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Abstract
When confronted with objects of unknown types in an im-
age, humans can effortlessly and precisely tell their visual
boundaries. This recognition mechanism and underlying gen-
eralization capability seem to contrast to state-of-the-art im-
age segmentation networks that rely on large-scale category-
aware annotated training samples. In this paper, we make an
attempt towards building models that explicitly account for
visual boundary knowledge, in hope to reduce the training
effort on segmenting unseen categories. Specifically, we in-
vestigate a new task termed as Boundary Knowledge Trans-
lation (BKT). Given a set of fully labeled categories, BK-
T aims to translate the visual boundary knowledge learned
from the labeled categories, to a set of novel categories, each
of which is provided only a few labeled samples. To this end,
we propose a Translation Segmentation Network (Trans-Net),
which comprises a segmentation network and two boundary
discriminators. The segmentation network, combined with
a boundary-aware self-supervised mechanism, is devised to
conduct foreground segmentation, while the two discrimina-
tors work together in an adversarial manner to ensure an accu-
rate segmentation of the novel categories under light supervi-
sion. Exhaustive experiments demonstrate that, with only tens
of labeled samples as guidance, Trans-Net achieves close re-
sults on par with fully supervised methods.

Introduction
Image segmentation has witnessed an unprecedented devel-
opment in the past decade thanks to the deep learning. The
encouraging results, however, come at the cost of the vast
number of annotations and GPU training for days or even
weeks. To alleviate the training effort, a number of learning
techniques, such as few-shot learning and transfer learning,
have proposed. The former aims to train models using only
a few annotated samples, while the later focuses on trans-
ferring the models learned on one domain to another nov-
el one. Despite the recent progress in few-shot and transfer
learning, existing approaches are still prone to either inferior
results (Shaban et al. 2017; Siam, Oreshkin, and Jagersand
2019; Wang et al. 2019a), or the rigorous requirement that
the two tasks are strongly related (Dai et al. 2019; Sun et al.
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2019) and a large number of annotated samples (Hong et al.
2017; Li, Arnab, and Torr 2018; Papandreou et al. 2015).

Nevertheless, our human eyes can effortlessly recognize
the visual boundary of a scene object, even if this objec-
t seems unfamiliar or belongs to an unknown category. In-
spired by this fact, we study in this paper a new Boundary
Knowledge Translation Task (BKT-Task), in aim to trans-
late the knowledge learned from p training categories where
abundant annotations are available, into another q target cat-
egories where a very small number of annotations are avail-
able for each class.

The differences between the proposed BKT-Task and the
two related tasks, transfer learning and few-shot learning,
are summarized in Fig. 1. Unlike transfer learning that re-
quires the p source categories and the q target ones to be
highly related so as to achieve reasonable performances, in
BKT such requirement is largely relaxed. As demonstrated
in our experiments, for example, the visual boundary knowl-
edge of birds can be seamlessly translated into the segmen-
tation network for flowers. Also, in contrast to both transfer
and few-shot learning, whose outputs span p+ q categories,
BKT focuses on the q categories only, which seems to be a
flaw of BKT but in reality not. In many cases, since abun-
dant annotations are available for the p categories, indicating
that state-of-the-art deep networks will highly likely to de-
liver gratifying results, a model that focuses on the novel
q categories where annotations are insufficient is much de-
sired. Furthermore, as shown in prior works (Chen, Artieres,
and Denoyer 2019; Minaee et al. 2020; Vinyals et al. 2016)
and also demonstrated in our experiments, handling many
categories simultaneously at once, especially under a com-
pact network architecture, will significantly downgrade the
performances for all classes; focusing on the q critical cat-
egories, on the other hand, will alleviate this dilemma to a
large extend and ensure satisfactory performances.

To this end, we propose a Translation Segmentation Net-
work (Trans-Net) for the above BKT-Task. The Trans-Net is
designed to contain a segmentation network and two bound-
ary discriminators. The segmentation network focuses on
only segmenting the target categories, while the two discrim-
inators collaborate in an adversarial fashion: one works on
distinguishing whether the segmented foreground contains
the background features, and the other distinguishes whether
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Figure 1: Comparing the proposed BKT with transfer learning and few-shot learning. Specifically, BKT translates the knowl-
edge learned from p training categories into another q ones, where the p and q categories are disjoint. Unlike transfer learning
and few-shot learning based tasks where the trained models eventually tackle p + q categories, BKT concentrates on the q
testing categories only.

the segmented background contains the foreground features.
Meanwhile, we also introduce pseudo masks for enhancing
and accelerating the translation of the boundary knowledge.

For the segmentation network, we label tens of samples
of the target categories, as the guidance for segmenting the
desired boundary of the foreground. We also propose a self-
supervised strategy to strengthen the boundary consistency
of unlabeled samples. Through the adversarial optimization,
the visual boundary knowledge of fully labeled p categories
can be effectively translated into the segmentation network
by two boundary discriminators. Experiments demonstrate
that, with only tens of labeled samples as guidance, Trans-
Net achieves truly encouraging results.

Our contribution is therefore introducing the new BKT-
Task, in aim to translate the visual boundary knowledge
learned from fully annotate source categories into novel ones
with few labels, and proposing a dedicated solution, Trans-
Net, towards solving BKT-Task. As the first attempt along
its line, Trans-Net, for the time being, focuses on foreground
segmentation. We devise a boundary-aware self-supervised
mechanism and pseudo masks for the segmentation network
and the discriminators to enhance the translation of visu-
al boundary knowledge, respectively. We evaluate the pro-
posed Trans-Net on a broad domain of image datasets, in
term of both qualitative visualization and quantitative mea-
sures, and show that the proposed method achieves results
on par with fully supervised ones.

Related Work
Deep-model knowledge transfer has recently received in-
creasing attentions (Yang et al. 2020; Chen et al. 2020; Song
et al. 2019; Yu et al. 2017). In what follows, we briefly re-
view here two lines of work that are related to ours, GAN-
based segmentation methods and boundary-aware segmen-
tation. More related works about few-shot learning and
transfer learning are given in the supplements.

GAN-based segmentation methods can be classified into
two categories: mask distribution-based methods and com-
position fidelity based methods. For the mask distribution-
based methods, Luc et al. (2016) proposed the first GAN
based semantic segmentation network, which adopts the ad-
versarial optimization between segmented results and GT

mask to train the segmentation network. Meanwhile, some
researchers (Arbelle and Raviv 2018; Han and Yin 2017;
Xue et al. 2018) applied the same adversarial strategy into
medical image segmentation. With generated fake images
and labeled images, Souly, Spampinato, and Shah (2017)
adopted the adversarial strategy to train the discriminator
output class confidence maps. Furthermore, Hung et al.
(2018) extended the discriminator to generate a confidence
map, which can be used to infer the regions sufficiently close
to those from the ground truth distribution. In the compo-
sition fidelity based methods (Chen, Artieres, and Denoy-
er 2019; Ostyakov et al. 2018; Remez, Huang, and Brown
2018), the segmented objects are firstly composited with
some background images. Then, the discriminator is adopted
to discriminate fidelity of the composited images and the GT
nature images. Unlike the above existing GAN-based meth-
ods, we adopt the adversarial strategy to translate the source
categories’ visual boundary knowledge into the segmenta-
tion network by two boundary discriminators.

Boundary-aware segmentation. Bertasius, Shi, and Torre-
sani (2016) proposed two-stream framework where the pre-
dicted semantic boundaries is adopted to improve the seman-
tic segmentation maps. Similarly, two-stream framework is
also adopted in some recent works (Chen et al. 2016; Cheng
et al. 2017; Yin et al. 2018; Yu et al. 2018; Ye et al. 2019; ?),
where different constraints are devised for strengthening the
segmentation results with the predicted boundaries. Unlike
predicting the boundary directly, Hayder, He, and Salzman-
n (2017) proposed predicting pixels’ distance to the object’s
boundary and post-processed the distance map into the fi-
nal segmented results. Further more, a boundary refinement
block (Peng et al. 2017) is proposed to improve the localiza-
tion performance near the object boundaries. A boundary-
aware filtering (Khoreva et al. 2017) is devised to improve
object delineation. Zhang et al. (2017) proposed a local
boundary refinement network to learn the position-adaptive
propagation coefficients. Qin et al. (2019) adopted the patch-
level SSIM loss (Wang, Simoncelli, and Bovik 2003) to as-
sign higher weights to the boundary. Unlike the above meth-
ods, we devise two boundary discriminators for discriminat-
ing the foreground’s outer border and background’s inner
boundary, which can translate the visual boundary knowl-
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Figure 2: The framework of Trans-Net. The segmentation network is designed to segment the sample’s foreground in the
target dataset. The outer boundary discriminator is devised for distinguishing whether the segmented foreground contains the
outer background’s features. The inner boundary discriminator is devised for distinguishing whether the segmented background
contains the inner foreground’s features. Pseudo samples of source dataset are generated with the eroded and dilated masks,
which can reinforce the visual boundary knowledge translation. Boundary-aware self-supervision is proposed to constrain the
boundary invariance on the target dataset.

edge into a segmentation network for any new category.

Boundary Knowledge Translation Task
The definition of the BKT-Task is given as follows. We as-
sume that we are given the labeled source dataset Sp that
contains p object categories and target dataset Sq of q objec-
t categories. The p categories and q categories are disjoint.
The visual boundary knowledge is defined as the perfect seg-
mentation that the object doesn’t contain outer background’s
features, and the background doesn’t contain inner object-
s’ features. The goal of BKT-Task is to translate the visual
boundary knowledge of Sp into the segmentation network
Fθ, which is devised for only concentrating on the segmen-
tation of q categories. The difference between the BKT-Task
and other related tasks are shown in Fig. 1.

Method
There are vast public labeled datasets for the segmentation
task. The BKT-Task can effectively exploit those source
datasets into the segmentation network for a new catego-
ry, which will dramatically reduce the requirement for la-
beled samples in the new category. As the first attempt a-
long BKT-Task, in this paper, we focus on foreground seg-
mentation and propose a Translation Segmentation Network
(Trans-Net), shown in Fig. 2. Trans-Net contains a segmen-
tation network and two boundary discriminators. The seg-
mentation network is designed for only segment samples
in the target dataset Sq . The two boundary discriminators
are devised for translating visual boundary knowledge of
the source dataset Sp into the segmentation network with-
out embezzling its capability for q categories.

Segmentation Network
In Trans-Net, the segmentation network Fθ is designed to
be an encoder-decoder architecture. Given a target image
x ∈ Sq , the segmented result m̃ = Fθ(x) is expected to

approximate the GT mask m, which can be achieved by min-
imizing the following basic reconstruction loss Lrec:

Lrec = ||m̃−m||22, m̃ = Fθ(x), x ∈ Sq. (1)

The Lrec is used to reconstruct a few labeled samples of
the target datasets, which will guide the segmentation of the
desired boundary.

Boundary-aware Self-supervision. To reduce the amount
of labelled samples, inspired by Wang et al. (2019b), we pro-
pose a boundary-aware self-supervised strategy, which can
strengthen the boundary consistency on target categories.
The core idea is that the segmented result of the warped in-
put image should be equal to the warped result of the in-
put image. The schematic diagram of boundary-aware self-
supervision is given in Fig. 2. Formally, for the robust seg-
mentation network, given an affine transformation matrix A,
segmented result Fθ(Ax) of the warped image Ax and the
warped result AFθ(x) should be consistent in the following
way:Fθ(Ax) = AFθ(x). Furthermore, we obtain the bound-
ary neighborhood weight map w as follows:

w = Dr(m̃)− Er(m̃), (2)

where, Dr and Er denote the dilation and erosion operation
with disk strel of radius r. The weight map w can further
strengthen the boundary consistency. The boundary-aware
self-supervised loss Lsel is defined as follows:

Lsel = ||w′Fθ(Ax)− A{wFθ(x)}||22, x ∈ Sq, (3)

where, w′ and w are the weight maps of the predict masks
Fθ(Ax) and Fθ(x), respectively. The boundary-aware self-
supervised mechanism not only strengthens the boundary
consistency but also can eliminate the unreasonable holes
in the predict masks.

Boundary Discriminator
Inspired by the fact that humans can segment an object’s
boundary through distinguishing whether the inner and outer
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of boundary contain redundant features, two boundary dis-
criminators are devised to translate the boundary knowledge
of the source dataset Sp into the segmentation network.

Outer Boundary Discriminator. Given the input target im-
age x ∈ Sq , the segmentation network predicts the mask
m̃ = Fθ(x). Next, the foreground xo is computed using the
following equation: xo = m̃∗x, where ‘∗’ denotes pixel-wise
multiplication. Then the concatenated triplet Ioa = [x, m̃, xo]
is input into the outer boundary discriminator Doφ, which
discriminates whether the segmented foreground xo con-
tains the background’s outer features. In the paper, Ioa is
regarded as a fake triplet. Meanwhile, choosing a labeled
sample x from the source dataset Sp, the corresponding
Ioe = [x,m, xo] is labeled as a real triplet. Furthermore, we
reprocess the GT mask m of samples x ∈ Sp by dilation
operation and get the pseudo triplet Ios = [x,Dr(m), xoD],
where x ∈ Sp and xoD = Dr(m) ∗ x. The generated pseu-
do triplet Ios will assist the outer boundary discriminator in
distinguishing the background’s outer features. The adver-
sarial optimization between the segmentation network and
outer boundary discriminator will translate the outer bound-
ary knowledge of the source dataset Sp into the segmenta-
tion network with the following outer boundary adversarial
loss Lout

adv:

Lout
adv=

1

2
E

Ioa∼Po
a

[Doφ(Ioa)]+
1

2
E

Ios∼Po
s

[Doφ(Ios)]− E
Ioe∼Po

e

[Doφ(Ioe)]

+ λ E
Io∼PIo

[(‖∇IoDoφ(Io)‖2−1)2],
(4)

where, the Poa, Pos, Poe are the segmented outer boundary dis-
tribution, pseudo outer boundary distribution, and real outer
boundary distribution, respectively. The PIo is sampled uni-
formly along straight lines between pairs of points sampled
from the distribution Poe and the segmentation network dis-
tribution Poa. The Io = εIoe + (1 − ε)Ioa, where the ε is a
random number between 0 and 1. The gradient penalty ter-
m is firstly proposed in WGAN-GP (Gulrajani et al. 2017).
The λ is the gradient penalty coefficient.

Inner Boundary Discriminator. The inner boundary dis-
criminatorDiϕ is devised for discriminating whether the seg-
mented background contains the object’s inner features. To
obtain the segmented background, the predict background
mask m̃′ and GT mask m′ are reprocessed with the Not-
operation as follows: m̃′ = [1]−m̃, m′ = [1]−m, where the
[1] denotes the unit matrix of m’s size. Then, the correspond-
ing fake triplet Iia = [x, m̃′, xi], real triplet Iie = [x,m′, xi]
and pseudo triplet Iis = [x,Dr(m′), xiD] are computed in
the same manner as done in the outer boundary discrimina-
tor. The generated pseudo triplet Iis will also assist the inner
boundary discriminator in distinguishing the inner features
of the foreground. Similarly, the inner boundary adversarial
loss Lin

adv is defined as follows:

Lin
adv=

1

2
E

Iia∼Pi
a

[Diϕ(Iia)]+
1

2
E

Iis∼Pi
s

[Diϕ(Iis)]− E
Iie∼Pi

e

[Diϕ(Iie)]

+ λ E
Ii∼PIi

[(‖∇IiDiϕ(Ii)‖2−1)2],
(5)

where, the Pia, Pis, Pie are the segmented inner boundary dis-
tribution, pseudo inner boundary distribution, and real inner

Algorithm 1 The Training Algorithm for Trans-Net

Require: The gradient penalty coefficient λ, interval itera-
tion number ncritic, the batch size K, Adam hyperpa-
rameters α, β1, β2, the balance parameters τ, η for Lrec
and Lsel, the Laplace smoothing parameter ξ.

Require: Initial critic parameters ϕ, φ, initial segmentation
network parameters θ.

1: while θ has not converged do
2: for t = 1, ..., ncritic do
3: for k = 1, ...,K do
4: Sample x from target dataset Sq , (x,m) from

source dataset Sp, a random number ε ∼ U [0, 1].
5: Obtain real triplet Ioe = [x,m, xo] and Iie =

[x,m′, xi], xo = m ∗ x, xi = m′ ∗ x.
6: Obtain fake triplet Ioa = [x, m̃, xo] and Iia =

[x, m̃′, xi], m̃ = Fθ(x), m̃′ = [1]− m̃.
7: Obtain pseudo triplet Ios = [x,Dr(m), xoD]

and Iis = [x,Er(m′), xiE].
8: Io ← εIoe + (1− ε)Ioa, Ii ← εIie+ (1− ε)Iia.
9: Lout

adv
(k) ← 1

2D
o
φ(I

o
a)+

1
2D

o
φ(I

o
s)−Doφ(I

o
e)+

λ(‖∇IoDoφ(I
o)‖2 − 1)2.

10: Lin
adv

(k) ← 1
2D

i
ϕ(I

i
a)+

1
2D

i
ϕ(I

i
s)−Diϕ(Iie)+

λ(‖∇IiDiϕ(Ii)‖2 − 1)2.
11: φ← Adam(∇φ 1

K

∑K
k=1 Lout

adv
(k)
, φ, α, β1, β2).

12: ϕ← Adam(∇ϕ 1
K

∑K
k=1 Lin

adv

(k)
, ϕ, α, β1, β2).

13: Sample unlabeled batch {x(k)}Kk=1 and labeled

batch {ẍ(k)
,m(k)}Kk=1 from target dataset Sq .

14: Lrec ← ||Fθ(ẍ)−m||22.
15: Lsel ← ||w′Fθ(Ax)− A{wFθ(x)}||22.
16: θ ← Adam(∇θ 1

K

∑K
k=1{τLrec + ηLsel −

Doφ(Fθ(x))−Diϕ(Fθ(x))}), θ, α, β1, β2).
17: return Segmentation network parameters θ, critic pa-

rameters ϕ, φ.

boundary distribution, respectively. Ii = εIie + (1 − ε)Iia.
The optimization on Lin

adv will translate the inner boundary
knowledge of the source dataset Sp into the segmentation
network.

Complete Algorithm
To sum up, two boundary adversarial losses Lout

adv and Lin
adv

are used for translating the visual boundary knowledge of
the source dataset Sp into the segmentation network, which
is designed for only segment samples from the target dataset
Sq . The basic reconstruction loss Lrec is adopted to su-
pervise the segmentation on tens of labeled samples in tar-
get dataset Sq . The self-supervised loss Lsel is devised to
strengthen the boundary consistency on target datasets Sq .

During training, we alternatively optimize the segmenta-
tion network Fθ and two boundary discriminators Doφ,Diϕ
using the randomly sampled samples from the target dataset
Sq and the source dataset Sp, respectively. The complete al-
gorithm is summarized in Algorithm 1. Once trained, the
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Figure 3: The visual results of different methods on three datasets. Trans.(x) denotes the DeepLabV3+ trained on MixAll−

and finetuned with x labeled target samples. T−self and T−pseu denote the Trans-Net without boundary-aware self-supervision
and pseudo triplet. T−inner and T−outer denote the Trans-Net without inner discriminator and outer discriminator. ToneD denotes
the Trans-Net with only one discriminator. T(x) denotes the Trans-Net with x labeled samples of the target dataset.

segmentation network concentrates on segmenting the fore-
ground of the target category only.

Experiments
Dataset. The datasets we adopted contain single catego-
ry datasets: Birds (Catherine et al. 2011), Flowers (Nils-
back and Zisserman 2007) and HumanMatting1, and mixed
category datasets: THUR15K (Cheng et al. 2014), M-
SRA10K and MSRA-B (Cheng et al. 2011; Hou et al.
2017), CSSD (Yan et al. 2013), ECSSD (Shi et al. 2016),
DUT-OMRON (Ruan, Tong, and Lu 2011), PASCAL-
Context (Mottaghi et al. 2014), HKU-IS (Li and Yu 2016),
SOD (Movahedi and Elder 2010), SIP1K (Fan et al. 2019).
The Birds, Flowers, HumanMatting and THUR15K are set
as the target datasets in the experiments. The Birds, Flower-
s, and HumanMatting contain (11, 788), (8, 189), (34, 427)
samples, respectively. The THUR15K contains 5 categories
and 15000 samples. The Flowers contains manually annotat-
ed parts (753 accurate masks) and algorithm (Nilsback and
Zisserman 2007) pre-segmented parts (8189 rough masks).
In this paper, we adopt the manually labeled part. The ex-
periments on the algorithm pre-segmented parts are given
in the supplementary material. Except THUR15K, all the
above mixed datasets are merged into the MixAll dataset,
where some of the mislabeled samples are deleted. The fi-
nal MixAll dataset contains 23, 500 samples. When trans-
lating the visual boundary knowledge into the target cate-

1https://github. com/aisegmentcn/matting human datasets.

gory, the corresponding samples of the target category will
be removed from MixAll, which generates the MixAll−

dataset. The data enhancement strategies for a few labeled
dataset and affine transformation strategies are given in the
supplementary materials.

Network architecture. In the paper, the segmentation
network we adopted is the DeeplabV3+ (backbone:
resnet50) (Chen et al. 2017). Some popular network ar-
chitectures including Unet (Ronneberger, Fischer, and Brox
2015), FPN (Lin et al. 2017), Linknet (Chaurasia and Culur-
ciello 2017), PSPNet (Zhao et al. 2017), PAN (Li et al. 2018)
are also tested in our framework. Two boundary discrimina-
tors have the same encoder architecture, which is given in
the supplementary materials.

Parameter setting. The parameters are set as follows: ξ =
1, τ = 1, η = 1, λ = 10, ncritic = 5, the batch size
K = 64, Adam hyperparameters for two discriminators
α = 0.0001, β1 = 0, β2 = 0.9. The learning rate for the
segmentation network and two discriminators are all taken
to be 1e−4. The disk strel of radius r is randomly sampled
integer between 11 and 55.

Metric. The metrics we adopted include Pixel Accuracy
(PA), Mean Pixel Accuracy (MPA), Mean Intersection over
Union (MIoU), and Frequency Weighted Intersection over
Union (FWIoU).

More details of datasets, network, parameters are given in
the supplementary materials.
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Birds Dataset HumanMatting Dataset Flowers Dataset

Method\Index PA MPA MIoU FWIoU PA MPA MIoU FWIoU PA MPA MIoU FWIoU

CAC 41.90 48.28 26.42 27.06 45.92 47.14 24.28 23.72 43.70 36.96 24.24 35.34
ReDO 67.06 50.00 38.53 33.01 51.44 50.00 35.72 36.49 77.16 70.00 58.58 43.82

SG-One 83.45 78.66 61.43 74.68 72.68 72.46 56.72 56.93 86.47 87.05 74.73 76.77
PANet 81.78 66.94 57.83 69.42 73.89 76.49 60.54 63.29 87.42 68.43 69.25 69.94
SPNet 85.21 79.65 76.92 78.01 77.82 75.90 60.42 62.90 87.90 88.43 79.21 80.43
CANet 78.29 73.49 71.06 69.84 76.04 73.80 64.21 63.90 86.43 84.96 80.32 79.16

ALSSS 76.95 51.54 39.48 66.09 70.54 76.26 60.42 63.90 87.43 79.32 85.21 87.32
USSS 81.66 49.64 41.27 67.95 77.25 77.75 62.40 62.28 95.47 95.15 90.81 91.36

Trans.(10) 82.84 79.83 65.07 74.71 85.32 85.44 75.71 75.72 83.39 82.69 78.66 76.39
Trans.(100) 91.26 91.56 83.23 84.06 94.99 95.00 90.46 90.48 93.90 89.29 81.33 89.05

Gated-SCNN 83.23 83.65 57.93 76.68 81.18 80.38 67.66 67.96 86.81 79.56 71.18 76.19
BFP 80.47 80.54 58.99 74.24 79.32 78.46 65.34 64.31 84.28 77.43 68.29 74.30
Unet 95.74 91.88 86.41 92.06 97.89 97.88 95.86 95.87 96.84 96.39 93.44 93.89
FPN 95.70 92.86 86.53 92.06 98.20 98.19 96.45 96.46 97.21

::::
97.16 94.22 94.59

LinkNet 95.50 93.04 86.03 91.77 97.42 97.41 94.97 94.98
::::
97.25 96.82

::::
94.26

::::
94.65

PSPNet 93.37 87.01 79.47 87.97 97.03 97.02 94.22 94.23 95.80 95.77 91.46 91.99
PAN 95.86 93.86 87.07 92.38 98.16 98.15 96.37 96.38 96.92 96.71 93.64 94.06

DeepLabV3+ 96.78
::::
94.88 89.62 93.95 98.28 98.28 96.62 96.63 97.01 96.65 93.80 94.23

T(0) 70.87 56.19 42.67 60.15 66.41 66.97 48.90 48.73 83.04 78.47 67.78 70.56
T(10) 92.95 90.35 79.58 87.66 96.24 96.29 92.74 92.75 93.20 94.20 88.70 89.30
T(all)

::::
96.88 94.73

::::
89.76

::::
94.09

::::
98.32

::::
98.32

::::
96.68

::::
96.68 95.92 96.44 91.77 92.23

Table 1: The performance comparison between SOTA methods and Trans-Net. The T(x) denotes the Trans-Net with x labeled
samples of the target dataset. (All scores in %). Trans.(x) denotes the DeepLabV3+ trained on MixAll− and finetuned with
x labeled target samples. ‘Wavy line’ and ‘underline’ indicate the best and second-best performance. ‘Bold’ indicates the best
performance among all non-fully supervised methods. Note that Flowers dataset contains only 753 annotated samples.

Comparing with SOTA Methods
In this section, the proposed method is compared with
the SOTA methods, including unsupervised methods: Re-
DO (Chen, Artieres, and Denoyer 2019) and CAC (Hsu, Lin,
and Chuang 2018), few-shot methods: SG-One (Zhang et al.
2018), PANet (Wang et al. 2019a), SPNet (Xian et al. 2019)
and CANet (Zhang et al. 2019), weakly-/semi-supervised
methods: USSS (Kalluri et al. 2019) and ALSSS (Hung
et al. 2018), and fully supervised methods: Unet (Ron-
neberger, Fischer, and Brox 2015), FPN (Lin et al. 2017),
LinkNet (Chaurasia and Culurciello 2017), PSPNet (Zhao
et al. 2017), PAN (Li et al. 2018) and DeeplabV3+ (Chen
et al. 2017) on four datasets. Meanwhile, The Trans-Net is
also compared with two boundary-aware methods: Gated-
SCNN (Takikawa et al. 2019) and BFP (Ding et al. 2019).
For the semi-supervised methods (USSS and ALSSS) and
boundary-aware methods (Gated-SCNN and BFP), ten la-
beled samples are provided. For T(x), the visual boundary
knowledge is translated from the MixAll−, which doesn’t
contain samples from the target category. Fig. 3 and Table 1
show the quantitative and qualitative results, where we can
see that most scores of proposed T(10) achieve the SOTA
results on par with existing non-fully supervised method-
s on Birds and HumanMatting datasets. Note that Flower-
s (Nilsback and Zisserman 2007) dataset contains only 753
manually annotated samples, which leads to the inconsistent
scores with Birds and HumanMatting. The most likely rea-

son is overfitting. More experiments on the algorithm pre-
segmented Flowers (8189 samples) are given in the supple-
mentary material. Moreover, with only 10 labeled samples,
T(10) can achieve better results than some fully supervised
methods and close results on par with the best fully super-
vised method. Meanwhile, with all the labeled samples of
the target dataset, the T(all) achieves almost all the highest
scores. In sum, such experiments demonstrate the practica-
bility of the BKT-Task and the proposed Trans-Net. More vi-
sual results and experiment results on THUR15K and algo-
rithm pre-segmented Flowers are given in the supplements.

Knowledge Translation between Different Dataset
To verify the robustness of the BKT-Task and the Trans-
Net, the knowledge translation experiments between differ-
ent datasets are provided. For all the tasks in Table 2, on-
ly 10 labeled samples of the target dataset are used in the
Trans-Net. We can see that all the translation tasks achieve
satisfactory results. Even for the translation task between
very different categories ({Humans← Birds} and {Flowers
← Birds}), Trans-Net still can achieve satisfactory result-
s, which verifies the high extensibility and practicability of
the BKT-Task and the Trans-Net. For the scores on Human-
s, T(10) {Humans ← MixAll−} (Table 1) achieves better
performance than {(Humans, Birds, Flowers)← MixAll−}
(Table 2), which confirms the assumption that Birds and
Flowers will embezzle the segmentation capacity for Hu-
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Index\Task Humans← Birds Flowers← Birds (Birds, Flowers)← Humans (Humans, Birds, Flowers)←MixAll−

PA 95.02 92.70 (92.87, 81.32) (94.82, 76.08, 86.10)
MPA 94.54 94.00 ( 91.75, 78.78) (94.76, 84.15, 88.80)
MIoU 88.86 86.10 (79.83, 66.38) (90.14, 56.33, 75.42)

FWIoU 90.64 86.70 (87.65, 68.53) (90.16, 66.37, 76.01)

Table 2: The translation results between different dataset setting. ‘Sq ← Sp’ denotes translating knowledge of source dataset
Sp into the segmentation network for the target dataset Sq (All scores in %).

Index\Ablation T−
self T−

pseu T−
inner T−

outer ToneD T(0) T(5) T(10) T(20) T(50) T(100) T(all)

PA 96.02 95.98 93.08 95.28 90.65 66.41 91.08 96.24 96.30 96.91 96.96 98.32
MPA 95.94 96.10 93.08 95.29 90.54 66.97 91.25 96.29 96.31 96.88 96.95 98.32
MIoU 92.12 92.39 87.06 90.98 82.85 48.90 83.62 92.74 92.87 94.00 94.09 96.68

FWIoU 92.23 91.70 87.07 90.99 82.89 48.73 83.62 92.75 92.88 94.02 94.10 96.68

Table 3: The ablation study result of Trans-Net. T−self , T−pseu T−inner and T−outer denote the Trans-Net without boundary-aware
self-supervision, pseudo triplet, inner discriminator and outer discriminator, respectively. ToneD denotes the Trans-Net with
only one discriminator. T(x) denotes the Trans-Net with x labeled samples of the target dataset.

mans. What’s more, {Humans ← MixAll−} and {Flowers
←MixAll−} (Table 1) achieve higher scores than {Humans
← Birds} and {Flowers ← Birds}, which indicates that
translating knowledge from the mixed category dataset is
more proper for the BKT-Task.

Note that some scores of Birds in {(Birds, Flowers) ←
MixAll−} are higher than {Birds ← MixAll−}. One of
the reasons is that the Humans dataset is a human mat-
ting dataset with more accurate segmentation GT than the
MixAll− dataset, even we abandon some samples that are
wicked GT in MixAll− dataset. It also verifies that accurate
boundary annotations are more proper for the BKT-Task.
The visual results of knowledge translation tasks between
different datasets are given in the supplementary materials.

Ablation Study
To verify the effectiveness of the Trans-Net’s components,
we do ablation study on the boundary-aware self-supervised
strategy, the pseudo triplet, two boundary discriminators,
and the different numbers of labeled samples. In this sec-
tion, the knowledge translation task is set as {Humans ←
MixAll−}. For T−self , T−pseu, T−inner, T−inner and ToneD,
there are ten labeled samples of the Humans dataset. From
Table 3, we can see that Trans-Net achieves higher scores
than T−self and T−pseu, which demonstrates the effectiveness
of the self-supervised strategy and the pseudo triplet. Fig. 3
shows that the result of T−self has some holes. By con-
trast, the result of Trans-Net is accurate, which indicates
that the boundary-aware self-supervised strategy is bene-
ficial for eliminating the incorrect holes. For the ToneD,
the inputs of two discriminators will be concatenated then
be input into one discriminator. The scores of ToneD have
dropped by about 10% comparing with Trans-Net on al-
l indexes, which demonstrates that the two-discriminator
framework is useful for improving the segmentation perfor-
mance. Meanwhile, T(10) achieves about 4% increase on
the scores of T−inner and about 2% increase on the scores of
T−outer, which demonstrates the effectiveness of inner and

outer boundary discriminators. For the different number-
s of labeled samples, we find that 10-labeled-samples is a
critical cut-off point, which can supply relatively sufficient
guidance. An object usually contains multiple components,
which have different edges. Without any guidance of la-
beled samples, the segmentation network will not be aware
of the desired boundary of the object. Therefore, the T(0)
achieves the worst performance. With all labeled samples,
T(all) achieves SOTA results on par with existing fully su-
pervised methods. More visual results of the ablation study
are given in the supplementary materials.

Conclusion
In this paper, we study a new Boundary Knowledge Trans-
lation Task (BKT-Task). This is inspired by the fact that hu-
mans can perfectly segment the object from an image ac-
cording to the boundary information without knowing the
object’s category. The goal of BKT-Task is to translate the
visual boundary knowledge of source datasets into the seg-
mentation network for new categories in a least effort and
dependable way.

Based on the proposed BKT-Task, we introduce the
Translation Segmentation Network (Trans-Net) for seg-
menting the foreground from the background. The Trans-
Net contains a segmentation network and two boundary dis-
criminators, which are devised for translating visual bound-
ary knowledge from the source dataset to the target one.
Meanwhile, boundary-aware self-supervision and pseudo
triplet are devised to enhance boundary consistency and help
the two discriminators distinguish boundary, respectively.
Exhaustive experiments verify the promising generalization
and practicability of the BKT-Task. Furthermore, with on-
ly tens of labeled sample of the target dataset, the Trans-
Net achieves results on par with fully supervised methods.
In the future, we will generalize the knowledge translation
task into other applications, such as image matting and im-
age classification. Meanwhile, we will extend the Trans-Net
into more general multiple object image segmentation.
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Broader Impact
We discuss the potential positive and negative impact of the
proposed work here. Positive: the proposed method can be
applied to image foreground segmentation, and also be ex-
tended to other general image segmentation in the future,
which is beneficial for image editing applications. With vast
public annotated datasets, training a segmentation network
for the new category requires only tens of labeled samples
of the new category. The BKT-Task will dramatically reduce
the requirement for the labeled samples of new category,
while the trained model achieves gratifying performances.
Negative: the research might be adopted to generate fake im-
ages, which can be used for malicious purposes.
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