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Abstract

Video instance segmentation is a complex task in which we
need to detect, segment, and track each object for any given
video. Previous approaches only utilize single-frame features
for the detection, segmentation, and tracking of objects and
they suffer in the video scenario due to several distinct chal-
lenges such as motion blur and drastic appearance change. To
eliminate ambiguities introduced by only using single-frame
features, we propose a novel comprehensive feature aggrega-
tion approach (CompFeat) to refine features at both frame-
level and object-level with temporal and spatial context infor-
mation. The aggregation process is carefully designed with
a new attention mechanism which significantly increases the
discriminative power of the learned features. We further im-
prove the tracking capability of our model through a siamese
design by incorporating both feature similarities and spa-
tial similarities. Experiments conducted on the YouTube-VIS
dataset validate the effectiveness of proposed CompFeat.

Introduction
Video instance segmentation (VIS) is a joint task of de-
tection, segmentation and tracking of object instances in
videos (Yang, Fan, and Xu 2019). Different from instance
segmentation in image domain (Hariharan et al. 2014),
video instance segmentation not only requires to segment
object masks on individual frames, but also to track the
identities of objects across different frames. Also, unlike
semi-supervised video object segmentation (Voigtlaender
et al. 2019a; Voigtlaender and Leibe 2017; Xu et al. 2018;
Wug Oh et al. 2018; Oh et al. 2019; Xu et al. 2019), video in-
stance segmentation does not require a ground truth mask in
the first frame and all objects appear in the video should be
processed. It has essential applications in many video-based
tasks, including video editing, autonomous driving and aug-
mented reality.

Video instance segmentation has several distinct chal-
lenges. For example, if an object is recognized as a wrong
category in one frame of the video, tracking of this object
will be extremely hard due to inconsistency of object cate-
gories. When there are multiple similar objects, finding the
correspondences of them across the video is also challeng-
ing. VIS is an important but underexplored task. The pi-
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Figure 1: An illustration of the proposed comprehensive fea-
ture aggregation (CompFeat) method. Ft denotes the video
frame at time t. (a) Previous video instance segmentation
method without feature aggregation. (b) Our proposed com-
prehensive feature aggregation approach for video instance
segmentation

oneering work for VIS is MaskTrack-RCNN (Yang, Fan,
and Xu 2019), which is built upon Mask-RCNN (He et al.
2017), a state-of-the-art method for image instance segmen-
tation. A new tracking branch is tailored and added in or-
der to track object instances. However, MaskTrack-RCNN
relies on only single frame object features and neglects criti-
cal temporal information, i.e. temporal consistency of an ob-
ject, motion pattern of different objects, etc, all of which can
provide abundant information for category recognition, ob-
ject detection and mask segmentation across video frames.
And lots of recent video understanding work (Wang et al.
2018b; Wu et al. 2019) focused on how to utilize the tem-
poral information. In addition, the proposed tracking head
in MaskTrack-RCNN is preliminary and ignores the spatial
layout of objects with simple object features, which has been
proven crucial by modern object tracking algorithms (Zhang
and Peng 2019; Zhu et al. 2018; Li et al. 2019) to improve
the tracking of video instances.

In order to utilize the abundant information in videos and
to harvest the benefits of modern object tracking approaches,
we propose a comprehensive feature aggregation approach
for video instance segmentation, termed CompFeat. The
main idea of CompFeat is illustrated in Fig 1. As shown
in Fig 1(a), the key object is not detected and fails to be
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tracked due to using only the unclear visual cues of a single
frame, while other frames in the same video contain help-
ful information for locating and tracking the correct object.
Hence, we propose a dual attention module with both tem-
poral attention and spatial attention to aggregate contextual
information from neighboring frames and other positions in
the current frame as described in Fig 1(b). We also enhance
the features of detected objects by extending the dual atten-
tion module to object level, which substantially improves the
discriminative power of the object features, enabling more
accuracy object detection and segmentation. In addition, we
introduce a novel correlation-based tracking module to im-
prove instance tracking across different frames. Instead of
using a holistic similarity between a pair of detected object
and reference object to determine object correspondence,
our correlation-based module not only employs depth-wise
correlation between an object pair to generate a matching
score with spatial awareness, but also computes a correla-
tion map between a reference object and the current frame
to better localize the target object similar to Siamese object
tracking.

To summarize, the main contributions of this work are
threefold as follows:
• We propose a comprehensive feature aggregation ap-

proach for video instance segmentation, including tempo-
ral and spatial attention modules on both frame-level and
object-level features.

• We introduce a correlation-based tracking module to track
instances across frames, which predicts cross-correlation
maps in both object-to-object and object-to-frame man-
ners to produce multiple similarity cues for object track-
ing.

• We conduct extensive experiments and ablation study on
YouTube-VIS (Yang, Fan, and Xu 2019) to demonstrate
the effectiveness of our proposed framework and each of
the individual components.

Related Work
In this section we review video instance segmentation and
several closely-related tasks such as video object detection
and video object tracking.

Video Object Detection. Video object detection aims to
detect all objects in videos such as shown in the ImageNet
VID challenge (Russakovsky et al. 2015; Han et al. 2016).
Feature aggregation is widely used in video detection (Zhu
et al. 2017; Feichtenhofer, Pinz, and Zisserman 2017; Chen
et al. 2018; Liu et al. 2019). For instance, Zhu et al. pro-
posed to aggregate features from nearby frames to enhance
the feature quality of an input frame. However, its speed is
pretty slow due to the dense detection and optical flow esti-
mation. In (Chen et al. 2018), Chen et al. proposed to use a
scale-time lattice to generate detection on sparse key frames
and designed a temporal propagation approach for detection
in an effective way. Inspired by these work, we propose to
improve the feature quality for video instance segmentation
via feature aggregation using attention mechanism.

Video Object Tracking. Video object tracking can be
viewed as a sub-task of video instance segmentation, which

has two scenarios: detection-based tracking and detection-
free tracking. In detection-free tracking, given the ground
truth location of the target object in the first frame, algo-
rithm is required to track the target object through the whole
video. Recently, the Siamese network based trackers have
received significant attentions due to their well-balanced
accuracy and efficiency (Li et al. 2019; Zhang and Peng
2019; Wang et al. 2018a; Valmadre et al. 2017). In par-
ticular, these trackers attempt to produce a similarity map
from cross-correlation of the two feature branches, one for
the target object and the other for the search region, where
the similarity map embeds more semantic meanings. On the
other hand, detection-based tracking (Sadeghian, Alahi, and
Savarese 2017; Son et al. 2017; Shi 2018) simultaneously
detect and track multiple video objects, which is more sim-
ilar to the setting of video instance segmentation. In our
proposed CompFeat, we borrow ideas from both detection-
based tracking and detection-free tracking.

Video Instance Segmentation. MaskTrack-
RCNN (Yang, Fan, and Xu 2019) is the first attempt
to address the video instance segmentation problem. It
proposes a large-scale video dateset named YouTube-VIS
for benchmarking video instance segmentation algorithms.
Several methods in the Large-Scale Video Object Segmen-
tation Challenge achieve impressive results but they utilize
large quantity of external data and complex algorithm
pipelines (Wang et al. 2019; Dong et al. 2019; Luiten, Torr,
and Leibe 2019). A closely related work is multi-object
tracking and segmentation (Voigtlaender et al. 2019b) which
is proposed to evaluate multi-object tracking along with
instance segmentation. However, because of its limited data
scale and few object categories, we do not compare with it
in this paper. MaskTrack-RCNN only uses image features
but not temporal information of video sequences. We extend
this work with a more sophisticated comprehensive feature
aggregation approach which greatly boosts the performance
on video instance segmentation.

Proposed Method
In our framework, the video frames are sequentially pro-
cessed. During the video processing, we randomly select one
frame as the current frame and sample other several frames
as support frames which are used for temporal feature aggre-
gation. Meanwhile, a correlation-based tracking module is
proposed to track object identities across frames with com-
prehensive cues. The overview of the proposed CompFeat
framework is shown in Fig 2. The current frame and all
support frames are first fed into ResNet50 (He et al. 2016)
for feature extraction. Then, our proposed temporal atten-
tion module takes the features of the current frame and sup-
port frames as inputs for feature aggregation over different
frames. Meanwhile, the features of the current frame are
processed by a spatial attention module for global context
feature aggregation on a single frame. The similar process is
performed on object level with same model structures. In ad-
dition, we enhance the tracking branch of the network via a
correlation-based tracking module for a more accurate ob-
ject tracking. The correlation-based tracking module com-
bines cross-correlation between a pair of reference object
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Figure 2: An overview of our proposed CompFeat approach for video instance segmentation. CompFeat consists of three major
components: (a) A frame level attention module incorporating both temporal and spatial attention modules. (b) An object level
attention module which has a similar structure as frame level attention. (c) A correlation-based tracking module to predict the
correlation score and correlation map simultaneously.

and newly detected object and correlation between the refer-
ence object and the current frame (search region). Finally,
we integrate the three proposed modules into a complete
framework to perform three different tasks, object detection,
mask segmentation and object tracking simultaneously. Next
we describe each proposed component in details.

Temporal Attention Module
Inspired by the non-local networks (Wang et al. 2018b), we
propose a novel temporal attention module to refine the fea-
tures of the current frame via aggregating information from
other support frames. Different from the original non-local
block, which aims to model the long-range dependencies
by attention mechanism, our proposed temporal attention
module focuses more on embedding information from other
frames and use them to refine features of the current frame
by cross-attention mechanism. Specifically, the temporal at-
tention module has three steps: embedding of current frame
embedding, embedding of support frames and features ag-
gregation as described in Fig 3(a).

Embedding of current frame. Given the features of the
current frame fC ∈ RC×H×W , where H,W,C are the
height, width, and the feature dimension of output feature
map from the backbone network. We first feed it into a
convolution layer to generate a feature map fkey

C , where
fkey
C ∈ RC

4 ×H×W , and a non-linearity activation is applied.
The fkey

C can store the key features of the current frame in-
cluding which and where objects may exist. Therefore, the
feature map fkey

C is learnt to encode the key information of
visual semantics in the current frame, i.e. object categories,
object locations and masks.

Embedding of support frames. Given a stack of feature
maps obtained from support frames {fSt

∈ RC×H×W ; t =
1 : T} (T is the number of the support frames), each fea-

ture map fSt
is first encoded into a pair of feature maps

fkey
St

and fvalue
St

by two parallel convolution layers, where
fkey
St

, fvalue
St

∈ RC
4 ×H×W . Non-linear activation is applied

as well. If there are more than one support frames (T > 1),
we concatenate features of different frames along temporal
dimension and obtain fkey

S , fvalue
S ∈ RT×C

4 ×H×W . fkey
S

contains the information of key features of support frames.
The similarities between fkey

C and fkey
S shows when-and-

where the features of support frames are suitable to be ag-
gregated for the current frame. In addition, the feature map
fvalue
S is learnt to represent the context information of all

support frames.
Features aggregation. In the feature aggregation step, we

first compute the attention weights by similarities between
all pixel in feature map fkey

C and fkey
S . The similarities are

computed as the correlation of every spatial location in the
feature map fkey

C and every spatial-temporal location in fea-
ture map fkey

S . Then the attention weights are used to ag-
gregate features from fvalue

S to obtain context features from
support frames. In addition, we perform a feature transfor-
mation by a 1 × 1 convolution layer. The whole process of
feature aggregation for every position of the current frame
can be summarized as the following equation,

FTA ⇔


X = fkey

S � fkey
C

fA(:, j) = F (fvalue
S � exp(X(:, j))∑Np

i=1 exp(X(:, i))
)

(1)
where X is the similarity matrix between the current frame
and support frames with size of HWT × HW , i, j are the
indices of every position in the similarity matrix and the fea-
ture map, Np is the total number of positions in the feature
map, � is dot product, F is a transformation function with
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Figure 3: An illustration of (a) temporal attention module
and (b) spatial attention module. Best viewed in color.

non-linear activation, fA is the aggregated feature map af-
ter the transformation. Note that, all feature maps in above
equation may be processed by some necessary reshaping or
permutation operations. Finally, the refined feature map f̃C
is obtained by summing up the aggregated feature map fA
and the feature map of the current frame fC .

After aggregation, we can obtain a feature map f̃C , which
not only preserves some information key visual semantics
of current frame, but also extracts useful contextual infor-
mation existing in other frames within the same video.

Spatial Attention Module
Besides aggregating temporal contextual information from
support frames, we also propose a spatial attention mod-
ule to model the spatial context of the current frame. The
proposed spatial attention module is based on the non-local
block (Wang et al. 2018b) with several modifications. As
shown in Fig 3(b), instead of computing the attention maps
of all spatial positions for each channel, we simplify it by
sharing a single attention weight for all spatial positions in
each channel, which is known as the channel attention. As
reported in (Cao et al. 2019), this simplified channel atten-
tion module can achieve very similar performance compared
to original non-local block. Also, since it doesn’t need to
compute a specific attention weight for every spatial posi-
tion, it can be more efficient. Then, we use two more con-
volution layers to transform the features. Finally, the chan-
nel attention is added back to the feature map of the current
frame for global context feature aggregation.

Combining Two Attention Modules
Furthermore, we integrate the two attention modules into a
dual attention module. The dual attention model takes the
features of the current frame and support frames as inputs.
The features of the current frame fC is first processed by
spatial attention model to obtain an attention map with con-
text features of itself. And features of current frames fC and
features of support frames fS are fed into the temporal atten-
tion module to generate another attention map with context
information of support frames. Then, we aggregate the fea-
tures of the current frame with two attention maps by adding

them to the original feature map fC as follows,

fagg = FTA(fC , fS) + FSA(fC) + fC (2)

where FTA, FSA represent proposed temporal attention
module and spatial attention module respectively.

Attention Module on Object Level

Attention modules described above are all processed on
frame level features, which means they aggregate the con-
text information for the whole feature map from the current
frame and support frames. However, for instance segmen-
tation with a two-stage framework, aggregating context in-
formation for each object proposal is also critical. Object
proposals act as valuable candidates for the final object pre-
dictions and they encode more focused features for the in-
dividual objects. Proper feature aggregation onto these ob-
ject proposals can elucidate confusing feature representa-
tions and improve recognition accuracy. We attempt to ex-
tend the two proposed attention modules to object level by
applying similar operations to the object features produced
by ROI Align (He et al. 2017). Since the proposed attention
modules can be applied to feature maps with arbitrary size,
we adopt the two proposed attention modules in a similar
fashion. We denote the features of detected object proposals
as fCp . fCp ∈ RP×C×h×w, where P is the number of object
proposals, C is the channel dimension, and h, w are height
and width of the proposal. The features of each proposal are
fed into a dual attention module along with feature maps
of support frames. Since the size of the features of propos-
als is much smaller than the whole feature map, aggregating
features on object level can be very efficient. In the next sec-
tion, we show the performance gain of adding object-level
attention modules is comparable or even better than adding
attention module on frame level.

The proposed attention module is inspired by some early
work of video object detection and video object segmenta-
tion (Wu et al. 2019; Oh et al. 2019), where the non-local
blocks are used for extracting self-attention features. How-
ever, the motivation of proposed attention module is differ-
ent as it is designed to aggregate the features from other
frames (support frames) to current frame through feature
matching, but not to itself by self-attention mechanisms. In
addition, we extend the proposed attention module to ob-
ject level, which largely reduces the computational complex-
ity while improves the performance as frame-level attention
module. Furthermore, frame-level and object-level module
can be integrated into a single framework for a better per-
formance. To our best knowledge, there are few work on
enhancing object level feature by other frames. And the ex-
periments in Sec. show the effectiveness of our proposed
attention module.

By performing proposed dual attention module on both
frame level and object level, we achieve feature aggregation
on both spatial and temporal dimension, and in both local
and global granularities, which is a comprehensive approach
to aggregate and enhance intermediate features in a video
instance segmentation framework.
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Figure 4: An illustration of the correlation-based tracking
module. The convolution layers are omitted here.

Correlation-based Tracking Module
In order to track an object across frames in a more robust and
consistent way, we propose a new correlation-based track-
ing module to generate both spatial likelihoods and object
similarities, which is more powerful than the previous ap-
proach (Yang, Fan, and Xu 2019).

Recent works on object tracking shows the effectiveness
of correlation-based tracking which has achieved state-of-
the-art performance on several tracking benchmarks. In-
spired by SiamRPN++ (Li et al. 2019), our proposed track-
ing module incorporates knowledge from both object sim-
ilarities and cross-correlations of the target object and the
search region. As shown in Fig 4, our tracking module can
be abstracted into three procedures:(a) pair-wise similarity
computation, which uses depth-wise correlation instead of
matrix multiplication (Yang, Fan, and Xu 2019) to predict a
similarity matrix between two groups of objects. (b) cross-
correlation computation, which generates correlation maps
with depth-wise correlation between a single object and the
whole frame. To train the model to produce high quality cor-
relation maps, we employ a pseudo likelihood map repre-
sented by a two dimensional gaussian distribution centered
at the location of the object as the supervision signal. Then
we compute the aggregated similarity vector for a detected
object with ROI align within the corresponding bounding
box on the correlation map. After that, we sum up the two
similarity vectors to obtain the final depth-wise similarity
vector. (c) The final similarity score is mapped from the
similarity vector with two 1×1 convolution layers. The pro-
posed correlation-based tracking module considers both fea-
ture similarity and correlation-based similarity scores on the
raw image features to increase the robustness of tracking.

Experiments
In this section, we conduct extensive experiments on
YouTube-VIS (Yang, Fan, and Xu 2019) to evaluate the ef-
fectiveness of each proposed component and compare our
proposed method with previous approaches.

Data and Evaluation Metric
Data YouTube-VIS is the first and largest dataset for video
instance segmentation, which is a subset of YouTube-VOS
dataset (Xu et al. 2018). YouTube-VIS is comprised of 2,883

high resolution YouTube videos with 40 common object cat-
egories. In each video, several objects with bounding boxes
and masks are labeled manually and the identities cross dif-
ferent frames are annotated as well. Since only the valida-
tion set is available for evaluation, all results reported in this
paper are evaluated on the validation set.

Evaluation Metrics To evaluate the performance of the
proposed method, we use the metrics mentioned in (Yang,
Fan, and Xu 2019), which are average precision(AP) and
average recall(AR) based on a spatial-temporal Intersection-
over-Union (IoU). Following the COCO evaluation, AP is
computed by averaging over multiple IoU thresholds, e.g.
from from 50% to 95% at step 5% and AR is the maximum
recall given some fixed number of segmented instances per
video. Both metrics are first calculated for each category and
then averaged over 40 categories.

Implementation Details
Training. Our proposed method is built on Mask-
RCNN (He et al. 2017). The backbone network structure
is ResNet50 with FPN (Lin et al. 2017), which is pre-
trained on MSCOCO dataset (Lin et al. 2014). In the track-
ing branch, we use two convolution layers to refine the corre-
lation features generated by depth-wise correlations, respec-
tively. The first convolution layer has 256 channels which
is the same dimension as the correlation features while the
second one is used for correlation map prediction with only
one output channel. Our model is implemented based on
MMDetection (Chen et al. 2019) and the whole framework
is trained end-to-end in 12 epochs with two NVIDIA 2080TI
GPUs. We resize the original frame size to 640×360 for both
training and testing. During training, the initial learning rate
is set to 0.0125 and decays with a factor of 10 at epoch 8 and
11. For each input frame, we randomly select three frames
from the same video, two used as support frames in the dual
attention module and the other used as reference frame in
the tracking module.

Testing. During evaluation, the testing video is processed
by the proposed method frame by frame in an online fash-
ion. For each input frame, four additional frames are sam-
pled from the testing video as support frames. Note that the
number of support frames used in training and testing can
be different, since testing with more support frames can help
improve performance. We conduct an ablation study on the
number of support frames in the following section. For the
tracking head, we ignore the correlation map and use the
predicted correlation score as the tracking score. Then we
follow the inference procedure described in (Yang, Fan, and
Xu 2019) to predict the category, bounding box and mask for
the object instance. In addition, we combine other cues, i.e.
detection confidence, bounding box IoU, and category con-
sistency, along with tracking scores to improve the tracking
accuracy as a powerful post-processing.

Ablation Study
Baseline Model and Data Augmentation Since our pro-
posed method is built on Mask-Track RCNN (Yang, Fan,
and Xu 2019), we take Mask-Track RCNN as the baseline
model to validate the effectiveness of each contribution. We
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Methods AP AP0.5 AP0.75

Mask-Track RCNN (Yang, Fan, and Xu 2019) 21.1 37.7 23.6
Our Implementation 20.9 37.9 21.6
Our Implementation + MSCOCO 24.1 42.6 24.9

Table 1: Performance of the baseline model on YouTube-
VIS validation set. “Our Implementation” means our repro-
duced results of Mask-Track RCNN.“Our Implementation
+ MSCOCO” is used as the baseline model in all ablation
studies hereafter.

(a) Attention on Frame Level
AP AP0.5 AP0.75

Baseline + Temporal Attention 25.2 43.9 25.6
Baseline + Spatial Attention 24.9 43.4 25.2
Baseline + Spatial-Temporal Attention 25.8 44.5 27.0

(b) Attention on Object Level
AP AP0.5 AP0.75

Baseline + Temporal Attention 25.4 44.4 25.9
Baseline + Spatial Attention 24.8 43.3 25.1
Baseline + Spatial-Temporal Attention 26.1 45.6 26.7

(c) Attention on Both Frame and Object Level
AP AP0.5 AP0.75

Baseline + Spatial-Temporal Attention 27.5 46.1 28.9

Table 2: Ablation Study of our proposed attention module on
YouTube-VIS validation set. The best results are highlighted
in bold.

first reproduce the Mask-Track RCNN with publicly avail-
able codes and the results are listed in Table 1. Our result
is close to the result reported in original paper. Note that all
results in Table 1 are without any post-processing.

In addition, we find that the number of object instances in
YouTube-VIS dataset is limited. Since the proposed method
does not depend on the temporal smoothness of a video,
some image-based datasets can be adopted to increase the
training samples. We choose MSCOCO (Lin et al. 2014) as
external data which has a large overlap on the object cate-
gories with YouTube-VIS. In order to make use of the im-
age data, we generate support frames and reference frame
based on a single image by some affine transformations, i.e.
i.e. rotation, translation and shearing. The identity annota-
tions across different images can be generated automatically
in this process. The performance after using external data is
listed in Table 1 as well. We use this model as a baseline
model for all the following ablation experiments.

Effectiveness of Attention Module We conduct ablation
study to prove the effectiveness of the proposed attention
module: temporal attention and spatial attention. The re-
sults are listed in Table 2. Note all results here are with-
out post-processing. We first evaluate each attention mod-
ule on frame level in Table 2(a). With the temporal atten-
tion module, we improve baseline model by 1.1% in AP and
1.3% in AP0.5 respectively. Similarly, spatial attention mod-
ule can also slightly improve the baseline performance by
1%. When combining both temporal and spatial attention
together as the dual attention module, we further boost the
baseline model by 1.7%, 1.9% and 2.1% in AP, AP0.5 and

Modules AP AP0.5 AP0.75

Baseline + CM 25.1 44.3 26.7
Baseline + CM + FDA 26.3 45.3 27.1
Baseline + CM + BDA 26.7 45.9 27.3
Baseline + CM + FDA + BDA (CompFeat) 27.9 46.8 30.2

Table 3: Ablation Study of the proposed track module on
YouTube-VIS validation set. CM, FDA, BDA denote the
proposed tracking module with correlation map, the frame
level dual attention module and object level dual attention
module, respectively. The best results are highlighted in
bold.

Train/Test(Uniform) 2 frames 3 frames 4 frames 5 frames
Uniform 2 frames 27.1 27.4 27.6 27.3
Uniform 3 frames 26.2 26.6 26.6 26.8
Random 2 frames 27.3 27.7 27.9 27.4
Random 3 frames 26.1 26.8 26.8 26.7

Table 4: Performance of different sampling methods and dif-
ferent frames during training/testing on the validation set of
Youtube-VIS. The performance is reported in AP.

AP0.75. These experimental results prove that our proposed
attention module can aggregate helpful context feature from
both other frames and the input frame.

We then experiment with temporal and spatial attention
on object level. Table 2(b) shows that proposed attention
method on object level can always achieve comparable or
even better results compared with the frame level one. For
instance, by performing both temporal and spatial attention
on object level, the performance gain becomes 2.0%, 3.0%
and 1.8% in AP, AP0.5 and AP0.75 respectively.

Furthermore, Table 2(c) lists the performance of combin-
ing attention modules on both frame level and object level.
Comparing with the performance only on frame or object
level, the combination one is superior. Specifically, with
both attention on two different levels, we achieve AP/AP0.5

= 27.5%/46.1%, which outperforms the performance with
attention module on frame level by 1.7%/1.6%. This further
improvement shows that by using attention module on frame
level and object level, we can aggregate context information
in a global-to-local manner, which can greatly improve the
baseline model by 3.4%, 3.5% and 4.0% in AP, AP0.5 and
AP0.75.

Effectiveness of Correlation-based Tracking Module
The ablation study on the proposed correlation-based track-
ing module is shown in Table 3. Again, the results are with-
out post-processing. Compared to the baseline model, the
tracking module with correlation map outperforms the base-
line model by more than 1% on AP, AP0.5 and AP0.75. This
improvement indicates the cross-correlation map between
objects and the whole frames contains more semantic in-
formation than the object features used by the baseline. In
addition, when integrating it into the whole framework with
dual attention on frame level or object level, we obtain con-
sistently better performance. In particular, by using correla-
tion maps and dual attention module on frame level, we im-
prove the performance in AP from 25.8% to 26.3%. Finally,
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Methods AP AP0.5 AP0.75 AR1 AR10

IoUTracker+ (Bochinski, Eiselein, and Sikora 2017) 23.6 39.2 25.5 26.2 30.9
OSMN (Yang et al. 2018) 27.5 45.1 29.1 28.6 33.1

DeepSORT (Wojke, Bewley, and Paulus 2017) 26.1 42.9 26.1 27.8 31.3
SeqTracker 27.5 45.7 28.7 29.7 32.5

MaskTrack R-CNN (Yang, Fan, and Xu 2019) 30.3 51.1 32.6 31.0 35.5
SipMask (Cao et al. 2020) 32.5 53.0 33.3 33.5 38.9

MaskTrack R-CNN + MSCOCO 32.2 52.1 34.6 31.8 37.2
CompFeat 35.0 56.9 37.8 33.4 39.8

Table 5: Comparison of the proposed approach with the state-of-the-arts on YouTube-VIS validation set. Note that all results in
this Table including the post-processing. The best results are highlighted in bold.

Figure 5: Visualization results of CompFeat. Each row has
five sampled frames from a video sequence. Categories,
bounding boxes and instance masks are shown for each ob-
ject. Note objects with the same predicated identity across
frames are marked with the same color. Zoom in to see de-
tails.

we evaluate the performance of video instance segmentation
with all our proposed modules, e.g. frame level dual atten-
tion module, object level dual attention module and correla-
tion maps. As shown in the last row in Table 3, we obtain
the best performance. For instance, we achieve 27.9% and
46.8% on AP and AP0.5 with all proposed modules, which
surpasses the baseline model by 3.8% and 4.2%.

Sampling Method. The VIS performance under different
sampling methods are shown in Table 4. Note that, for fair-
ness, all experiment use the uniform sampling during test-
ing. From Table 4, it can be observed that the random sam-
pling is always powerful than the uniform one during train-
ing. The reason is that random sampling increases the vari-
ety of samples during training, which can lead our proposed
ComFeat model discovers more temporal and spatial corre-
spondences between current frames and support frames.

Comparison with the State-of-the-Arts
Mask-Track RCNN (Yang, Fan, and Xu 2019) is the first
work on video instance segmentation. There are several
work proposed in the Large-Scale Video Object Segmenta-

tion challenge (Luiten, Torr, and Leibe 2019; Wang et al.
2019; Dong et al. 2019), but it is hard to compare with them
since they use different backbone networks and different ex-
ternal training data. We borrow experimental results of other
approaches from (Yang, Fan, and Xu 2019). The comparison
results are presented in Table 5. Mask-Track RCNN (Yang,
Fan, and Xu 2019) is an online method which learns fea-
ture similarities for object matching. And SipMask (Cao
et al. 2020) shares the similar structure while replace the
instance segmentation branch with an one stage instance
segmentation module. Compared with these methods, our
proposed CompFeat achieves the best performance under
all evaluation metrics. Compared with our baseline Mask-
Track RCNN, the proposed CompFeat outperform it by a
large margin. Note this performance gain is not from the
additional training data since MaskTrack R-CNN with the
same training data only achieves 32.2% and 52.1% on AP
and AP0.5.

Qualitative Results
Fig. 5 shows some qualitative results of our proposed
CompFeat on YouTube-VIS validation set. Each row rep-
resents the predicted results on different frames in a video.
The objects with the same identity are shown in the same
color. As shown, CompFeat makes accurate predictions on
object categories, bounding boxes, masks and identities un-
der challenging conditions, i.e. multiple similar objects (row
1, 2), moderate occlusions (row 3), and drastic appearance
changes (row 4). The last row shows a challenging case
with six fish where our algorithm performs much better than
MaskTrack-RCNN (Yang, Fan, and Xu 2019) although it
misses a fish in the third image.

Conclusion
In this paper, we develop a comprehensive approach for fea-
ture aggregation for video instance segmentation, which is
an underexplored direction in this area. Attention mecha-
nisms are careful crafted for feature aggregations on both
frame-level and object-level in both temporal and spatial
manner. A new tracking module is designed to enhance local
discriminative power of features with local and global corre-
lation maps, in order to improve robustness of object track-
ing and re-identification. The effectiveness of the proposed
modules is systematically evaluated with extensive experi-
ments and ablation studies on the YouTube-VIS dataset.
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