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Abstract
Current deep learning-based image captioning systems have
been proven to store practical knowledge with their param-
eters and achieve competitive performances in the public
datasets. Nevertheless, their ability to access and precisely
manipulate the mastered knowledge is still limited. Besides,
providing evidence for decisions and updating memory infor-
mation are also important yet under explored. Towards this
goal, we introduce a memory-augmented method, which ex-
tends an existing image caption model by incorporating extra
explicit knowledge from a memory bank. Adequate knowl-
edge is recalled according to the similarity distance in the
embedding space of history context, and the memory bank
can be constructed conveniently from any matched image-
text set, e.g., the previous training data. Incorporating such
non-parametric memory-augmented method to various cap-
tioning baselines, the performance of resulting captioners im-
porves consistently on the evaluation benchmark. More en-
couragingly, extensive experiments demonstrate that our ap-
proach holds the capbility for efficiently adapting to larger
training datasets, by simply transferring the memory bank
without any additional training.

1 Introduction
Automatic image captioning, which aims to describe a visual
content of a given image, is a core topic in the artificial intel-
ligence area (Bai and An 2018; Fei 2020a). There is a boom
in research on image captioning systems due to the advance
of deep learning technology, and most existing models adopt
encoder-decoder frameworks (Vinyals et al. 2015; Xu et al.
2015; Yao et al. 2017; Anderson et al. 2018; Huang et al.
2019; Fei 2020b). Technically, CNN-based image encoder
extracts sufficient and useful visual features from the input
image; RNN-based caption decoder builds the semantic part
according to the picked visual information and decodes it
word by word. The above structures have been shown to
learn a substantial amount of in-depth relational knowledge
from training data using parameter optimization, without ac-
cess to external memory. While this development is exciting,
such image captioning models do have some drawbacks (Fei
2019; Wang et al. 2020): they cannot easily expand or update
their prior memory, and can not straightforwardly provide
insight into their current predictions.
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To address these issues, numerous hybrid captioning mod-
els that combine with the retrieval-based memory mecha-
nism are leveraged, in which outer recalled knowledge can
be directly revised and expanded, and its access can be in-
spected and interpreted (Weston, Chopra, and Bordes 2014).
In particular, inspired by the fact that humans benefit from
previous similar experiences when taking actions and related
examples from training data provide exemplary information
when describing a given image, previous works (Poghosyan
and Sarukhanyan 2017; Chen et al. 2019; Wang et al. 2020)
usually first utilize an image-text matching model to re-
trieval top-k similar sentence candidates. Then, the target
caption will be created under the guide of input image plus
these related candidates with a specially designed network.
Although current retrieval-based captioning models have
achieved promising results, there still have the following
weakness: 1) Their performance is limited by the quality of
the caption retrieved model. Commonly, retrieval results are
less coherent and relevant with the query image than gen-
erative models’. Irrelevant retrieved results would even mis-
lead the final caption generation. 2) These models can only
make use of individual sentence-level retrieved results, lead-
ing to a high variance in the performance (Zhang and Lu
2018). Moreover, the information from very few retrieved
results may not be sufficient to enrich the caption decoding.
Compared with methods matching based only on image fea-
tures, our proposed word-level retrieval mechanism consid-
ers the complete history information, including given image
and previously generated words, which results in a more ac-
curate and comprehensive knowledge application.

In this paper, we introduce a memory augmented ap-
proach that equips a trained image caption decoding with
considering extra word-level knowledge information, in
other words, linearly interpolating the original next word
distribution with a top-k matching approximation. The re-
lated knowledge in the memory bank is recalled according
to the similarity distance in the embedding space of history
context (i.e., the image feature and prefix of the caption) and
can be drawn from any image-text collection, including the
original training data or other extended datasets. We assume
that contxts which are close in representation space are more
likely to occur the same word. In this manner, our framework
does not incorporate additional parameters and allow effec-
tive knowledge to be memorized explicitly and interpretably,
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Figure 1: Illustration of our memory augmented caption generation. A memory bank is constructed based on pre-set matched
image-text samples, including encoding of its history context, i.e., image features and past sentence (key) and target word
(value). During inference, a current context is encoded (query), and the k most similar matches are retrieved from the memory
bank. Then, a distribution over the vocabulary is computed with rank and normalization operation. Finally, the distribution is
interpolated with the original model’s prediction for combined decision. Note that the encoder of the query context is identical
to the encoder of the memory bank.

rather than implicitly in the model parameters. To better
measure its effects, we conduct an extensive empirical evalu-
ation on the MS COCO benchmark (Chen et al. 2015). Built
upon recent stronge captioners with our memory augmenta-
tion mechanism showing a prominent improvement over the
base when the same training set is employed for modeling
the history memory representations. We also demonstrate
that our approach holds the capacity for efficiently adapt-
ing to larger training datasets, by simply reconstructing the
memory bank with the existing image captioning model.

The contributions of this work are as follows:

• We propose a memory-augmented approach which ex-
tends the decision of current image captioning model
with related knowledge from the no-parametric memory
bank. As far as we are concerned, this is the first work
to build word-level knowledge from image-text pairs us-
ing a trained captioning model, and to use the memory to
further enhance the performance of caption generation.

• Extensive experiments demonstrate that captioning mod-
els equipped with memory augmented mechanism signif-
icantly outperform the ones without it. We also analyze
the effect of memory bank scale. More encouragingly, the
proposed memory mechanism can be easily incorporated
into existing captioning models to improve their perfor-
mance without additional training.

2 Approach
In this section, we first give a brief review of the implemen-
tation for the conventional attention-based encoder-decoder
framework in image captioning (Xu et al. 2015; Rennie
et al. 2017). This structure is regarded as the state-of-the-
art model and will be used as the baseline in this study. Then

we introduce the memory augmented mechanism for next
word prediction in detail. Finally, we provide a discussion
about computational cost as well as other related works.

2.1 Background: Attention-based
Encoder-Decoder Paradigm

Overall, two-stage image captioning systems usually consist
of an image encoder and a language decoder.

Image Encoder For each input image, a pre-trained
Faster-RCNN (Ren et al. 2015) is utilized to detect region-
based objects. Here, the top N objects with highest confi-
dence scores are selected, and we denote the corresponding
extracted feature vectors as V = {v1, v2, . . . , vN}, where
vn ∈ Rdv , and dv is the dimension of each feature vector.
Note that each feature vector represents a certain aspect of
the input image and further serves as a guide for sentence
decoder to describe the material visual information.

Caption Decoder During each decoding step t, the sen-
tence decoder takes the word embedding of current input
word wt−1, concatenated with the average of extracted im-
age features v = 1

N

∑N
n=1 vn as input to the decoding net-

work as:

ht = fD(ht−1, [Wewt−1; v]), (1)

where [; ] is the concatenation operation, We denotes the
learnable word embedding parameters, and fD(·) is the de-
coder network, e.g., LSTM (Hochreiter and Schmidhuber
1997) and Transformer (Vaswani et al. 2017). Next, the out-
put state ht of the decoding function is utilized as a query to
attend to the relevant image regions in the image feature set
V and generate the weighted image features, also named as
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context vector, ct as:

αt = Softmax(wαtanh(Whht �WV V )), (2)

ct = V αTt , (3)

where wα, Wh and WV denote the learnable parameters. �
denotes the matrix-vector addition, which is calculated by
adding the vector to each column of the matrix. Finally, the
hidden state ht and context features ct are passed to a linear
layer together to predict the next word:

wt ∼ pt = Softmax(Wp[ht; ct] + bp), (4)

where Wp and bp are the learnable parameters. It is worth
noticing that some works (Anderson et al. 2018; Yao et al.
2018) also attempt to append more neural network modules,
e.g., extra LSTM and GCN, to assist to predict the next word.
For training procedure, given a ground-truth description sen-
tence S∗1:T = {w∗1 , . . . , w∗T } and a captioning model PIC
with parameters θ, the optimization objective is to minimize
the cross-entropy loss as follows:

LXE(θ) = −
T∑
t=1

log PIC(w∗t |S∗<t; θ). (5)

Also, as we can see from Equation 3, at each time step t, the
context vector ct contain the past information including im-
age features and generated caption words, which can further
be used as the digital certificate, in other words, the key in
our memory bank.

2.2 Memory-Augmented Caption Generation
Conventional image captioners try to model a conditional
probabilities to each sentence. Specifically, given the entire
input image features as well a sequence of previously gen-
erated words, denoted as Ct = {V,w1, . . . , wt−1}, image
captioniners estimate PIC(wt|Ct; θ), the distribution of the
next word wt ∈ V over the entire vocabulary for each word
in sentence. The caption is created word-by-word. Based on
this paradigm, our method equips a trained image captioner
with a memory retrieval mechanism, allowing the model ac-
cess to the most useful explit knowledge easily at each time
step, as show in Figure 1.

Memory Bank Construction The memory bank is con-
structed offline and consists of a set of key-value pairs
(ki, vi). 1) The key ki is a representation of the entire cap-
tion context Ci computed by an mapping function fM (·). In
actual, for an LSTM–based captioning architecture, fM (Ci)
could result from attended image features or context vector;
for a Transformer-based captioning architecture, fM (Ci)
could obtain from an intermediate representation that is out-
put by a self-attention layer. 2) The value vi is the corre-
sponding ground truth word wi. For a parallel image-text
dataset D, potentially refers to the original training set, the
representation can be generated with a single forward pass
over each sample by a caption decoder and the total memory
bank (K,V) can be formulated as follows:

(K,V) = {(fM (Ci), wi)|(Ci, wi) ∈ D}. (6)

Algorithm 1: Memory Augmented Image Caption
Generation

Input: Memory bank (K, V), trained captioning
model PIC(w|C; θ), given image I

Output: Descriptive sentence S = {w1, . . . , wT }
1 for t = 1 to T do
2 Specify current context: Ct = {I, w1, . . . , wt−1};
3 Generate original distribution with caption

decoder: PIC(wt|Ct; θ);
4 Generate encoded query vector: qt = fM (Ct);
5 Calculate the distance for each entries in memory

bank: di = dis(qt, ki);
6 Select top-k candidates, normalize and aggregate

the corresponding distribution:
PMA(w|Ct) ∝

∑
(ki,vi)∈P Iw=viexp(−di/T ));

7 Combined inference to decide the next word:
wt =
argmax(λPMA(w|Ct) + (1− λ)PIC(w|Ct; θ))

8 end

Quick Query According to the previous description, the
memory bank contains entries for target word with a cor-
responding history context in the retrieval data set, which
for image captioning can be up to billions of examples.
To search over this large memory bank rapidly, we adopt
FAISS (Johnson, Douze, and Jegou 2019), an open-source
library for fast k-min selection retrieval in high dimen-
sional spaces with GPUs. Specifically, for search accelera-
tion, FAISS clusters the keys and only queries the adjacent
cluster centroids; for space usage, FAISS stores the com-
pressed versions of the high-dimension vectors. Preliminary
experiments have demonstrated that using L2 distance (Xu,
Weinberger, and Chapelle 2012) for FAISS retrieval results
in a better performance for image captioning, compared to
inner product distance.

Combined Inference During inference, according to the
current history context Ct, including the total input im-
age features and preceding generated subsentence, the im-
age captioner outputs a distribution over the vocabulary
PIC(w|Ct) with caption decoder. The model also produces
the context vector fM (Ct) and queries the memory bank
with it to retrieve top-k similar pairs P according to the
value of distance function dis(·, ·). Next, it computes a nor-
malization distribution over approximates based on a soft-
max of their negative distances with pre-set temperature T
to prevent overfitting, while aggregating over multiple occu-
rances of the same word. Note that items that do not appear
in the retrieved targets are set zero probability.

PMA(w|Ct) ∝
∑

(ki,vi)∈P

Iw=viexp(
−dis(ki, f(Ct))

T
). (7)

Finally, we interpolate the information retrieval distribution
PMA with the previous model generation distribution PIC ,
which is more robust in cases without sufficient recalling,
using a balancing parameter λ to decide the final decision

1319



Cross-Entropy Loss CIDEr Score Optimization
B-1 B-4 M R C S B-1 B-4 M R C S

State-of-the-art image captioning models

LSTM-A (Yao et al. 2017) 75.4 35.2 26.9 55.8 108.8 20.0 78.6 35.5 27.3 56.8 118.3 20.8
RFNet (Jiang et al. 2018) 76.4 35.8 27.4 56.8 112.5 20.5 79.1 36.5 27.7 57.3 121.9 21.2
Up-Down (Anderson et al. 2018) 77.2 36.2 27.0 56.4 113.5 20.3 79.8 36.3 27.7 56.9 120.1 21.4
GCN-LSTM (Yao et al. 2018) 77.3 36.8 27.9 57.0 116.3 20.9 80.5 38.2 28.5 58.3 127.6 22.0
AoANet (Huang et al. 2019) 77.4 37.2 28.4 57.5 119.8 21.3 80.2 38.9 29.2 58.8 129.8 22.4
M2-T (Cornia et al. 2020) - - - - - - 80.8 39.1 29.2 58.6 131.2 22.6

Retrieval-based hybrid image captioning models

GST (Jia et al. 2015) 67.0 26.4 22.7 - 81.25 - - - - - - -
Mem-Att(Chen et al. 2018) - - - - - - 75.7 35.0 - 55.7 109.2 -
ICMK(Chen et al. 2019) - - - - - - 81.9 38.4 28.7 58.7 125.5 -
Up-Down + SRT (Wang et al. 2020) 77.1 36.6 28.0 56.9 116.9 21.3 80.3 38.5 28.7 58.4 129.1 22.4

Our memory-augmented image captioning models

Up-Down† 76.2 36.0 27.2 56.3 113.5 20.1 79.2 36.5 27.7 57.3 120.8 21.2
Up-Down† + MA 77.1 37.1 28.3 57.2 116.3 21.3 80.2 37.5 28.4 58.2 125.4 22.0

AoANet† 77.3 36.9 28.5 57.3 118.5 21.6 80.5 39.1 29.0 58.9 128.9 22.5
AoANet† + MA 78.2 38.0 28.7 57.8 121.0 21.8 81.2 39.5 29.4 59.3 132.0 23.0

Table 1: Performance of our model and other state-of-the-art captioning methods with different evaluation metrics on the
MS COCO Karpathy test set. All values are reported as a percentage (%). The original results of these methods from their
publications are listed in the top block. The proposed memory augmented approach significantly improves across all the metrics
using both cross-entropy loss and CIDEr optimization. † denotes our trained model based on the publicly available source code.

distribution as:

P (wt|Ct) = λPMA(wt|Ct) + (1− λ)PIC(wt|Ct; θ). (8)

More detailed procedure for predicting the next word at each
step is presented in Algorithm 1.

2.3 Discussion
Computational Cost Although the proposed memory-
augmented mechanism requires no additional training with
an existing image captioning model, it does produce some
other computational overheads in theory. The primary cost
of buidling the memory bank is generating the keys and val-
ues, which requires a single forward across the whole train-
ing set and is identical to a fraction of the cost of training for
one epoch on the same examples. Once the keys are saved,
for the MS COCO dataset, building the cache with 328M en-
tries takes roughly one hour on a single 1080Ti GPU. Con-
sidering the fact that the cost of building a large cache grows
linearly in the number of entries, our method is almost neg-
ligible for the increase in computational burden. During in-
ference, retriving 512 keys from the memory bank results in
a around ×3 slower than the base captioner.

Related Memory-based Models The idea of memory
augmentation was inspired by the advances in the memory
network (Weston, Chopra, and Bordes 2014; Xiong, Merity,
and Socher 2016). These models equip neural networks with
an external memory module that can be accessed and ma-
nipulated via some trainable operations. The memory idea

has been utilized in image captioning task in recent years.
The early pioneering work (Jia et al. 2015) introduces an
extension of LSTM to stay on track and better describe the
image content without unrelated phrase. (Chen et al. 2018;
Poghosyan and Sarukhanyan 2017) stores the visual and se-
mantic knowledge in the past into memories and generate a
global feature to improve the attention model. (Chen et al.
2019) further introduces a selective reading mechanism to
retrieve past knowledge information. In these cases, the con-
tribution of the memory is to provide temporary variables
to assist caption decoding. In contrast, our work uses mem-
ory to store knowledge. The memory in these works could
be considered to be notes, while the memory in our work is
more like a regularized dictionary. On the other hand, (Wang
et al. 2020) introduces a recall mechanism, which includes a
recall unit to retrieval words for image and a semantic guide
and slot to use the recalled words. The text-retrieval mod-
ule is sentence-level and identical to solve the image-text
matching task, which searches the sentences only based on
image content. Comparatively, our retrieval mechanism is no
need to extra training, includes all useful context informa-
tion to make retrieval more accurately and can be adapted
to any other dataset directly. Simlar retrieval-based works
in other areas include (Khandelwal et al. 2019; Guu et al.
2020; Lewis et al. 2020). Instead of only drawing text em-
bedding, we forcus on cross-modality knowledge construct-
ing and usage. This means that the representation of key and
query must incorporate both image and txt information.
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B-1 B-2 B-3 B-4 M R C

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

Up-Down 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
AoANet 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
M2-T 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1

Mem-Att 75.5 92.7 59.2 85.2 45.5 75.4 34.8 64.8 27.2 36.7 55.8 71.4 106.9 106.7
ICMK 80.8 95.3 64.3 89.0 49.5 79.8 37.5 69.7 28.0 36.9 57.9 73.0 118.9 121.5

AoANet + MA 81.7 96.2 66.5 90.9 51.8 82.7 39.7 72.5 29.3 38.7 59.2 74.2 130.1 132.4

Table 2: Leaderboard of different image captioning methods on the online MS COCO test server.

3 Experiments
3.1 Experimental Setup
Dataset We utilize the most popular image captioning
dataset MSCOCO (Chen et al. 2015) to evaluate the perfor-
mance of our proposed method. As the largest English image
caption dataset, MSCOCO contains 164,062 images. Each
image is annotated with five human captions. Considering
the annotations for the official testing set are not provided,
in this paper, we follow the common practice as Karpathy
splits (Karpathy and Fei-Fei 2015) for validation of model
hyperparameters and offline evaluation. This split contains
113,287 images for training and 5,000 respectively for val-
idation and test. We also pre-process all training sentences
by converting them into lower case and dropping the words
that occur rarely as (Huang et al. 2019).

Evaluation Metrics For quantitative performance evalua-
tion, we use five standard automatic evaluation metrics si-
multaneously, namely BLEU-N (Papineni et al. 2002), ME-
TEOR (Lavie and Agarwal 2007), ROUGE-L (Lin 2004),
CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015), and
SPICE (Anderson et al. 2016), denoted as B-N, M, R, C and
S for simplify. Concretely, BLEU-N indicates the n-gram
precision of the generated caption, METEOR measures both
the precision and recall, and CIDEr considers the n-gram
similarity with TF-IDF weights.

Baselines We equip the proposed memory augmented
method with different state-of-the-art methods, including
Up-Down (Anderson et al. 2018) and AoANet (Huang et al.
2019). Since the memory mechanism makes no changes to
the baseline, we take the exact architecture and optimization
described by the corresponding paper. Both image caption-
ing are first trained to minimize the negative log-likelihood
of the training data and then fine-tuned with the CIDEr score
using Reinforcement Learning (Rennie et al. 2017). All the
region’s visual features are extracted with Faster-RCNN on
the backbone of ResNet-101. The specific variations will be
discussed in the following sections.

Implement Details Since our approach aims to incorpo-
rate extra knowledge to assist captioning decision and is
augmentative to the existing models, we keep the inner
structure of the baseline untouched and preserve the orig-
inal settings. Following (Anderson et al. 2018), the keys

used for knowledge retrieval are the 1024-dimensional rep-
resentations copied from context vectors. We perform a sin-
gle forward pass over the total training set with the trained
captioning model, in order to create the keys and values. A
FAISS index is then created using 1.5M randomly sampled
keys to learn 2K cluster centroids, and keys are quantized to
64-bytes. During inference, we query the memory with k =
512 most similar entries, and the index looks up 32 cluster
centroids while searching for the next word candidates. The
tempreture T is set to 100 and the balancing parameter λ is
selected based on the CIDEr score on the validation set.

3.2 Quantitative Analysis
Offline Evalaution In Table 1, we report the performance
comparisons between state-of-the-art models, conventional
retrieval-based models, and baselines incorporated with our
memory augmented (MA) method on the offline MS COCO
Karpathy test split. For a fair comparison, we report the re-
sults for each run optimized with both cross-entropy loss
and CIDEr score. Note that the memory bank is constructed
with the same data used to train the baseline. In general,
all baselines equipped with our memory-augmented ap-
proach receive significant performance gains overall met-
rics and outperforms the popular retrieval-based methods
under the same structure. More encouragingly, based on the
AoANet, which are the previous state-of-the-arts on MS
COCO datasets, our approach sets a new comparative per-
formance, achieving 132.0 CIDEr score and makes the ab-
solute improvement over the baseline AoANet by 3.1%,
demonstrating the effectiveness and the compatibility of
our proposed approach. On the other hand, to fully ver-
ify the generalizability of our memory mechanism for im-
age captioning, we include two variants of our approach
by plugging combined decisions into both LSTM-based and
Transformer-based encoder-decoder structure. Table 1 also
witnesses continuous performance boosting and illustrates
the advantage of exploiting adequate knowledge via mem-
ory bank for image captioning again.

Online Evaluation In addition, following the common
practice (Huang et al. 2019; Wang et al. 2020), we also eval-
uate our best variants AoANet + MA on the official test-
ing set by submitting the ensemble versions, i.e., an aver-
age ensemble for four checkpoints trained independently, to
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Figure 2: Case studies of baseline AoANet, plus our memory augmented method (AoANet + MA), coupled with the corre-
sponding ground truth sentences (GT).

the online testing server. The results over official testing im-
ages with 5 reference captions (c5) and 40 reference captions
(c40) of our approach, the top-performing published works,
and other memory-based methods on the leaderboard are re-
ported in Table 2. The results clearly show that compared to
all the other popular captioning systems, our AoANet + MA
exhibit better performances cross over most metrics.

3.3 Qualitative Analysis
Figure 2 showcases several image captioning results of
AoANet and our memory-augmented approach AoANet +
MA, coupled with human-annotated ground truth sentences
(GT). Generally, compared with the captions of AoANet,
which are somewhat relevant to image content and logically
correct, our memory augmenting method produces more ac-
curate and rich descriptive sentences by exploiting extra
explicit knowledge. What’s more, the baseline has errors
when generating some captions. In contrast, our method cor-
rects these mistakes in a human-like format. For example,
AoANet generates the phrase of ”on a red bus” that is in-
consistent with the visual content and common sense for the
third image, while ”on bikes in front of a red bus” in our
AoANet depicts the visual content more precise. This again
confirms the advantage of capturing related knowledge and
applies it during inference via our memory-enhancing mod-
ule. On the other hand, we also observe that some exam-
ples include factual knowledge and near-duplicate sentences
from the training set. In these cases, assigning train and test
instances similar representations appears to be a more com-
mon issue than implicitly memorizing the next word with
model parameters.

3.4 Ablation Study
To fully exam the impact of the proposed memory aug-
mented method, we conduct an ablation study by comparing

Training Data 50% 75% 100%

Memory Data 100% 100% 100%

Metrics B-4 C B-4 C B-4 C

Up-Down 35.2 112.6 35.7 113.0 36.0 113.5
Up-Down + MA 36.8 115.3 36.9 115.8 37.1 116.3

AoANet 36.2 116.0 36.7 118.0 36.9 118.5
AoANet + MA 37.8 120.5 38.0 121.2 38.0 121.0

Table 3: Evaluation of baseline and our memory-augmented
method by training on a subset of MS COCO training split
while constructing the memory bank with trained captioning
model on the whole training split.

against a set of other ablated models with various settings.

Effect of Memory Data Size The previous section has
demonstrated that recalling similar and useful knowledge
from the memory bank can significantly improve the im-
age captioning performance. This raises the question: can
the memory directly transfer from data that is larger and
not trained on? To answer this question, we further estimate
the performance of captioner equipped with our proposed
method for a subset of the training data while keeping the
memory bank construction complete, where x% denotes the
percentage of the total data that is used for training. All these
subsets of the training samples are selected randomly. Ac-
cording to the results shown in Table 3, conforming to our
common sense, the conventional image captioning model
trained on 100% data apparently outperforms the identical
captioner trained on smaller data. Concretely, boosting the
CIDEr score from 116.0 to 118.5 on the AoANet baseline,
validates the advantage of big training data size. On the other
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k B-4 M R C S

0 36.9 28.5 57.3 118.5 21.6
1 37.1 28.5 57.4 119.4 21.6
2 37.3 28.3 57.4 119.8 21.6
8 37.5 28.5 57.5 120.3 21.8
64 37.5 28.6 57.6 120.5 21.7
256 37.8 28.7 57.8 121.0 21.8
512 38.0 28.7 57.8 121.0 21.8

Table 4: Effect of the number of retrieved knowledge entries
per next word of AoANet + MA on MS COCO validation
set. Recalling more entries from the memory bank mono-
tonically improves the captioning performance.

Figure 3: Evaluation results of different balancing factor λ
values on MS COCO validation set for different baselines.

hand, adding relevant knowledge retrieval over the total ex-
amples to the model trained on the total size benefits the
performance a lot; i.e., retrieving related knowledge explic-
itly from the data set outperforms training on it implicitly
sometimes. This phenomenon reveals that rather than train-
ing captioning models on ever-larger datasets, we can utilize
smaller datasets to learn generic representations and aug-
ment them with memory bank for fast adapting.

Effect of Number of Retrieved Knowledge Entries per
Query For memory augmenting, the number of retrieved
knowledge entries k, is fixed to 512. Here, we investigate the
effect of the number of related knowledge entries per query,
and the results are listed in Table 4. We can observe that: 1)
by incorporating the memory augmented method, all of the
evaluation scores are increased, demonstrating the effective-
ness of the memory mechanism. 2) The captioning perfor-
mance monotonically improves as more related knowledge
entries are recalled, and suggests that even larger improve-
ments may be possible with a higher value of recalled num-
ber k. 3) To make a trade-off between accuracy and speed, a
small number of retrieved entries per query, that is, k = 8, is
enough to achieve a competitive performance.

AoANet wins Tie AoANet + MA wins

Naturalness 24.8 44.0 31.2
Relevance 26.3 46.7 27.0
Richness 21.4 40.2 38.4

Table 5: Results of human evaluation in terms of various
metrics. All values are reported as a percentage (%).

Effect of Balancing Parameter In Equation 8, we inte-
grate a parameter λ to interpolate between the base model
distribution PIC and the distribution PMA from memory
augmented module over the dataset. In this section, we
tuned our system on the training set and used an enumer-
ation search on baseline Up-Down + MA and AoANet +
MA to determine the optimal parameter. The CIDEr scores
were measured under different parameter values, as shown
in Figure 3. We can observe that when λ ∼ 0.3, both model
achieves the highest metric values. As λ goes down from 0.3
to 0 or goes up from 0.3 to 1, the CIDEr score drops moder-
ately. Therefore, we set the λ = 0.3 by default in this paper.

3.5 Human Evaluation
To better understand the effectiveness of the memory aug-
mented method, we also conduct a human evaluation to
measure the quality of generated captions. We randomly
select 200 samples from the MS COCO datasets along
with human-annotated sentences. We recruit 8 workers to
compare the perceptual quality of the caption between our
memory-based approach and baselines independently in
four aspects: naturalness, which indicates the grammatical-
ity and fluency; relevance, which indicates the connection
with the given image content; richness, which measures
the amount of significant information contained in the sen-
tence. The results are shown in Table 5. We can see that
our memory-augmented approach wins in all metrics than
baselines. In particular, AoANet + MA achieves more than
17.0 score in richness. This again confirms that the proposed
memory augmented method holds the superiority to provide
more accurate and abundant descriptions.

4 Conclusion
Inspired that similar context are more likely to be created
with same word, in this paper, we introduce a simple and
effective memory-augmented method for image captioning,
which exploits explicit knowledge and helps to improve
trained captioners by directly querying the memory bank at
inference time. In particular, the construction of a retrieval-
based memory bank is non-parametric as well as no need
further training. Extensive experiments conducted on the
MS COCO benchmark prove that our memory-augmented
mechanism can effectively utilize history information to
consistently improve the generated caption quality. More
remarkably, the proposed memory augmented mechanism
is compatible with any captioning model that can produce
fixed-size context representations.
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