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Abstract
We study the High Dynamic Range (HDR) imaging problem
using two Low Dynamic Range (LDR) images that are shot
from dual-lens systems in a single shot time with different
exposures. In most of the related HDR imaging methods, the
problem is usually solved by Multiple Images Merging, i.e.
the final HDR image is fused from pixels of all the input LDR
images. However, ghost artifacts can be hardly avoided using
this strategy. Instead of directly merging the multiple LDR
inputs, we use an indirect way which enhances the main im-
age, i.e. the short exposure image IS, using the long exposure
image IL serving as guidance. In detail, we propose a new
model, named MIEHDR CNN model, which consists of three
subnets, i.e. Soft Warp CNN, 3D Guided Denoising CNN and
Fusion CNN. The Soft Warp CNN aligns IL to get the aligned
result ILA using the soft exposed result of IS as reference.
The 3D Guided Denoising CNN denoises the soft exposed
result of IS using ILA as guidance, whose result are fed into
the Fusion CNN with IS to get the HDR result. The MIEHDR
CNN model is implemented by MindSpore and experimental
results show that we can outperform related methods largely
and avoid ghost artifacts.

Introduction
Generating High Dynamic Range (HDR) images by merg-
ing multiple Low Dynamic Range (LDR) images that are
captured by consumer cameras is a popular approach for
shooting high quality (signal-noise-ratio) images in HDR
scenes. Currently commonly used systems, e.g. (Kalantari
and Ramomoorthi 2017), usually use a single camera with
multiple shots to shoot the series of LDR images with dif-
ferent exposure time. During the shooting, moving cameras
or objects will lead to relative 2D movement between the
corresponding pixels among the multiple LDR inputs. The
chief challenge is to deal with the 2D movement so as to
avoid ghost artifacts in the merged HDR result.

Nowadays, dual-lens systems are widely deployed in pop-
ular smart phones, e.g. iPhone, HuaWei, Sumsung, etc. So,
in this paper, as shown in Fig. 1, we study how to generate
the HDR image using two LDR images that are shot from
dual-lens systems in a single shot time with different expo-
sures. Since the imaging is finished within a single shot, the
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(a) Input pair of images IS and IL. (b) Our HDR result IHDR.

Figure 1: The input pair of short exposure image IS and long
exposure image IL are shot by dual-lens respectively in a
single shot time. We learn to enhance the main image IS

using IL as guidance to generate the HDR result IHDR.

2D movement caused by moving cameras and objects can be
neglected. And the challenge is transferred to solve the rela-
tive 1D movement between the corresponding pixels among
the two LDR inputs due to disparities, which is easier and
less computationally costly.

In the literature, starting from (Devevec and Malik 1997),
most of existing methods, including recently proposed CNN
based methods like (Kalantari and Ramomoorthi 2017), take
the Multiple Images Merging strategy, as shown in Fig. 2.
The input multiple LDR images are firstly aligned and the
pixels of the final HDR image are fused from pixels of all
the aligned LDR images. Under this strategy, the require-
ment for the accuracy of the alignment is very high. A small
number of mis-aligned pixels between the aligned images
may lead to obvious ghost artifacts into the merged HDR
result.

Our insight is shown in Fig. 2. Instead of directly merg-
ing the multiple input images, we use an indirect way which
enhances the main image, i.e. the short exposure image IS,
using the long exposure image IL serving as guidance. We
perform soft exposure for IS to simulate the camera expo-
sure to get its long exposure version, which is then denoised
using the aligned result of IL as guidance. The denoising re-
sult and IS are fused to obtain the final HDR result IHDR.
With the Main Image Enhancement strategy, mis-alignment
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Figure 2: In traditional Multiple Images Fusion strategy, the
HDR result is obtained by directly fusing all pixels of the
aligned LDR input images. In this strategy, mis-aligned re-
gions will generate ghost artifacts. In our Main Image En-
hancement strategy, the main image, i.e. the short exposure
image IS, and the denoising result of its soft exposed image
are used for generating the HDR result. The long exposure
image IL is aligned and just used as the guidance for the
denoising. In mis-aligned regions between the aligned im-
ages, the noises may not be removed completely but ghost
artifacts within the final HDR result can be avoided.

pixels between the aligned images may reduce the denoising
quality but the ghost artifacts in IHDR can be avoided.

Based on our insight, we propose a new model, named
MIEHDR CNN model. The overall structure is shown in Fig.
3, which consists of three sub-nets, i.e. Soft Warp CNN, 3D
Guided Denoising CNN, and Fusion CNN. The Soft Warp
CNN aligns IL using the first-time soft exposure result of IS,
i.e. ISE

′
, as reference to get the aligned result ILA. ILA can

provide better guidance than IL for the denoising and is fed
into the 3D Guided Denoising CNN with the second-time
soft exposure result of IS, i.e. ISE. Using ILA as guidance,
this CNN uses a 3D U-Net to learn the filtering weights for
ISE with context and generates the spatially consistent de-
noising result ÎSE. ÎSE and IS are finally fed into the Fusion
CNN to generate the HDR result IHDR.

Experimental results show that we can outperform related
methods largely for HDR imaging using dual-lens systems.

Contributions: 1) We propose the Main Image Enhance-
ment strategy for HDR imaging. 2) We separate the process
into three steps, i.e. alignment, guided de-noising, and fu-
sion, and propose three CNN subnets respectively to fin-
ish the corresponding tasks. 3) We propose a 3D Guided
Denoising CNN to learn the filtering weights with context
for generating spatially consistent de-noising results. 4) We
build a Dual-Lens HDR dataset.

Related Works
HDR imaging has been discussed for a long time and is
still a hot topic, e.g. (Devevec and Malik 1997) (Kalantari
and Ramomoorthi 2017). HDR imaging methods in static
scenes, e.g. (Mertens, Kautz, and Reeth 2007) (Ma et al.
2020), perform well. In dynamic scenes and the dual-lens
HDR systems, there exist relative movements between cor-
responding pixels in the multiple LDR images. And the most
challenging problem is to avoid ghost artifacts when merg-
ing the multiple LDR images.

Recently, CNN based methods, e.g. (Kalantari and Ramo-
moorthi 2017) (Wu et al. 2018) (Yan et al. 2020), are pro-
posed for solving this problem. To overcome the problem of
relative movements between pixels, dense correspondence
searching and alignment subnets are integrated into the CNN
models, e.g. (Kalantari and Ramomoorthi 2017) (Chen et al.
2020) (Trinidad et al. 2019), to improve the reconstruction
quality. Since the alignment results may not be perfect all the
time, some recent works, e.g. (Yan et al. 2019) (Prabhakar
et al. 2019) (Li et al. 2020), also propose to detect and/or cor-
rect the mis-alignment regions. But the detection/correction
methods may still fail to repair all mis-alignment regions and
thus cannot avoid ghost artifacts completely.

In short, most of the existing methods use the Multiple
Images Merging strategy as discussed above and shown in
Fig.2. Since human users are sensitive to ghost artifacts, this
strategy has high demand for the alignment accuracy. Un-
fortunately, as mentioned in (Cogalan and Akyuz 2020), a
robust and reliable ghost-free solution has been shown to be
difficult.

The burst photography work in (Hasinoff et al. 2016) de-
noises the main frame using the other frames serving as ref-
erence and can avoid ghost artifacts. However, they assume
that all input frames in the burst are under the same expo-
sure time. The differences of the assumptions for the expo-
sure time of input images make the method not proper for
generating high quality HDR images in our problem.

Some recent marvelous works develope new hardware de-
vices and propose corresponding software algorithms for
HDR imaging, e.g. (Cogalan and Akyuz 2020) (Wang et al.
2019a). The algorithms are specifically designed for the new
hardware devices while in our problem, the device is the
widely deployed consumer dual-lens within smart phones.
Due to different hardware devices, their algorithms are not
proper for solving our problem.

Single image HDR imaging is also a hot problem and at-
tracts many discussions recently, e.g. (Liu et al. 2020) (San-
tos, Ren, and Kalantari 2020). The main difficulty is to hallu-
cinate the missing textures in under-/over-exposed regions.
Instead of solving such a challenging problem, we choose
the easier way to make full use of the two LDR input images
from dual-lens systems for HDR imaging.

Besides HDR, there exist some other enhancement prob-
lems using multiple-camera systems, like video retargeting
(Li et al. 2018), super resolution (Jeon et al. 2018; Wang
et al. 2019b), deblur (Zhou et al. 2019), style transfer (Chen
et al. 2018), colorization (Dong et al. 2019, 2020) and flow
estimation (Pan et al. 2017). But, these methods cannot be
directly used for our problem.
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Figure 3: The overall structure of our MIEHDR CNN.
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Figure 4: The structure of our 3D Guided Denoising CNN.
Besides showing the image level process pipeline, we also
show the detailed process pipeline for a single pixel (j, i) at
the pixel level to better explain the process.

Method
The overall structure of our MIEHDR CNN model is shown
in Fig. 3, which consists of three subnets, i.e. Soft Warp
CNN , 3D Guided Denoising CNN, and Fusion CNN. The
detailed layer information is shown in Table 1.

The goal of the Soft Warp CNN is to align the long ex-
posure image IL so that the aligned result ILA can provide
better guidance in the 3D guided denoising CNN. We use
the soft exposed image ISE

′
of IS instead of IS itself as

the reference for the alignment because ISE
′

has much more
similar exposures with IL, which makes the alignment eas-
ier. After getting ILA, we use it as reference to perform the
soft exposure in the second time to obtain ISE, because the
aligned image ILA can help generate more accurate soft ex-
posure result. Within the Soft Warp CNN, due to the lack of
ground-truth disparities for training for disparity estimation,
we use the soft warp operation which utilizes multiple pixels
in IL and perform weighted average of them for generating

the aligned result of each pixel in ILA.
The goal of the 3D guided denoising CNN is to use ILA,

which has low noises, as guidance for denoising ISE, which
has high noises. The guidance image ILA is used for helping
estimate the filtering weight, and the denoising result ÎSE
is obtained by filtering pixels from ISE itself. Because the
pixel values that contribute to the denoising results ÎSE are
from ISE itself, even if there is mis-alignment between ISE

and ILA, the pixel values of ILA will not pollute the result
ÎSE. This helps our method avoid ghost artifacts. With the
help of the 3D U-Net in this CNN, neighboring pixels will
affect each other during learning the filtering weight so that
we can obtain spatially consistent results.

Finally, we use IS and ÎSE as the inputs of the Fusion
CNN to obtain the HDR result IHDR, because there is no
mis-alignment between the inputs, this step is like exposure
fusion in static scenes.

3D Guided Denoising CNN
The denoising result ÎSEj,i of each pixel (j, i) is obtained by
weighted average of its neighboring pixels from ISE itself,
i.e.

ÎSEj,i =
∑

(j′,i′)∈Ω(j,i)

WD
j,i,(j′−j+r)·s+(i′−i+r) · I

SE
j′,i′ , (1)

where Ω(j, i) is the s · s (set as 5 · 5 in this paper) neigh-
boring pixels centered at pixel (j, i), and r (set as 2 in this
paper) is the radius of the neighboring window. The filter-
ing weight WD ∈ Rh×w×s2 is estimated by the 3D Guided
Denoising CNN, as shown in Fig. 4. First, we use the in-
put images ISE and ILA to build the 4D feature volume
VD ∈ Rh×w×s2×m. For each pixel (j, i), its 2D s · s neigh-
boring pixels Ω(j, i) are reshaped to 1D slice. So, for each
pixel (j′, i′) ∈ Ω(j, i), its feature and learned weight values
in VD and WD are denoted as VD

j,i,(j′−j+r)·s+(i′−i+r) and
WD

j,i,(j′−j+r)·s+(i′−i+r) respectively. Between each pixel
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(j′, i′) ∈ Ω(j, i) and its centered pixel (j, i), the feature
is concatenated by the pixel values of (j′, i′) of ISE and
ILA, i.e. ISEj′,i′ and ILA

j′,i′ , the pixel value of the centered pixel
(j, i) of ISE, i.e. ISEj,i , and the geometry distance between
(j′, i′) and (j, i) which is defined as Dgm((j′, i′), (j, i)) =
(j − j′)2 + (i − i′)2, i.e. VD

j,i,(j′−j+r)·s+(i′−i+r) =

Concat(ISEj′,i′ , I
LA
j′,i′ , I

SE
j,i , Dgm((j′, i′), (j, i))).

Then, we use 3D U-Net network to learn the weight vol-
ume WD from VD. The 3D U-Net is like the traditional
U-Net style network (Ronneberger, Fischer, and Brox 2015)
and the differences are that we use 3D convolution instead
of 2D convolution. After getting the weight volume, we use
Eq. 1 to get the denoising result.

In the training, we use SSIM (Wang et al. 2004) as the
error metric and the loss is defined as

L1 = 1− SSIM(α(̂ISE),GSE), (2)

where GSE is the ground-truth long exposure image of the
main image IS, α is a global adjustment curve. We perform
the global adjustment to minimize the exposure differences
between ÎSE and GSE so as to avoid the difference affecting
the evaluation of the denoising quality. α is estimated using
ÎSE and GSE. It contains 256 nodes in the dynamic range
of [0, 255]. And the value at each node x is computed by

α(x) =

∑
j,i

D(̂ISE
j,i ,x)GSE

j,i∑
j,i

D(̂ISE
j,i ,x)

, where D(x′, x) = e−
(x′−x)2

2σ2 , and

σ is set to 5 in this paper.

Soft Warp CNN
The CNN structure is shown in Fig. 5. For the input im-
ages IL and ISE

′
, first, we extract their deep features FL

and FSE′ respectively by a ResNet, named ResNet1. Then,
between each pixel (j, i) in ISE

′
and all of its candidate pixel

(j, i+ k) in IL, we build the 4-D feature volume VA by

VA
j,i,k = Concat(FSE′

j,i ,F
L
j,i+k). (3)

Due to the 1D relative movement of corresponding pixels
between the input pair of images, the range of candidate pix-
els for each pixel (j, i) is defined from (j, i) to (j, i+d−1),
where the hyper-parameter d is the maximum disparity (set
as 20% of the image width).

Next, the 3D regulation, which is proposed by (Alex
et al. 2017), is performed to estimate the weight volume
WA ∈ Rh×w×d from the feature volume VA. Once WA

is obtained, for each pixel (j, i), the aligned result ILA
j,i

is
computed by the weighted average of its candidate pixels in
image IL, i.e.

ILA
j,i

=
d−1∑
k=0

WA
j,i,kI

L
j,i+k. (4)

The training loss is defined as

L2 = 1− SSIM(ILA,GSE), (5)

where GSE is the ground-truth long exposure image of the
main image IS.

Concatenated 4D 
feature volume

3D weight 
volume

Res-
Net1

3D
Regulation

Weighted
AverageIL

ISE'
VA WA

ILA

Figure 5: The structure of our Soft Warp CNN.

Fusion CNN
As shown in Fig. 3, the inputs of our Fusion CNN include IS

and ÎSE. And we build a straight ResNet, named ResNet2,
to learn the blending weights WB between IS and ÎSE so
as to get the HDR result IHDR by

IHDR = WB · IS + (1−WB) · ÎSE. (6)

The training loss is defined as

L3 = 1− SSIM(IHDR,GHDR), (7)

where GHDR is the ground-truth HDR image.

Soft Exposure
The soft exposure operation estimates a global adjustment
curve to adjust the input short exposure image IS so as to
simulate the exposure process within the camera. We use
histogram equalization (Bradski and Kaehler 2008) to per-
form the soft exposure because it does not need the input
images to be well-aligned. As shown in Fig. 3, we perform
the soft exposure two times. In the first time, we use the
histogram of the input long exposure image IL as the tar-
get histogram and adjust IS to ISE

′
so that the histogram

of ISE
′

approximately matches the target histogram of IL.
After getting the aligned result ILA, because it can provide
more accurate target histogram, we use the histogram of ILA

as the target histogram to soft expose IS in the second-time
to obtain more accurate soft exposure result ISE.

Experimental Results
Dataset
We use two the same color cameras, i.e. the JHSM500f, put
them side by side on a tripod, rectify them like traditional
stereo systems (Scharstein and Pal 2007), and shoot 1000
pairs of images in various scenes to build our dataset. The
left and right cameras are programmed to shoot images in
the same shot-time. We set short and long exposure time at
each scene, and let the pair of cameras shoot images with the
short and long exposure in two shots. Thus, we get 4 images
in total at each scene. We follow the method in (Kalantari
and Ramomoorthi 2017) to fuse the short and long exposure
time images from the left camera to generate ground-truth
HDR images. The fusion weight is a simple triangle weight.
In addition, we use the short exposure image taken by the
left camera and the long exposure image taken by the right
camera as the input pair of images at this scene.
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Layer Description Output Tensor Dim.
Input and output images h× w × 3

3D U-Net in 3D Guided Denoising CNN (Fig. 4)
1 3D conv, 3× 3× 3, n feat. h× w × s2 × n
2 3D conv, 3× 3× 3, n feat. h× w × s2 × n
3 3D conv, 3× 3× 3, n feat. h× w × s2 × n
4 3D conv, 3× 3× 3, n feat. h× w × s2 × n
5 3D conv, 3× 3× 3, n feat. h× w × s2 × n

6-14 (repeat layer 3, 4, 5)×3 h× w × s2 × n
15 3× 3× 3, 3D trans conv, n feat. h× w × s2 × n

add layer 15 and 11 (residual connection) h× w × s2 × n
16 3× 3× 3, 3D trans conv, n feat. h× w × s2 × n

add layer 16 and 8 (residual connection) h× w × s2 × n
17 3× 3× 3, 3D trans conv, n feat. h× w × s2 × n

add layer 17 and 5 (residual connection) h× w × s2 × n
18 3× 3× 3, 3D trans conv, n feat. h× w × s2 × n

add layer 18 and 2 (residual connection) h× w × s2 × n
19 3× 3× 3, 3D trans conv, 1 feat. h× w × s2

20 softmax h× w × s2

ResNet1 in Soft Warp CNN (Fig. 5)
1 5× 5 conv, n feat., stride 2 h

2 ×
w
2 × n

2 3× 3 conv, n feat. h
2 ×

w
2 × n

3 3× 3 conv, n feat. h
2 ×

w
2 × n

add layer 1 and 3 feat. (residue connection) h
2 ×

w
2 × n

4-17 (repeat layers 2,3 and residual connection)×7 h
2 ×

w
2 × n

18 3× 3 conv, n feat. h
2 ×

w
2 × n

3D regulation in Soft Warp CNN (Fig. 5)
21 3D conv, 3× 3× 3, n feat. h

2 ×
w
2 ×

d
2 × n

22 3D conv, 3× 3× 3, n feat. h
2 ×

w
2 ×

d
2 × n

23 3D conv, 3× 3× 3, 2n feat., stride 2 h
4 ×

w
4 ×

d
4 × 2n

24 3D conv, 3× 3× 3, 2n feat. h
4 ×

w
4 ×

d
4 × 2n

25 3D conv, 3× 3× 3, 2n feat. h
4 ×

w
4 ×

d
4 × 2n

26-34 (repeat layer 23, 24, 25)×3 h
32 ×

w
32 ×

d
32 × 2n

35 3× 3× 3, 3D trans conv, 2n feat., stride 2 h
16 ×

w
16 ×

d
16 × 2n

add layer 35 and 31 (residual connection) h
16 ×

w
16 ×

d
16 × 2n

36 3× 3× 3, 3D trans conv, 2n feat., stride 2 h
8 ×

w
8 ×

d
8 × 2n

add layer 36 and 28 (residual connection) h
8 ×

w
8 ×

d
8 × 2n

37 3× 3× 3, 3D trans conv, 2n feat., stride 2 h
4 ×

w
4 ×

d
4 × 2n

add layer 37 and 25 (residual connection) h
4 ×

w
4 ×

d
4 × 2n

38 3× 3× 3, 3D trans conv, n feat., stride 2 h
2 ×

w
2 ×

d
2 × n

add layer 38 and 22 (residual connection) h
2 ×

w
2 ×

d
2 × n

39 3× 3× 3, 3D trans conv, 1 feat. h× w × d
40 softmax h× w × d

ResNet2 in Fusion CNN
1 5× 5 conv, n feat. h× w × n

2-17 repeat layers 2-17 in ResNet1 h× w × n
18 3× 3 conv, 1 feat., Sigmoid h× w

Table 1: Summary of the layer information of MIEHDR CNN. Each 2D or 3D convolution layer represents a block of convolu-
tion, batch normalization and ReLu (unless otherwise specified).
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(a) Left input (b) Right input (c) Hasinoff et al. (d) Kalantari et al. (e) Wu et al. (f) Yan et al. 2019

(g) Trinidad et al. (h) Prabhaka et al. (i) Yan et al. 2020 (j) Li et al. (k) Ours (l) Ground truth

Figure 6: Examples to compare the state-of-the-art HDR imaging methods with ours. The regions marked with the red and
green boxes are shown in the second and third rows respectively.

Implementation Details

Our network is implemented by MindSpore (MindSpore
2020) with a constant learning rate of 0.001. The images
of the dataset are randomly divided into the training set with
700 pairs of images and the testing set with 300 pairs of
images. All the models are run on a server with an Intel I7
CPU and 4 NVIDIA 1080Ti GPUs. In the training step, we
use the images with the resolution level of 416x576 from the
dataset. In the testing step, we test three resolution levels, i.e.
level1 (832x1184), level2 (416x576) and level3 (192x288).

Comparison Algorithms

We compare with the state-of-the-art high dynamic range
imaging methods of (Yan et al. 2020) (Wu et al. 2018)
(Kalantari and Ramomoorthi 2017) (Trinidad et al. 2019)
(Yan et al. 2019) (Li et al. 2020) (Prabhakar et al. 2019) and
(Hasinoff et al. 2016). For the learning-based methods, we
fine-tune them on our dataset for fair comparison.

Results

The quantitative results are shown in Table 3. We use
PSNR, SSIM (Wang et al. 2004) and HDR-VDP-2 (Man-
tiuk et al. 2011) as the quality metrics. And the qualitative
results are shown in Figs. 6 and 7. The processing time of
different methods is shown in Table 2. We are faster than all
the comparison methods because, as explained in Introduc-
tion, they are designed to solve the 2D movement of pixels
between images while our method is designed to solve the
1D movement of pixels caused by disparity which is less
computationally costly.

As shown in Table 3 and Figs. 6 and 7, we have better
results than the comparison methods. Ghosting artifacts can
be avoided by our method while the comparison methods
usually generate ghosting artifacts, e.g. the marked red and
greed box regions in Figs. 6 and 7. The works of (Yan et al.
2020) (Wu et al. 2018) let a single CNN finish all the align-
ment and fusion work which makes it difficult to learn cor-
rect results, especially in our problem where most of pixels
between the input images have pixel movement due to dis-
parities. As a result, their results have many ghost artifacts.
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(a) Left input (b) Right input (c) Hasinoff et al. (d) Kalantari et al. (e) Wu et al. (f) Yan et al. 2019

(g) Trinidad et al. (h) Prabhaka et al. (i) Yan et al. 2020 (j) Li et al. (k) Ours (l) Ground truth

Figure 7: Examples to compare the state-of-the-art HDR imaging methods with ours. The regions marked with the red and
green boxes are shown in the second and third rows respectively.

(a) Input images. (b) No denoising. (c) No alignment. (d) BM3D. (e) Guided filter. (f) Ours. (g) Ground truth.

Figure 8: Example results in the ablation study. The regions marked with the red boxes are shown in the second row.

The works of (Kalantari and Ramomoorthi 2017) (Trinidad
et al. 2019) firstly perform alignment, and then fuse the
aligned images into the HDR results. However, the align-
ment can be hardly perfect in every case, especially in oc-
clusion regions and over-exposed regions, and ghost artifacts
are introduced into the final results. The works of (Yan et al.
2019) (Li et al. 2020) (Prabhakar et al. 2019) propose to de-

tect and/or correct the mis-alignment regions so as to reduce
the mis-alignment and ghost artifacts. They can reduce the
ghost artifacts in some cases, but the detection method itself
may not be accurate all the time. Failing to detect the mis-
alignment correctly will lead to ghost artifacts. The work
of (Hasinoff et al. 2016) assumes the input images are with
the same exposure level. When using it in our case, the re-
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Time(s) Hasinoff Kalantari Wu Yan 2019 Trinidad Prabhakar Yan 2020 Li Ours
level1 2.91 14.29 7.87 1.60 0.78 1.96 1.89 1.92 0.71
level2 2.48 2.76 1.95 0.47 0.48 0.98 0.89 0.47 0.31
level3 2.31 0.71 0.46 0.17 0.43 0.43 0.47 0.12 0.11

Table 2: Average processing time of different methods at three resolution levels, i.e. level1 (832x1184), level2 (416x576), and
level3 (192x288).

PSNR(dB) SSIM HDR-VDP-2
level1 level2 level3 level1 level2 level3 level1 level2 level3

Hasinoff 21.72 21.23 20.69 0.870 0.838 0.801 59.44 60.89 58.96
Kalantari 27.34 27.32 27.30 0.914 0.907 0.902 61.05 59.44 58.64

Wu 28.61 28.79 28.88 0.928 0.942 0.941 62.99 61.37 60.41
Yan 2019 25.26 25.26 25.28 0.880 0.873 0.871 62.18 61.05 60.25
Trinidad 24.38 24.30 24.18 0.902 0.896 0.888 58.64 57.99 57.67

Prabhakar 28.86 28.81 28.80 0.944 0.941 0.939 63.63 62.02 60.57
Yan 2020 28.11 28.24 28.30 0.919 0.932 0.934 62.50 60.25 58.80

Li 26.88 27.19 27.03 0.907 0.915 0.922 61.05 62.66 63.63
Ours 33.01 33.08 33.19 0.963 0.964 0.966 69.91 69.27 68.78

Table 3: Average PSNR, SSIM and HDR-VDP-2 values of different methods on three levels of resolutions, i.e. level1
(832x1184), level2 (416x576), and level3 (192x288).

PSNR (dB) SSIM
No denoising 25.37 0.890
No alignment 27.75 0.912

BM3D for the denoising 27.16 0.910
Guided filter for the denoising 28.02 0.917

Ours 33.08 0.964

Table 4: Ablation study. We show average PSNR and SSIM
values of the HDR results of different variants of our model
at the resolution level2.

sults usually have blur artifacts. In addition, the hand-crafted
tone-mapping method cannot recover the lighting as good as
the learning based methods.

Ablation Study

We compare a number of different model variants at the key
parts of our model. The key ideas of our method includes
the Main Image Enhancement strategy, which consists of
alignment, guided denoising and fusion, and the 3D guided
noising CNN for the denoising. So we 1) remove the Soft
Warp CNN and use IL directly as the guidance for the 3D
guided noising CNN, 2) remove the 3D guided noising CNN
and feed IS and ISE into the Fusion CNN, 3) replace the
3D guided noising CNN by the baseline guided denoising
method, i.e. the guided filter (He, Sun, and Tang 2010), and
4) replace the 3D guided noising CNN by the baseline sin-
gle image denoising method, i.e. BM3D (Dabov et al. 2007).
Table 4 shows the summary performance of different model
variants. Fig. 8 shows some subjective examples. The results
show that any of these variants will degrade the HDR imag-
ing quality. This verifies the contributions of our model.

Conclusions
We have presented a novel CNN model for HDR imaging us-
ing dual-lens systems. We use the Main Image Enhancement
strategy and propose a new model, named MIEHDR CNN
model, which consists of three subnets, i.e. Soft Warp CNN,
3D Guided Denoising CNN and Fusion CNN. Experimental
results show that our method achieves superior performance
than the state-of-the-art methods.
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