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Abstract

Image-text matching plays a critical role in bridging the vi-
sion and language, and great progress has been made by ex-
ploiting the global alignment between image and sentence,
or local alignments between regions and words. However,
how to make the most of these alignments to infer more
accurate matching scores is still underexplored. In this pa-
per, we propose a novel Similarity Graph Reasoning and At-
tention Filtration (SGRAF) network for image-text match-
ing. Specifically, the vector-based similarity representations
are firstly learned to characterize the local and global align-
ments in a more comprehensive manner, and then the Simi-
larity Graph Reasoning (SGR) module relying on one graph
convolutional neural network is introduced to infer relation-
aware similarities with both the local and global alignments.
The Similarity Attention Filtration (SAF) module is further
developed to integrate these alignments effectively by selec-
tively attending on the significant and representative align-
ments and meanwhile casting aside the interferences of non-
meaningful alignments. We demonstrate the superiority of
the proposed method with achieving state-of-the-art perfor-
mances on the Flickr30K and MSCOCO datasets, and the
good interpretability of SGR and SAF modules with exten-
sive qualitative experiments and analyses.

Introduction
Image-text matching refers to measuring the visual-semantic
similarity between image and text, which is becoming in-
creasingly significant for various vision-and-language tasks,
such as cross-modal retrieval (Wang et al. 2020), image
captioning (Anderson et al. 2018), text-to-image synthesis
(Xu et al. 2018), and multimodal neural machine transla-
tion (Toyama et al. 2017). Although great progress has been
made in recent years, image-text matching remains a chal-
lenging problem due to complex matching patterns and large
semantic discrepancies between image and text.

To accurately establish the association between the vi-
sual and textual observations, a large proportion of methods
(Liu et al. 2017; Nam, Ha, and Kim 2017; Lee et al. 2018;
Song and Soleymani 2019; Wang et al. 2019c; Li et al. 2019;
Wang et al. 2020) utilize deep neural networks to firstly en-
code image and text into compact representations, and then
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Figure 1: Illustration of the SGRAF. Nodes of red and
other colors encode image-text and region-word alignments
respectively. SGR module captures their relationships to
achieve comprehensive similarity reasoning and SAF mod-
ule reduces the interferences of less-meaningful alignments

learn to measure their similarity under the guidance of a
matching criterion. For example, Wang et al. (Wang, Li, and
Lazebnik 2016) and Faghri et al. (Faghri et al. 2017) map
the whole image and the full sentence into a common vector
space, and compute the cosine similarity between the global
representations. To improve the discriminative ability of the
unified embeddings, many strategies such as semantic con-
cept learning (Huang et al. 2018; Shi et al. 2019) and re-
gion relationship reasoning (Li et al. 2019) are developed
to enhance visual features by incorporating local region se-
mantics. However, these approaches fail to capture the lo-
cal interactions between image regions and sentence frag-
ments, leading to limited interpretability and performance
gains. To address this problem, Karpathy et al. (Karpathy
and Li 2015) and Lee et al. (Lee et al. 2018) propose to dis-
cover all the possible alignments between image regions and
sentence fragments, which produce impressive retrieval re-
sults and inspire a surge of works (Wang et al. 2019c; Hu
et al. 2019; Zhang et al. 2020; Chen et al. 2020; Wehrmann,
Kolling, and Barros 2020) to explore more accurate fine-
grained correspondence. Although noticeable improvements
have been made by designing various mechanisms to encode
more powerful features or capture more accurate alignments,
these approaches neglect the importance of similarity com-
putation, which is the key to explore the complex matching
patterns between image and text.

To be more specific, there are three defects in previous
approaches. Firstly, these methods compute scalar-based co-
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sine similarities between local features, which may not be
powerful enough to characterize the association patterns be-
tween regions and words. Secondly, most of them aggregate
all the latent alignments between regions and words simply
with max pooling (Karpathy and Li 2015) or average pool-
ing (Lee et al. 2018; Chen et al. 2020), which hinders the
information communication between local and global align-
ments, and thirdly, fails to consider the distractions of less-
meaningful alignments, such as the alignments built with
"a" and "in", as shown in Figure 1.

To address these problems, in this paper we propose a
novel Similarity Graph Reasoning and Attention Filtration
(SGRAF) network for image-text matching. Specifically, we
start with capturing the global alignments between the whole
image and the full sentence, as well as the local align-
ments between image regions and sentence fragments. In-
stead of characterizing these alignments with scalar-based
cosine similarity, we propose to learn the vector-based simi-
larity representations to model the cross-modal associations
more effectively. Then we introduce the Similarity Graph
Reasoning (SGR) module, which relies on a Graph Con-
volution Neural Network (GCNN) to reason more accurate
image-text similarity via capturing the relationship between
local and global alignments. Furthermore, we develop the
Similarity Attention Filtration (SAF) module to aggregate
all the alignments attended by different significance scores,
which reduces the interferences of non-meaningful align-
ments and achieves more accurate cross-modal matching re-
sults. Our main contributions are summarized as follows:

• We propose to learn the vector-based similarity represen-
tations for image-text matching, which enables greater
capacity in characterizing the global alignments between
images and sentences, as well as the local alignments be-
tween regions and words.

• We propose the Similarity Graph Reasoning (SGR) mod-
ule to infer the image-text similarity with graph reason-
ing, which can identify more complex matching patterns
and achieve more accurate predictions via capturing the
relationship between local and global alignments.

• We attempt to consider the interferences of non-
meaningful words in similarity aggregation, and propose
an effective Similarity Attention Filtration (SAF) module
to suppress the irrelevant interactions for further improv-
ing the matching accuracy.

Related Work
Image-Text Matching
Feature Encoding Many prior Approaches (Karpathy and
Li 2015; Song and Soleymani 2019; Liu et al. 2017; Nam,
Ha, and Kim 2017; Lee et al. 2018; Wang et al. 2019c; Li
et al. 2019; Wang et al. 2020) focused on feature extrac-
tion and optimization for cross-modal retrieval. For textual
features, Frome et al. (Frome et al. 2013) employed Skip-
Gram (Mikolov et al. 2013) to extract word representations.
Klein et al. (Klein et al. 2015) explored Fisher Vectors (FV)
(Perronnin and Dance 2007) for text representation. Kiros
et al. (Kiros, Salakhutdinov, and Zemel 2014) adopted a

GRU as the text encoder. For visual features, Liu et al. (Liu
et al. 2017) adapted Recurrent Residual networks to refine
global embeddings. (Song and Soleymani 2019; Wei et al.
2020) employed multi-head self-attention to combine global
context with locally-guided features. Besides, Some works
(Nam, Ha, and Kim 2017; Ji et al. 2019) exploited block-
based visual attention to gather semantics on feature maps,
while (Lee et al. 2018; Wang et al. 2019c,b; Li et al. 2019;
Wang et al. 2020; Chen and Luo 2020) followed (Anderson
et al. 2018) to obtain region-based features of visual objects
with the pre-trained model on Visual Genomes (Krishna
et al. 2017). Especially, (Chen and Luo 2020) explored Bi-
GRU to gain high-level object features, while (Li et al. 2019;
Wang et al. 2020) proposed GCN-based networks to gener-
ate relationship-enhanced object features. We employ self-
attention (Vaswani et al. 2017) on region or word features
to get image or text representation. We concentrate on the
similarity encoding mechanism that models global image-
text and local region-word alignments comprehensively and
fully encodes fine-grained relations between image and text.

Similarity Prediction Most existing works (Faghri et al.
2017; Wang, Li, and Lazebnik 2016; Zheng et al. 2017; Ven-
drov et al. 2016; Gu et al. 2018) for image-text matching
learned the joint embedding and the similarity measures for
cross-modal matching. For global alignments, some works
(Faghri et al. 2017; Wang, Li, and Lazebnik 2016; Liu et al.
2017; Song and Soleymani 2019; Nam, Ha, and Kim 2017;
Li et al. 2019) explored a joint space and calculated the
inner product (e.g. cosine distance) for similarity compu-
tation. Others (Vendrov et al. 2016; Gu et al. 2018) intro-
duced an ordered representations to measure antisymmetric
visual-semantic hierarchy. For local alignments, most net-
works (Karpathy and Li 2015; Lee et al. 2018; Hu et al.
2019; Wang et al. 2019b; Chen et al. 2020) computed scalar-
based alignments and adopted simple operation (e.g. sum
and average) to fuse local alignments. For example, Lee
et al. (Lee et al. 2018) studied the latent semantic align-
ments among region-words pairs and integrated local cosine
alignments by average or LogSumExp. Differently, our net-
work aggregates similarities by exploring global-local rela-
tionships among vector-based alignments and reducing the
distraction from less-meaningful ones.

Graph Convolution Network
The researches based on Graph modeled the dependencies
between concepts and facilitated graph reasoning such as
GCNN (Duvenaud et al. 2015; Kipf and Welling 2017),
and Gated Graph Neural Network (GGNN) (Li et al. 2016).
These graph neural networks have been widely employed
in various visual semantic tasks, such as image captioning
(Yang et al. 2019), VQA (Teney, Liu, and van den Hen-
gel 2017), and grounding referring expressions (Wang et al.
2019a). In recent years, there are several approaches to uti-
lize graph structures to enhance single visual or textual fea-
tures referring to image-text matching. Shi et al. (Shi et al.
2019) adopted Scene Concept Graph (SCG) by using im-
age scene graphs and frequently co-occurred concept pairs
as scene common-sense knowledge. Li et al. (Li et al. 2019)
proposed Visual Semantic Reasoning to build up connec-
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tions between image regions and generate visual representa-
tions with semantic relationships. Wang et al. (Wang et al.
2020) employed visual scene graph and textual scene graph,
each of which separately refines visual and textual features
including objects and relationships. They all focus on ”fea-
ture encoding” by learning single-modality contextualized
representations, while our SGR targets at ”similarity rea-
soning” and explores more complex matching patterns with
global and local cross-modal alignments.

Attention Mechanism
The attention mechanism has been applied to adaptively fil-
ter and aggregate information in natural language process-
ing. When it comes to image-text matching, it has been in-
tended to attend to certain parts of visual and textual data.
(Lee et al. 2018; Wang et al. 2019b) developed Stacked
Cross Attention to match latent alignments using both image
regions and textual words as context. (Liu et al. 2019; Hu
et al. 2019; Wang et al. 2019c) designed more complicated
Cross Attentions to improve image-text matching. Chen et
al. (Chen et al. 2020) proposed an Iterative Matching with
Recurrent Attention Memory to explore fine-grained region-
word correspondence progressively. We adopt textual-to-
visual attention (Lee et al. 2018) with region-word pairs and
calculate textual-attended alignments. In this paper, our SAF
aims to discard less-semantic alignments instead of exploit-
ing precise cross-modal attention.

Method
In this section, we focus on improving the visual-semantic
similarity learning via capturing the relationship between lo-
cal and global alignments, and suppressing the disturbance
of less-meaningful alignments. As illustrated in Figure 2, we
begin with introducing how to encode the visual and textual
observations, and then compute the similarity representa-
tions of all local and global representation pairs. Afterwards,
we elaborate on the proposed Similarity Graph Reasoning
(SGR) module for relation-aware similarity reasoning and
Similarity Attention Filtration (SAF) module for representa-
tive similarity aggregation. Finally, we present the detailed
implementations of training objectives and inference strate-
gies with both the SGR and SAF modules.

Generic Representation Extraction
Visual Representations. For each input image, we follow
(Anderson et al. 2018) to extract K region-level visual fea-
tures, with the Faster R-CNN (Ren et al. 2015) model pre-
trained on Visual Genomes (Krishna et al. 2017). We add
a fully-connect layer to transform them into d-dimensional
vectors as local region representations V = {v1, ..., vK},
with vi ∈ Rd. Afterwards, we perform self-attention mech-
anism (Vaswani et al. 2017) over the local regions, which
adopts average feature q̄v = 1

K

∑K
i=1 vi as the query and

aggregates all the regions to obtain global representation v̄.

Textual Representations. Given a sentence, we split it
into L words with tokenization technique, and sequentially
feed the word embeddings into a bi-directional GRU (Schus-
ter and Paliwal 1997). The representation of each word is

then obtained by averaging the forward and backward hid-
den state at each time step, with T = {t1, ..., tL}, and
tj ∈ Rd denoting the representation of j-th word. Sim-
ilarly, the global text representation t̄ is computed by the
self-attention method over all the word features.

Similarity Representation Learning
Vector Similarity Function. Most previous methods uti-
lize the cosine or Euclidean distance to represent the similar-
ity between two feature vectors, which can capture the rele-
vance to a certain degree while lacks the detailed correspon-
dence. In this paper, we compute a similarity representation,
which is a similarity vector instead of a similarity scalar,
to capture more detailed associations between feature repre-
sentations from different modalities. The similarity function
between vector x ∈ Rd and y ∈ Rd is defined as

s(x,y;W ) =
W |x− y|2∥∥∥W |x− y|2

∥∥∥
2

(1)

where |·|2 and ‖·‖2 indicate element-wise square and `2-
norm respectively, and W ∈ Rm×d is a learnable parameter
matrix to obtain the m-dimensional similarity vector.

Global Similarity Representation. We compute the simi-
larity representation between the global image feature v̄ and
sentence features t̄ with Eq. (1),

sg = s(v̄, t̄;Wg) (2)

where W g ∈ Rm×d aims to learn the global similarity rep-
resentation.

Local Similarity Representation. To exploit local simi-
larity representations between local features of visual and
textual observations, we apply textual-to-visual attention
(Lee et al. 2018) to attend on each region with respect to
each word. Attention weight for each region is computed by

αij =
exp(λĉij)∑K
i=1exp(λĉij)

(3)

Here the weight αij is calculated by the softmax function
with a temperature parameter λ. cij indicates the cosine
similarity between region feature vi and word feature tj ,

ĉij = [cij ]+/
√∑L

j=1[cij ]
2
+ aims to normalize the cosine

similarity matrix, and [x]+ = max(x, 0).
Then we generate the attended visual features av

j with re-
spect to j-th word by

av
j =

K∑
i=1

αijvi, (4)

and finally we compute the local similarity representation
between av

j and tj as

slj = s(av
j , tj ;W l) (5)

where W l ∈ Rm×d is also a learnable parameter ma-
trix. The local similarity representations capture the associ-
ations between a specific word and its corresponding image
regions, which exploit more fine-grained visual-semantic
alignments to boost the similarity prediction.
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Figure 2: The proposed SGRAF network for image-text matching. The image and sentence are firstly encoded into local and
global feature representations, followed by a similarity representation computation module to capture the correspondence be-
tween all local and global cross-modal pairs. The Similarity Graph Reasoning (SGR) module reasons the similarity with giving
consideration to the relationship between all the alignments, and the Similarity Attention Filtration (SAF) module attends to
more informative alignments for more accurate similarity prediction

Similarity Graph Reasoning
Graph Building. To achieve more comprehensive similar-
ity reasoning, we build a similarity graph to propagate simi-
larity messages among the possible alignments at both local
and global levels. More specifically, we take all the word-
attended similarity representations and the global similarity
representation as graph nodes, i.e. N = {sl1, ...., slL, sg},
and follow (Kuang et al. 2019) to compute the edge from
node sq ∈ N to sp ∈ N as

e(sp, sq;W in,W out) =
exp((W insp)(W outsq))∑
qexp((W insp)(W outsq))

,

(6)
where W in ∈ Rm×m and W out ∈ Rm×m are the linear
transformations for incoming and outgoing nodes, respec-
tively. Note that the edges between node sp and sq are di-
rected, which allow efficient and complex information prop-
agation for similarity reasoning.

Graph Reasoning. With the constructed graph nodes and
edges, we perform similarity graph reasoning by updating
the nodes and edges with

ŝnp =
∑

q
e(snp , s

n
q ;W n

in,W
n
out) · snq (7)

sn+1
p = ReLU(W n

r ŝ
n
p ) (8)

with s0p and s0q taken fromN at step n = 0, and W n
r , W n

in,
W n

out are learnable parameters in each step. After current
step of graph reasoning, the node snp is replaced with sn+1

p .
We iteratively reason the similarity for N steps, and take

the output of the global node at the last step as the rea-
soned similarity representation, and then feed it into a fully-
connect layer to infer the final similarity score. The SGR
module enables the information propagation between local
and global alignments, which can capture more comprehen-
sive interactions to facilitate the similarity prediction.

Similarity Attention Filtration
Although the exploitation of local alignments can boost the
matching performance via discovering more fine-grained
correspondence between image regions and sentence frag-
ments, we notice that the less-meaningful alignments hinder
the distinguishing ability when aggregating all the possible
alignments in an undifferentiated way. Therefore we propose
a Similarity Attention Filtration (SAF) module to enhance
important alignments, as well as suppress ineffectual align-
ments, such as the alignments with "the", "be" and etc.

Given the local and global similarity representations, we
calculate an aggregation weight βp for each similarity rep-
resentation sp ∈ N by

βp =
δ(BN(W fsp))∑

sq∈N δ(BN(W fsq))
(9)

where δ(·) is the Sigmoid function, BN indicates the batch
normalization, and W f ∈ Rm×1 is a linear transformation.

Then we aggregate the similarity representations with
sf =

∑
sp∈N βpsp, and feed sf into a fully-connect layer

to predict the final similarity between the input image and
sentence. The SAF module learns the significance scores to
increase the contribution of more-informative similarity rep-
resentations and meanwhile reduce the disturbance of less-
meaningful alignments.

Training Objectives and Inference Strategies
We utilize the bidirectional ranking loss (Faghri et al. 2017)
to train both the SGR and SAF modules. Given a matched
image-text pair (v, t), and the corresponding hardest neg-
ative image v− and the hardest negative text t− within a
minibatch, we compute the bidirectional ranking loss with

Lr(v, t) = [γ − Sr(v, t) + Sr(v, t−)]+

+[γ − Sr(v, t) + Sr(v−, t)]+
(10)
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Methods
MSCOCO dataset Flickr30K dataset

Sentence Retrieval Image Retrieval Sentence Retrieval Image Retrieval
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

CAMP (Wang et al. 2019c) 72.3 94.8 98.3 58.5 87.9 95.0 68.1 89.7 95.2 51.5 77.1 85.3
SCAN (Lee et al. 2018) 72.7 94.8 98.4 58.8 88.4 94.8 67.4 90.3 95.8 48.6 77.7 85.2
SGM (Wang et al. 2020) 73.4 93.8 97.8 57.5 87.3 94.3 71.8 91.7 95.5 53.5 79.6 86.5
VSRN* (Li et al. 2019) 74.0 94.3 97.8 60.8 88.4 94.1 70.4 89.2 93.7 53.0 77.9 85.7
RDAN (Hu et al. 2019) 74.6 96.2 98.7 61.6 89.2 94.7 68.1 91.0 95.9 54.1 80.9 87.2
MMCA (Wei et al. 2020) 74.8 95.6 97.7 61.6 89.8 95.2 74.2 92.8 96.4 54.8 81.4 87.8
BFAN (Liu et al. 2019) 74.9 95.2 - 59.4 88.4 - 68.1 91.4 - 50.8 78.4 -
CAAN (Zhang et al. 2020) 75.5 95.4 98.5 61.3 89.7 95.2 70.1 91.6 97.2 52.8 79.0 87.9
DPRNN (Chen and Luo 2020) 75.3 95.8 98.6 62.5 89.7 95.1 70.2 91.6 95.8 55.5 81.3 88.2
PFAN (Wang et al. 2019b) 76.5 96.3 99.0 61.6 89.6 95.2 70.0 91.8 95.0 50.4 78.7 86.1
VSRN (Li et al. 2019) 76.2 94.8 98.2 62.8 89.7 95.1 71.3 90.6 96.0 54.7 81.8 88.2
IMRAM (Chen et al. 2020) 76.7 95.6 98.5 61.7 89.1 95.0 74.1 93.0 96.6 53.9 79.4 87.2
Ours(SAF) 76.1 95.4 98.3 61.8 89.4 95.3 73.7 93.3 96.3 56.1 81.5 88.0
Ours(SGR) 78.0 95.8 98.2 61.4 89.3 95.4 75.2 93.3 96.6 56.2 81.0 86.5
Ours(SGRAF) 79.6 96.2 98.5 63.2 90.7 96.1 77.8 94.1 97.4 58.5 83.0 88.8

Table 1: Comparison of bi-directional retrieval results (R@K(%)) on MSCOCO 1K test set and Flickr30K test set. VSRN*
denotes a single model for a fair comparison with SGR. SGRAF denotes the whole framework with independent training

where γ is the margin parameter and Sr(·, ·) indicates simi-
larity prediction function implemented with SGR. Similarly,
we define the training objectives on SAF module as Lf .

In this paper, we explore different training and inference
strategies with the proposed SGR and SAF modules: joint
training and independent training. For joint training, we
combine Lr and Lf to train SGR and SAF modules simul-
taneously, where the similarity representations are shared
for the proposed two modules. For independent training, we
train the SGR and SAF modules separately. At the inference
stage, we average the similarities predicted by SGR and SAF
modules for the retrieval evaluation.

Experiments
To verify the effectiveness of the our model, in this section
we demonstrate extensive experiments on two benchmark
datasets. We also introduce detailed implementations and
training strategy of the proposed SGRAF model.

Datasets and Settings
Datasets. We evaluate our model on the MSCOCO (Lin
et al. 2014) and Flickr30K (Young et al. 2014) datasets. The
MSCOCO dataset contains 123,287 images, and each image
is annotated with 5 annotated captions. The dataset is split
into 113,287 images for training, 5000 images for validation
and 5000 images for testing. We report results by averaging
over 5 folds of 1K test images and testing on the full 5K im-
ages. The Flickr30K dataset contains 31,783 images with 5
corresponding captions each. Following the split in (Frome
et al. 2013), we use 1,000 images for validation, 1,000 im-
ages for testing and the rest for training.

Protocols. For image-text retrieval, we measure the per-
formance by Recall at K (R@K) defined as the proportion

Methods Sen. Ret. Ima. Ret.
R@1 R@10 R@1 R@10

SGM (Wang et al. 2020) 50.0 87.9 35.3 76.5
CAMP (Wang et al. 2019c) 50.1 89.7 39.0 80.2
VSRN* (Li et al. 2019) 50.3 87.9 37.9 79.4
SCAN (Lee et al. 2018) 50.4 90.0 38.6 80.4
CAAN (Zhang et al. 2020) 52.5 90.9 41.2 82.9
VSRN (Li et al. 2019) 53.0 89.4 40.5 81.1
IMRAM (Chen et al. 2020) 53.7 91.0 39.7 79.8
MMCA (Wei et al. 2020) 54.0 90.7 38.7 80.8
Ours(SAF) 53.3 90.1 39.8 80.2
Ours(SGR) 56.9 90.5 40.2 79.8
Ours(SGRAF) 57.8 91.6 41.9 81.3

Table 2: Comparison of bi-directional retrieval results
(R@K(%)) on MSCOCO 5K test set

of queries whose ground-truth is ranked within the top K.
We adopt R@1, R@5 and R@10 as our evaluation metrics.

Implementation Details. For each image, we take the
Faster-RCNN (Ren et al. 2015) detector with ResNet-101
provided by (Anderson et al. 2018) to extract the topK = 36
region proposals and obtain a 2048-dimensional feature for
each region. For each sentence, we set the word embedding
size as 300, and the number of hidden states as 1024. The di-
mension of similarity representation m is 256, with smooth
temperature λ = 9, reasoning steps N = 3, and margin
γ = 0.2. Our model employs the Adam optimizer (Kingma
and Ba 2015) to train the SGRAF network with the mini-
batch size of 128. The learning rate is set to be 0.0002 for
the first 10 epochs and 0.00002 for the next 10 epochs on
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model GLO LOC Step Sen. Ret. Ima. Ret.
1 2 3 4 R@1 R@10 R@1 R@10

1 3 62.4 92.6 46.0 83.1
2 3 3 71.8 95.6 52.1 82.3
3 3 3 73.6 96.1 54.3 85.1
4 3 3 3 74.2 96.3 55.5 86.0
5 3 3 3 75.3 96.7 56.0 85.9
6 3 3 3 75.2 96.6 56.2 86.5
7 3 3 3 76.2 96.3 55.0 86.1

Table 3: The impact of SGR configurations. GLO and LOC
respectively indicates the employment of global and local
alignments, and Step denotes the graph reasoning steps

MSCOCO. For Flickr30K, we start training the SGR (SAF)
module with learning rate 0.0002 for 30 (20) epochs and de-
cay it by 0.1 for the next 10 epochs. We select the snapshot
with the best performance on the validation set for testing.

Quatitative Results and Analysis
In this section, we present the retrieval results on the
MSCOCO and Flickr30K datasets, aiming to demonstrate
the effectiveness and superiority of the proposed approach.

Comparisons on MSCOCO. Table 1 and 2 report the
experimental results on MSCOCO dataset with 1K and
5K test images, separately. We can see that our proposed
SGRAF model outperforms the existing methods, with the
best R@1=79.6% for sentence retrieval and R@1=63.2%
for image retrieval with 1K test images. For 5K test images,
the proposed approach maintains the superiority with an im-
provement of more than 3% on the R@1 results. It should
be noted that competitive retrieval performance can be also
achieved with the SGR/SAF module alone, demonstrating
the effectiveness and complementarity of our modules.

Comparisons on Flickr30K. Table 1 compares the bidi-
rectional retrieval results on Flickr30K dataset with the lat-
est algorithms. We can observe that the SAF module alone
produces comparable retrieval results and the SGR module
achieves state-of-the-art performance with R@1 of 75.2%
and 56.2% for sentence and image retrieval, separately. This
verifies the effectiveness of exploiting the relationship be-
tween alignments to boost similarity reasoning. When we
combine the SAF and SGR module, the performance is fur-
ther improved to achieve the best R@1 of 77.8% and 58.5%.

Ablation Studies
In this section, we carry a series of ablation studies to ex-
plore the impact of different configurations for the SGR
module, the similarity representation learning module and
the process of training. We also compare different strate-
gies of similarity prediction to demonstrate the superiority
of SGR and SAF modules. All the comparative experiments
are conducted on the Flickr30K dataset.

Configurations of SGR module. In Table 3 we investi-
gate the effectiveness of each component in the SGR mod-
ule. 1) Graph reasoning. We employ a framework without

model I2T T2I SS SV AA SGR SAF
Sen. Ret. Ima. Ret.

R@1 R@10 R@1 R@10
1 3 3 3 66.7 94.1 43.2 82.3
2 3 3 3 67.2 94.8 47.6 83.1
3 3 3 3 66.1 94.1 45.6 81.6
4 3 3 3 68.2 95.1 49.8 85.1
5 3 3 3 62.6 93.6 45.3 82.4
6 3 3 3 65.2 95.1 49.5 83.5
7 3 3 3 73.6 96.1 54.3 85.1
8 3 3 3 72.9 96.3 55.7 87.8

Table 4: The impact of Similarity configurations. I2T and
T2I denotes the visual-to-textual and textual-to-visual atten-
tion to generate local similarity representations separately.
SS denotes the scalar-based cosine similarity and SV indi-
cates the vector-based similarity, and AA represents the av-
erage aggregation of all alignments

Dataset SAF SGR Joint Split Sen. Ret. Ima. Ret.
R@1 R@10 R@1 R@10

MSCOCO

3 76.1 98.3 61.8 95.3
3 78.0 98.2 61.4 95.4

3 3 3 77.8 98.2 61.6 95.2
3 3 3 79.6 98.5 63.2 96.1

Flickr30K

3 73.7 96.3 56.1 88.0
3 75.2 96.6 56.2 86.5

3 3 3 75.1 96.1 56.2 85.8
3 3 3 77.8 97.4 58.5 88.8

Table 5: The impact of Training configurations on
MSCOCO 1K test set and Flickr30K test set. Split and Joint
denotes independent and joint training of two modules

graph reasoning as the baseline(#1), which adopts a fully-
connected layer and sigmoid function on the global align-
ment to obtain the final similarity. Comparing #1 and #6
based on R@1, the SGR module achieves 12.8% improve-
ment for sentence retrieval and 10.2% for image retrieval. 2)
Reasoning steps setting. Comparing #4, #5, #6 and #7, we
set the step of the SGR module to 3 for maximum perfor-
mance. 3) Global and local alignments. #2 and #3 only uti-
lize local alignments for graph reasoning and adopt a mean-
pooling operation on them after reasoning. Comparing #2,
#4 and #3, #6, we discover that global similarity is bene-
ficial for aggregating local similarities and exploring their
relations which improves at least 1.6% for sentence retrieval
and 1.9% for image retrieval on R@1.

Configurations for Similarity Computation. Table 4 il-
lustrates the impact of different strategies in similarity rep-
resentation computation and the similarity score prediction.
We test the results on local alignments and set the reasoning
step of the SGR module to 3. we following(Lee et al. 2018)
to explore two types of the cross-attention modes, i.e. I2T
and T2I. Comparing #1, #2, #5 and #6, we find that aver-
aging the local alignments calculated by a fully-connected
layer and sigmoid function leads to better performance than
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Query:

Negative Local alignments Global
Caption A brown dog with white paws is trotting through a field of green grass . ---

SAF β 0.0 0.12 0.3 0.01 0.05 0.04 0 0.1 .01 0 .05 0 0.09 0.07 0 0.2

SGR α 0.0 0.35 0.31 0.03 0.30 0.22 0.13 0.45 0.29 0.29 0.46 0.46 0.46 0.46 0.3 0.0

cosine 0.1 0.1 0.6 0.4 0.8 0.7 0.2 0.8 0.7 0.8 0.8 0.6 0.8 0.8 0.3 0.2

Final  sim AVE score:0.56 SAF score:0.54 SGR score:0.38

Positive Local alignments Global
Caption A dog runs on the green grass near a wooden fence . ---

SAF β 0.0 0.2 0.04 0.01 0.01 0.07 0.06 0.01 0.0 0.2 0.14 0.0 0.2

SGR α 0.37 0.37 0.39 0.37 0.46 0.48 0.53 0.46 0.3 0.29 0.33 0.3 0.18

cosine 0.0 0.9 0.8 0.3 0.4 0.7 0.7 0.3 0.0 0.8 0.98 0.0 0.2

Final sim AVE score:0.54 SAF score:0.89 SGR score: 0.92

Figure 3: The visualization of SAF and SGR module. Positive and Negative denotes ground-truth and hard negative examples
respectively. SAF β denotes attention weight distribution of SAF module. SGR α denotes the cosine distance between final
alignment and raw alignments. Final sim denotes similarity calculated by AVE (average), SAF or SGR module

averaging local cosine distance. Comparing #3 and #7, it is
more reasonable for the SGR module to count on the local
alignments attended by word features (T2I) than the ones
by region features (I2T). Besides, the SGR module fails to
achieve significant improvement on I2T which indicates that
the region features are redundant, relatively independent and
irregular in order. Therefore, it is difficult for the SGR mod-
ule to exploit semantic connections compared with word fea-
tures. In terms of #4 and #8, the SAF module achieves im-
pressive progress both in I2T and T2I modes that demon-
strates that the SAF module filters and aggregates plenty of
discriminative local alignments steadily to improve the pre-
cision of image-text matching.

Configurations for Training Process. In table 5, we re-
port the results of different training strategies: joint learn-
ing and independent learning. Compared with the SGR/SAF
module alone, joint learning can help the SAF module im-
prove the performance of sentence retrieval, and also help
the SGR module enhance the ability of image retrieval. In
terms of independent learning, the SGRAF network gains an
exact and impressive promotion. We assume that the SGR
module frequently captures several crucial cues by propa-
gating information between local and global alignments and
throws out some relatively unimportant interactions. More-
over, the SAF module attempts to gather all the meaning-
ful alignments and eliminates completely irrelevant interac-
tions. Therefore, the global and local alignments for the SAF
and SGR modules are seemingly not incompatible resulting
in the unobvious improvement. It is worth noting that the
SAF module tends to be more susceptible to the hard nega-
tive samples than the SGR module because of the high corre-
lation. On the other hand, it is more challenging for the SGR
module to resolve the transmission and integration of nu-
merous semantic alignments. As a result, they can cooperate
with each other and further achieve more accurate similarity
prediction through independent training.

Qualitative Results and Analysis
As it is shown in Figure 3, we illustrate the distribu-
tion of attention weights learned by the SAF module.
Given an image query, the SAF module captures the
key cues ("dog runs", "green grass", "wooden
fence") for positive image-text pairs, and also high-
lights the meaningful instances ("brown dog", "white
paws", "trotting", "green grass") for nega-
tive pairs. Note that there exists a crucial discrepancy
("brown") which is submerged by AVE operation between
negative text and image that depicts a black and white dog.
Compared with the wrong matching of AVE, SAF mod-
ule can stress on all the useful alignments including un-
matched instance ("brown") and suppress irrelevant in-
teractions ("of", "with", "is", and etc). On the other
hand, the process of SGR module reinforces the role of
the alignment ("brown"), which leads to lower similar-
ity between hard negative and query image. Our imple-
mentation of this paper is publicly available on GitHub at:
https://github.com/Paranioar/SGRAF.

Conclusion
In this work, we present a SGRAF network consisting of
similarity graph reasoning (SGR) and similarity attention
filtration (SAF) module. The SGR module performs multi-
step reasoning based on global and local similarity nodes
and captures their relations through information propaga-
tion, while the SAF module attends more to discriminative
and meaningful alignments for similarity aggregation. We
demonstrate that it is important to exploit the relationship
between local and global alignments, and suppress the dis-
turbances of less-meaningful alignments. Extensive experi-
ments on benchmark datasets show that both SGR and SAF
modules can effectively discover the associations between
image and text and achieve further improvements when co-
operating with each other.
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