
2020a), DFP (Wang et al. 2020b), Linear (Li et al. 2019),
SANet (Park and Lee 2019), AAMS (Yao et al. 2019),
WCT (Li et al. 2017), AdaIN (Huang and Serge 2017), and
NST (Gatys, Ecker, and Bethge 2016).

In this section, we start from the training details of the
proposed approach and then move on to the evaluation of im-
age (frame) stylization and the analysis of rendered videos.

Implementation Details and Statistics
We use MS-COCO (Lin et al. 2014) and WikiArt (Phillips
and Mackintosh 2011) as the content and style image
datasets for network training. At the training stage, the im-
ages are randomly cropped to 256 × 256 pixels. At the in-
ference stage, images in arbitrary size are acceptable. The
encoder is a pretrained VGG19 network. The decoder is a
mirror version of the encoder, except for the parameters that
need to be trained. The training batch size is 8, and the whole
model is trained through 160, 000 steps.

Figure 7: User study results.

Timing information. We measure our inference time for
the generation of an output image and compare the result
with those of SOTA methods using 16G TitanX GPU. The
optimization-based method NST (Gatys, Ecker, and Bethge
2016) is trained for 30 epochs. Table 1 shows the inference
times of different methods using three scales of image size.
The inference speed of our network is much faster than that
in (Gatys, Ecker, and Bethge 2016; Li et al. 2017; Yao et al.
2019; Wang et al. 2020b,a; Deng et al. 2020). Our method
can achieve a real-time transfer speed that is comparable to
that of (Huang and Serge 2017; Li et al. 2019; Park and Lee
2019) for efficient video style transfer.

Image Style Transfer Results
Qualitative analysis. CompoundVST is not selected for
image stylization comparison because it is only used for
video style transfer. The comparisons of image stylizations
are shown in Figure 5. On the basis of the optimized training
mechanism, NST may introduce failure results (the second
row), and it cannot easily achieve a trade-off between the
content structure and style patterns in the rendered images.

In addition to crack effects caused by over-simplified cal-
culation in AdaIN, the absence of correlation between dif-
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Figure 8: Visual comparisons of video style transfer results.
The first row shows the video frame stylized results. The
second row shows the heat maps which are used to visualize
the differences between two adjacent video frame.

ferent channels causes a poor transfer of style color distribu-
tion badly transferred (the 4th row). As for WCT, the local
content structures of generated results are damaged due to
the global parameter transfer method. Although the atten-
tion map in AAMS helps to make the main structure exact,
the patch splicing trace affects the overall generated effect.
Some style image patches are transferred into the content
image directly (the first row) by SANet and damage the con-
tent structures (the 4th row). By learning a transformation
matrix for style transfer, the process of Linear is too sim-
ple to acquire adequate style textural patterns for rendering.
DFP focuses on generating diversified style transfer results,
but it may lead to failures similar to WCT. MAST may in-
troduce unexpected style patterns in rendered results (the 4th
and the 5th rows).

In our network, the rearranged style features fit the origi-
nal content features, and the fused generated features consist
of clear content structures and controllable style pattern in-
formation. Therefore, our method can achieve satisfactory
stylized results.

Quantitative analysis. Two classification models are
trained to assess the performance of different style trans-
fer networks by considering their ability to maintain content
structure and style migration. We generate several stylized
images by using different style transfer methods aforemen-
tioned. Then we input the stylized images generated by dif-
ferent methods into the style and content classification mod-
els. High-accuracy style classification indicates that the style
transfer network can easily learn to obtain effective style

information while high-accuracy content classification indi-
cates that the style transfer network can easily learn to main-
tain the original content information. From Figure 6, we can
conclude that AAMS, AdaIN, and MCCNet can establish a
balance between content and style. However, our network is
superior to the two methods in terms of visual effects.

User study We conducted user studies to compare the styl-
ization effect of our method with those of the aforemen-
tioned SOTA methods. We selected 20 content images and
20 style images to generate 400 stylized images using dif-
ferent methods. First, we showed participants a pair of con-
tent and style images. Second, we showed them two styl-
ized results generated by our method and a random contrast
method. Finally, we asked the participants which stylized
result has the best rendered effects by considering the in-
tegrity of the content structures and the visibility of the style
patterns. We collected 2, 500 votes from 50 participants and
present the voting results in Figure 7(a). Overall, our method
can achieve the best image stylization effect.

Video Style Transfer Results
Considering the size limitation for input images of SANet
and generation diversity of DFP, we do not include SANet
and DFP for video stylization comparisons. We synthesize
14 stylized video clips by using the other methods and mea-
sure the coherence of the rendered videos by calculating the
differences in the adjacent frames. As shown in Figure 8,
the heat maps in the second row visualize the differences
between two adjacent frames of the input or stylized videos.
Our method can highly promote the stability of image style
transfer. The differences of our results are closest to those
of the input frames without damaging the stylization effect.
MAST, Linear, AAMS, WCT, AdaIN, and NST fail to retain
the coherence of the input videos. Linear can also generate
a relatively coherent video, but the result continuity is influ-
enced by nonlinear operation in deep CNNs.

Given two adjacent frames Ft and Ft−1 in a T-frame
rendered clip, we define DiffF (t) = ||Ft − Ft−1|| and
calculate the mean (meanDiff ) and variance (varDiff ) of
DiffF (t). As shown in Table 2, we can conclude that our
method can yield the best video results with high consis-
tency.

User study. The global feature sharing used in Com-
poundVST increases the complexity of the model and limits
the length of video clips that can be processed. Therefore,
CompoundVST is not selected for comparison in this sec-
tion. Then we conducted user studies to compare the video
stylization effects of our method with those of the aforemen-
tioned SOTAs. First, we showed the participants an input
video clip and a style image. Second, we showed them two
stylized video clips generated by our method and a random
contrast method. Finally, we asked the participants which
stylized video clip is the most satisfying by considering the
stylized effect and the stability of the videos. We collected
700 votes from 50 participants and present the the voting
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Inputs Ours MAST CompoundVST Linear AAMS WCT AdaIN NST

Mean 0.0143 0.0297 0.0548 0.0438 0.0314 0.0546 0.0498 0.0486 0.0417
Variance 0.0022 0.0054 0.0073 0.0054 0.0061 0.0067 0.0061 0.0067 0.0065

Table 2: Average meanDiff and varDiff of inputs and 14 rendered clips.

Figure 9: Ablation study of channel correlation. Without
multi-channel correlation, the stylized results present less
style patterns (e.g., hair of the woman) and may maintain
original color distribution (the blue color in the bird’s tail).

Figure 10: Ablation study of removing the illumination loss.
The bottom row is heat maps used to visualize the differ-
ences between the above two video frames.

results in Figure 7(b). Overall, our method can achieve the
best video stylization effect.

Ablation Study
Channel correlation. Our network is based on multi-
channel correlation calculation shown in Figure 3. To ana-
lyze the influence of multi-channel correlation on stylization
effects, we change the model to calculate channel-wise cor-
relation without considering the relationship between style
channels. Figure 9 shows the results. Through channel-wise
calculation, the stylized results show few style patterns (e.g.,
hair of the woman) and may maintain the original color dis-
tribution (the blue color in the bird’s tail). Meanwhile, the
style patterns are effectively transferred by considering the
multi-channel information in the style features.

Illumination loss. The illumination loss is proposed to
eliminate the impact of video illumination variation. We re-
move the illumination loss in the training stage and compare
the results with ours in Figure 10. Without illumination loss,

Figure 11: Ablation study of network depth. Compared to
the shallower network, our method generates artistic style
transfer results with more stylized patterns.

Figure 12: Ablation study of network depth. The heat maps
in the second row show the differences between two video
frames in the first row.

the differences between the two video frames increase, with
the mean value being 0.0317.

Network depth. We use a shallow auto-encoder up to
relu3-1 instead of relu4-1 to discuss the effects of the con-
volution operation of the decoder on our model. As shown
in Figure 11, for image style transfer, the shallower network
can not generate results with vivid style patterns (e.g., the
circle element in the first row of our results). As shown in
Figure 12, the depth of the network exerts little impact on
the coherence of the stylized video. This phenomenon sug-
gests that the coherence of stylized frames features can be
well-transited to the generated video despite the convolution
operation of the decoder.

Conclusion
In this work, we propose MCCNet for stable arbitrary video
style transfer. The proposed network can migrate the coher-
ence of input videos to stylized videos and thereby guar-
antee the stability of rendered videos. Meanwhile, MCCNet
can generate stylized results with vivid style patterns and de-
tailed content structures by analyzing the multi-channel cor-
relation between content and style features. Moreover, the
illumination loss improves the stability of generated video
under complex light conditions.
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