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Abstract

Are existing object detection methods adequate for detect-
ing text and visual elements in scientific plots which are ar-
guably different than the objects found in natural images?
To answer this question, we train and compare the accuracy
of Fast/Faster R-CNN, SSD, YOLO and RetinaNet on the
PlotQA dataset with over 220, 000 scientific plots. At the
standard IOU setting of 0.5, most networks perform well with
mAP scores greater than 80% in detecting the relatively sim-
ple objects in plots. However, the performance drops dras-
tically when evaluated at a stricter IOU of 0.9 with the best
model giving a mAP of 35.70%. Note that such a stricter eval-
uation is essential when dealing with scientific plots where
even minor localisation errors can lead to large errors in
downstream numerical inferences. Given this poor perfor-
mance, we propose minor modifications to existing models
by combining ideas from different object detection networks.
While this significantly improves the performance, there are
still two main issues: (i) performance on text objects which
are essential for reasoning is very poor, and (ii) inference time
is unacceptably large considering the simplicity of plots. To
solve this open problem, we make a series of contributions:
(a) an efficient region proposal method based on Laplacian
edge detectors, (b) a feature representation of region propos-
als that includes neighbouring information, (c) a linking com-
ponent to join multiple region proposals for detecting longer
textual objects, and (d) a custom loss function that combines
a smooth `1-loss with an IOU-based loss. Combining these
ideas, our final model is very accurate at extreme IOU values
achieving a mAP of 93.44%@0.9 IOU. Simultaneously, our
model is very efficient with an inference time 16x lesser than
the current models, including one-stage detectors. Our model
also achieves a high accuracy on an extrinsic plot-to-table
conversion task with an F1 score of 0.77. With these contri-
butions, we make a definitive progress in object detection for
plots and enable further exploration on automated reasoning
of plots.

Introduction
Object detection is one of the fundamental problems in com-
puter vision with the aim of answering what objects are
where in a given input image. Most of the object detection
research in the past few years has been on natural images
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Figure 1: Demonstrating sensitivity to IOU on images from
(a) PASCAL VOC and (b) PlotQA dataset. Localising on the
natural images in (a) is accurate even at low IOU thresholds
of 0.5 and 0.75. For the plots in (b), the comparison of plot-
ted values for the two years is incorrect at lower IOU values
of 0.5 (left) and 0.75 (centre), and is correct for 0.9 (right).

with real-life objects. For instance, in the PASCAL VOC
dataset (Everingham et al. 2010), the four major classes
of objects are people, animals, vehicles, and indoor objects
such as furniture. In this work, we study object detection for
a very different class of images, namely computer-generated
scientific plots. Fig. 1b shows an example of a scientific plot:
It is a bar plot depicting the number of neonatal deaths in
Bulgaria and Cuba over two years. Object detection on this
plot would be required to identify different visual and tex-
tual elements of the plot such as bars, legend previews and
labels for ticks, axes & legend entries. Such object detection
can then enable a question-answering task. For instance, for
Fig. 1b we could ask “In which year does Cuba have lower
neonatal deaths?”. Clearly, this has use-cases in data ana-
lytics, and has been studied in recent research (Kafle et al.
2018; Kahou et al. 2018; Methani et al. 2020).

It should be clear that scientific plots differ significantly
from natural images. Firstly, plots have a combination of tex-
tual and visual elements interspersed throughout. The text
can either be very short (such as numerical tick labels) or
span multiple lines (such as in plot-titles). Secondly, objects
in a plot have a large range of sizes and aspect ratios. De-
pending on the value represented, a bar in a bar-plot can be
short or long, while in a line-plot a thin line could depict the
data. Thirdly, plots impose structural relationships between
some of the objects. For instance, the legend preview and the
close-by title text denote a correspondence map. This also
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applies to a tick label and its corresponding bar in a bar-plot.
Given these differences, it needs to be seen if existing

object detection methods are adequate for scientific plots.
In particular, are they capable of (a) detecting short and
long pieces of text, (b) detecting objects with large data-
dependent range of sizes and aspect ratios, and (c) localising
objects accurately enough to extract structural relationships
between objects? To answer this question, we first evalu-
ate state-of-the-art object detection networks on the PlotQA
dataset (Methani et al. 2020) which has over 220, 000 sci-
entific plots sourced from real-world data thereby having a
realistic vocabulary of axes variables and complex data pat-
terns which mimic the plots found in scientific documents
and reports. We observe that, across these models, the aver-
age of mAP@0.5 is only around 87%, indicating success in
detecting the relatively simple objects in the plot.

While the above results appear positive, a closer manual
inspection revealed that these models make critical errors
which lead to large errors in downstream numerical infer-
ence on the plots. This disparity is because we use an IOU
of 0.5 while computing the mAP scores. While IOU values
in the range of 0.5 and 0.7 are acceptable for natural images
where large relative areas are covered by foreground objects,
such values are unacceptably low for scientific plots. This is
demonstrated in Fig. 1a with two example images from the
PASCAL VOC dataset where the predicted box (red) is very
different from the ground-truth box (cyan), but still accept-
able as the IOU is within range. Contrast this with the case
for the plot in Fig. 1b. For an IOU setting of 0.5 (left) and
0.75 (middle), the estimated values of the data-points would
incorrectly identify that neonatal deaths in Cuba are lower
in 2002 than the actual value in 2003. Only at the high IOU
value of 0.9, this is correctly resolved. Thus, downstream
numerical reasoning on plots requires much stricter IOU set-
tings in comparison to object detection on natural images.
For the PlotQA dataset if we use a stricter IOU of 0.9, then
the mAP scores for all models drop drastically with the best
model giving a mAP of only 35.70%. In particular, one-stage
detectors such as SSD (Liu et al. 2016) and YOLO-v3 (Red-
mon and Farhadi 2018) have a single-digit mAP@0.9.

The poor performance of current models at high IOU set-
tings motivate improvements in the models. We first pro-
pose minor modifications to existing models. In particular,
we propose a hybrid network which combines Faster R-
CNN (Ren et al. 2015) with the Feature Pyramid Network
(Lin et al. 2017a) from RetinaNet (Lin et al. 2017b) and the
ROIAlign idea from Mask R-CNN (He et al. 2017). This sig-
nificantly improves the performance giving an overall mAP
of 77.22%@0.9 IOU. However, careful analysis reveals two
major limitations: (i) accuracy on text objects is very low
which can lead to errors in downstream analytics tasks, and
(ii) the inference time is very high (374 ms) which is unac-
ceptable given the lower visual complexity of plots.

To further improve the speed and performance, we pro-
pose an architecture, named PlotNet, which contains (i)
a fast and conservative region proposal method based on
Laplacian edge detectors, (ii) an enhanced feature represen-
tation of region proposals that includes local neighbouring
information, (iii) a linking component that combines mul-

tiple region proposals for better detection of longer textual
objects, and (iv) a custom regression loss function that com-
bines smooth `1-loss with an IOU-based loss designed for
improving localisation at higher IOUs. This significantly im-
proves accuracy with a mAP of 93.44%@0.9 IOU. Further,
it is 16x faster than its closest competitor and has 3x lower
FLOPs. We also evaluate PlotNet on an extrinsic plot-to-
table conversion task where we extract the plot’s underlying
data into a table. Specifically, we replace Faster R-CNN with
PlotNet in the Visual Element Detection stage of the pipeline
proposed in PlotQA (Methani et al. 2020). This results in a
relative improvement of 35.08% in the table F1 score.

In summary, the contributions of this paper are as follows:

1. We motivate the need for object detection at extreme IOU
values for the specific dataset of scientific plots which re-
quire accurate localization.

2. We evaluate the robustness of nine different object de-
tection networks (SSD, YOLO-v3, RetinaNet, variants of
Fast and Faster R-CNN) to increase in IOU and identify
that Feature Pyramid Network (FPN) and ROIAlign (RA)
are good design choices for higher accuracy.

3. We propose PlotNet that improves on mAP by over 16
points while reducing execution time by over 16 times
from its closest competitor. Thus, PlotNet is faster than
one-stage detectors and simultaneously more accurate
than the best two-stage detectors.

The rest of the paper is organised as follows: We first dis-
cuss the different datasets and detail the experimental setup
for evaluating existing object detection models on scientific
plots. We also report the results and critique their perfor-
mance on an example plot image from the PlotQA dataset.
We then detail the architecture of PlotNet and compare it
with other networks in terms of accuracy and speed. Note
that, we follow an unconventional organisation of describing
partial experimental results first as this lays the groundwork
for motivating the design and evaluation of PlotNet.

Evaluation of Existing Models
Dataset: Automated visual analysis and subsequent
question-answering on scientific plots was first proposed
in FigureQA (Kahou et al. 2018). There are three publicly
available datasets, namely FigureQA (Kahou et al. 2018),
DVQA (Kafle et al. 2018), and PlotQA (Methani et al.
2020). These datasets contain scientific plots with bound-
ing boxes and labels for different plot elements including
bars, lines, tick labels, legend entries, and plot labels. We
run our experiments on the PlotQA dataset (Methani et al.
2020), as it is based on real-world data while both FigureQA
and DVQA are based on synthetic data. For instance, in syn-
thetic datasets, the label names are selected from a limited
vocabulary such as colour names in FigureQA and top-1000
nouns in the Brown corpus in DVQA. On the other hand,
PlotQA has datasets collected from public data repositories.
This impacts object detection as the text labels show large
variability in PlotQA dataset. Secondly, synthetic datasets
use limited range of plotted values such as integers in a fixed
range, while PlotQA plots real data. This impacts object de-
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IOU @0.9 @0.75 @0.5

Existing Models bar dot-
line

legend
label

legend
preview

plot
title

x-axis
label

x-axis
ticks

y-axis
label

y-axis
ticks mAP mAP mAP

(a) SSD 1.39 0.60 2.18 0.39 0.04 3.39 0.44 5.14 0.20 1.53 39.78 82.33
(b) YOLO-v3 15.51 8.72 7.15 11.70 0.02 4.39 8.08 9.59 1.70 7.43 73.31 96.27
(c) RetinaNet 16.51 18.5 77.26 29.74 16.58 67.62 28.40 3.14 17.31 30.56 81.13 90.13
(d) FRCNN 53.38 1.68 12.59 14.06 0.03 42.13 25.49 11.68 31.98 21.45 63.68 72.83
(e) FrRCNN 6.92 1.68 1.39 1.45 0.00 4.35 6.10 3.57 5.18 4.08 50.51 88.49
(f) Mask R-CNN 47.54 5.36 50.83 32.43 0.33 40.20 33.72 80.53 30.31 35.70 82.45 93.72

(g) FRCNN (FPN+RA) 87.59 31.62 79.05 66.39 0.22 69.78 88.29 46.63 84.60 61.57 69.82 72.18
(h) FrRCNN (RA) 63.89 14.79 70.95 60.61 0.18 83.89 60.76 93.47 50.87 55.49 89.14 96.80
(i) FrRCNN (FPN+RA) 85.54 27.86 93.68 96.30 0.22 99.09 96.04 99.46 96.80 77.22 94.58 97.76

Table 1: Comparison of existing and hybrid models on the PlotQA dataset with mAP scores (in %) at IOUs of 0.9, 0.75, and
0.5. For IOU@0.9, the class-wise average precision (in %) is shown for all the classes.

tection as the size of bars in a bar-plot and the slopes in a
line-plot show large variability in the PlotQA dataset.

The PlotQA dataset (Methani et al. 2020) contains over
220, 000 scientific plots across three categories of bar (both
horizontal and vertical), line, and scatter plots. The dataset
includes ground-truth bounding boxes for bars, dot-lines,
legend labels, legend previews, plot-title, axes ticks and their
labels. The underlying data is from data sources such as
World Bank Open Data containing natural variable names
such as mortality rate, crop yield, country names, and so on.
Training Setup: We used the existing implementations for
the R-CNN family, YOLO-v3, SSD and RetinaNet. ResNet-
50 (R-50) pre-trained on ImageNet (Deng et al. 2009)
dataset is the backbone feature extractor for Fast R-CNN,
Faster R-CNN, Mask R-CNN and RetinaNet. For SSD and
YOLO-v3, InceptionNet (Szegedy et al. 2015) and DarkNet-
53 were the backbone feature extractors, respectively.

These models were trained with an initial base learning
rate of 0.025 with momentum stochastic gradient descent al-
gorithm. The network’s classification and regression heads
use a batch-size of 512 ROIs. RetinaNet and SSD models
were trained with a batch-size of 32 with a learning rate
of 0.004. Based on evaluation on the validation dataset, we
modified the parameters in the focal loss for RetinaNet to
α = 0.75 and γ = 1.0, against recommended values of
α = 0.25 and γ = 1.0. The model was trained with a batch-
size of 64 and a learning rate of 0.001.
Results & Comparative Analysis: For each of the models,
mAP score at three different IOU values of 0.9, 0.75, and 0.5
are shown in Table 1. Here are the important observations:

• mAP@0.5 is fairly high (average over 87%) across mod-
els indicating that the relatively simple visual elements of
the plots are being identified with high accuracy.

• mAP@0.75 falls markedly in comparison to mAP@0.5,
with an average drop of about 22 points across models.
Specifically for SSD, Faster R-CNN the drop is very high
at about 40 points.

• mAP@0.9 drops to remarkably low values; on aver-
age mAP@0.9 is less than half of mAP@0.75. Specifi-
cally, SSD, Faster R-CNN, and YOLO have single-digit

mAP@0.9 values.

• For an IOU of 0.9, the AP for individual classes shows
large variability across models. Relatively, plot-title and
dot-line classes have the lowest AP values across models.

To better illustrate the performance of each model, we ex-
emplify the bounding box outputs of the different models on
specific parts of an example plot shown in Fig. 2. We make
the following observations, model-wise.

• SSD glaringly misses detecting one of the bars, and also
has low localisation accuracy as evidenced in the mis-
aligned bounding for the second bar in Fig. 2a. However,
it correctly detects small tick labels, perhaps due to pro-
posal generation performed at multiple resolutions.

• YOLO-v3 detects all objects (including both bars), but
with lower localisation accuracy. For instance in Fig. 2b,
the upper bar and plot title have misaligned bounding
boxes. To see if this problem could have been solved by
imposing priors on aspect ratios of bounding boxes, we
plotted aspect ratios of all objects across plots and found
no distinct clusters, i.e., aspect ratios of bars, texts, etc.
vary in a continuum. This makes it hard to choose appro-
priate priors for bounding boxes.

• RetinaNet which is based on SSD also misses out on de-
tecting one of the bars and also the y-tick label (Fig. 2c).
The bounding box of the detected bar is more accurate
than that in SSD, indicating the benefit of the lateral con-
nections in generating features for the regression head.
Across the three one-stage detectors, which have much
higher speed than the two-stage detectors, RetinaNet is
the clear winner (row (c) in Table 1). While not apparent
in the illustrated example, RetinaNet’s focal loss with cus-
tom tuned parameters (α, β) instead of hard suppression,
may also be contributing to its higher performance.

• Fast R-CNN (FRCNN) breaks up one of the bars into
smaller objects (aligning with lines on the background
grid of the plot). It also misses several objects including a
legend item, the plot title, and a tick label (Fig. 2d). This
could be attributed to the proposal generation method
which uses selective search (SS). This under-performance
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Figure 2: Detected bounding boxes on an example plot from PlotQA for different models corresponding to Table 1 at IOU 0.9.

is also visible at low IOUs: mAP@0.5 is lowest for Fast
R-CNN (row (d) in Table 1) potentially due to poorly per-
forming SS which remains unaffected by IOU.

• Faster R-CNN (FrRCNN) improves over the recall of SS
by detecting most objects due to more complex region
proposal network (RPN). However, RPN creates multiple
overlapping proposals, even after non-maximal suppres-
sion (NMS) (Fig. 2e). This lowers the bulky model’s mAP
to just 4%, which is second-lowest.
• Mask R-CNN uses Faster R-CNN as the backbone archi-

tecture but uses ROIAlign instead of ROIPool gives mixed
results when compared to Faster R-CNN. It is able to de-
tect the longer textual elements (e.g., title) but has poorer
localisation accuracy on the bars. It also breaks up one
of the bars into smaller objects. However, its localisation
accuracy on the tick labels is better than Faster R-CNN.

In summary, most state-of-the-art models have low robust-
ness to high IOU values on this different class of images.
A hybrid network combining existing ideas: The above
discussion clearly establishes the need for better models for
object detection over scientific plots. However, before we do
so, we wanted to examine if combining ideas from existing
models can help in improving the performance. Among the
one-stage detectors, RetinaNet (row(c) in Table 1) gave the
best performance. Similarly, among the two-stage detectors
Mask R-CNN (row(f) in Table 1) gave the best performance.
However, the qualitative analysis presented in Fig. 2 sug-
gested that Faster R-CNN has some advantages over Mask
R-CNN. Taking all of this into consideration we decided to
combine the relative merits of Faster R-CNN, RetinaNet and
Mask R-CNN. In particular, we retain the overall architec-
ture of Faster R-CNN but use FPN as the feature extrac-
tor (as in RetinaNet) and replace ROIPool with ROIAlign
(as in Mask R-CNN). The results obtained by making these
modifications are summarised in rows (g), (h) and (i) of Ta-
ble 1. For the sake of completeness we also present results
obtained by combining Fast R-CNN (FRCNN) with FPN
and ROIAlign. We observe that across all three IOU values,
the highest mAP values are obtained by Faster R-CNN with
FPN and ROIAlign (row(i) in Table 1). This mAP of 77.22%

is the best number reported in Table 1.
We do the same qualitative analysis as before for the three

hybrid models and make the following observations:

• Fast R-CNN with FPN and ROIAlign (FRCNN
(FPN+RA)) improves on Fast R-CNN by not breaking up
the bar into smaller objects, due to the FPN which enables
improved feature extraction for the regression head. How-
ever due to the use of selective search (SS), many objects
continue to go undetected (Fig. 2g). Notably, for the de-
tected objects, the localisation accuracy is high, perhaps
due to the use of ROIAlign’s bilinear interpolation when
mapping proposals into smaller cells.

• Faster R-CNN with ROIAlign (FrRCNN (RA)) im-
proves on Faster R-CNN due to the substitution of
ROIPool with ROIAlign. This leads to more accurate lo-
calisation and thereby removal of multiple proposals by
NMS (Fig. 2h). Interestingly, this model under-performs
FRCNN (FPN+RA) as evident in the mAP values and in
the example by the difference in localisation accuracy.
This illustrates the importance of FPN in being able to
nullify the limitations of SS and improve localisation.

• Faster R-CNN with FPN and ROIAlign (FrRCNN
(FPN+RA)) performs the best amongst all existing mod-
els. It combines the RPN of Faster R-CNN for better re-
gion proposals, with FPN which provide better features,
and ROIAlign which provides better mapping of features
to scaled cells (Fig. 2i). There is an additive effect of
combining these three important ideas in object detec-
tion, as evidenced by the significant difference between
this model and the rest.

In summary, the model with the highest performance is the
one that combines the best ideas in object detection.

Our Proposed Model
Given the low mAP scores of existing models at the requi-
site IOU of 0.9, we propose a new network (shown in Fig. 3)
which is designed bottom up based on three key observa-
tions. First, we observe that networks which use existing re-
gion proposal methods such as selective search, RPN, and
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Figure 3: Architecture diagram of our proposed model, PlotNet.

anchor based methods have low mAP@0.9. In particular,
these methods either generate too many proposals or miss
out some objects. We contrast this with the apparent low vi-
sual complexity of these plots which suggests that detecting
region proposals should be easier. Based on this insight, we
propose a region proposal method which relies on traditional
CV-based methods such as edge detection followed by con-
tour detection. We however retain ROIAlign and FPN com-
ponents which improved the performance of models. How-
ever, we note that FPN adds a significant computational cost
and its addition needs to be carefully evaluated. While do-
ing so, we make our second observation that longer textual
elements such as titles and legend labels get detected as mul-
tiple proposals which need to be linked. We propose a sepa-
rate linking component which decides whether a given pro-
posal needs to be merged with any of its neighbours. None
of the existing models perform such linking. Third, we no-
tice a sharp decline of mAP scores on increase in the IOU.
To address this, we design a custom loss function, which has
non-negligible loss values for high IOU ( > 0.8).

In summary, in the design of a custom model which we
refer to as PlotNet, we (i) use a computationally efficient
CV-based region proposal method, (ii) supplement it with a
link prediction method to detect contiguous text objects, (iii)
use ROIAlign and neighbouring information to better map
proposals into smaller cells, (iv) evaluate the necessity of
FPN, and (v) evaluate the need for IOU-based loss functions.
We now describe the different components of our model.
Region Proposal: As an alternative to Region Proposal Net-
work (RPN), we propose a combination of CV methods to
generate region proposals (Fig. 4(a)). Specifically, we (a)
draw edges with a Laplacian edge detector on the image of
the plot, (b) extract continuous closed contours from edges
based on uniform color and/or intensity, (c) convert contours
to a bounding-box by finding the minimal up-right bounding
rectangle for each of the identified contours. These boxes
serve as regions of interest (ROI) which are passed as in-
put to the network. These proposals are very small in num-
ber (90 proposals on an average) in comparison to selective
search which gives around 2k proposals. Further, while se-

lective search takes ∼ 6740ms per image on average to gen-
erate proposals, our method takes only 34ms. We refer the
readers to the supplementary section for more details.
Feature Extraction: We use ResNet (He et al. 2016) for ex-
tracting features from the input image after resizing the im-
age to 650 × 650. To exploit structural information present
in the image, we add the ROIs proposed earlier as the 4th

channel to the RGB input image. We tried different num-
ber of layers in the ResNet model & found that even with
10 layers we were able to get a good performance. We also
consider FPN as the feature extractor with ResNet-22 as the
backbone architecture as a potential trade-off between per-
formance and cost. Once the image features are extracted,
the externally generated ROIs are projected onto the fea-
ture map. To extract a fixed sized ROI feature, we pass them
through the ROIAlign layer (He et al. 2017) which outputs
the fixed size feature map of size 14× 14× 256. We further
reduce the depth of each ROI feature map to 14 × 14 × 64
by using 1× 1 convolution layers.
Accumulating Neighbouring ROI Information (AN-ROI
layer): To incorporate local neighbouring information into
each ROI feature, we create an AN-ROI volume by con-
catenating the ROI’s immediate left, right, top and bottom
features along the depth, resulting in a feature volume of
size 14 × 14 × 320. We then apply convolutional layers on
this AN-ROI volume resulting in a feature volume of size
14× 14× 256. We hypothesise that such neighbouring fea-
tures would increase the accuracy of classifying, regressing,
or linking individual ROIs.
Classification (CH), Regression (RH) & Linking heads
(LH): The ROI features extracted above are passed through
two fully-connected layers with 2048 and 1024 neurons, re-
spectively. Each ROI feature vector, is independently passed
through the CH which uses the softmax function to output
a probability distribution over the 9 classes of objects in the
images and a tenth background class. These 9 classes are
bar, dot-line, legend-preview, legend-label, plot-title, x-axis
label, y-axis label, x-axis ticks and y-axis ticks. The same
ROI feature vector is also fed to the RH which predicts the
4 co-ordinates (top-left and bottom-right) of the bounding
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Figure 4: (a) The proposals generated by our CV method are
shown in red. (b) Detected bounding boxes by PlotNet on an
example plot from PlotQA dataset at IOU 0.9.

box. Lastly, the same ROI feature vector is passed to the LH
which predicts whether this ROI needs to be merged with
none, one, or more of its immediate 4 (top, left, right and
bottom) neighbours.
IOU-based Loss functions: Most state-of-the-art object de-
tection models use `n loss (e.g., `2-loss, smooth `1-loss)
for performing bounding box regression. However, several
studies (Yu et al. 2016; Berman, Triki, and Blaschko 2018)
suggest that there are some disadvantages of doing so and
instead an IOU-based loss function which better correlates
with the final evaluation metric should be used. Indeed, some
studies have showed that using − log IOU (Yu et al. 2016)
and 1 − IOU (Berman, Triki, and Blaschko 2018) as loss
functions give better results by ensuring that (i) the training
objective is aligned with the evaluation metric, and (ii) all
the 4 coordinates of the bounding box are considered jointly.
However, these loss functions fail to learn anything in case
of non-overlapping boxes. To overcome this, more gener-
alized loss functions like GIOU (Rezatofighi et al. 2019),
DIOU, and CIOU (Zheng et al. 2020) have been proposed
which add an additional penalty term to deal with the non-
overlapping boxes.

In existing loss functions, the penalty is negligible for
boxes which have a large IOU overlap with the ground-
truth box. To enable the network to learn tighter bounding
boxes, motivated by focal loss (Lin et al. 2017b), we pro-
pose a Focal IOU (FIOU) loss that more gradually decreases
the penalty as IOU overlap with ground-truth box increases.
Formally, FIOU is defined as:

LFIOU = −(1 + IOU)γ ∗ log(IOU)

FIOU focuses on higher IOU values by dynamically scal-
ing the log(IOU) loss (Yu et al. 2016), where the scaling
factor increases as the IOU increases. The higher the hyper-
parameter γ, the larger is the penalty at medium IOU levels.
We experimented with a couple of γ values and have found
γ = 2 to work best for the PlotQA dataset. We include a
plot comparing these loss functions graphically in the sup-
plementary section. We then define a custom loss function

combining smooth `1-loss (SL1) with FIOU: LCustom =
LSL1 + LFIOU . This custom loss function achieves state-
of-the-art results as we report in the comparison across loss
functions in Table 2.
Training & Implementation Details: While training, for
every proposed ROI, we need to assign a ground-truth class
for the 9 object classes and the background class. We iden-
tify the ROI’s center and identify if it lies in any of the
ground-truth bounding boxes. There would be at most one
such box, since objects in plots do not overlap unlike natu-
ral images. If no such ground-truth bounding box is found,
the ROI is considered to be in the background class and is
ignored by the regression head.

Similarly, for every proposed ROI, the coordinates of the
parent ground-truth box identified above are assigned as the
regression targets. In particular, for visual ROIs, the regres-
sion target is set to the co-ordinates of the parent box. For
textual objects, it is difficult to regress the ROI to match
the entire span of the parent box. For example, in Fig. 4(a),
for the ROI containing the word “Number” in the title, the
ground-truth box would be the entire title spanning all the
words (cyan box). To avoid this large difference from the
proposal, we create the regression targets for “Number” by
clipping the ground-truth box to have the same boundary as
the proposed box along the horizontal direction. The task
then is to grow the proposed ROI vertically and then later
link it to its neighbour thereby creating the entire title box.

Lastly, for creating the ground-truth for linking, we assign
a binary value to each ROI for each of the 4 directions. These
4 values indicate whether the ROI needs to be linked to its
left, right, top, or bottom neighbours. In order to find the
neighbours, we consider an area of 50 × 50 around a ROI
and check if any of the neighbouring ROIs have the same
parent box. If so, we assign 1 to the link corresponding to
the direction (top, right, bottom, left) of that neighbour.

We trained our model for 10 epochs using Adam opti-
mizer (Kingma and Ba 2014) with a learning rate of 0.0001.
We experimented with different loss functions for bounding
box regression, and used cross-entropy loss for classification
as well as link prediction.

Discussion
We now discuss the performance of different variants of our
model as reported in Table 2. Note that all the variants in
Table 2 use FPN as we always get better results with FPN.
The variants mentioned in rows (a) and (b) use smooth `1-
loss (SL1) as the regression loss and do not have the Linking
Head (LH) and the AN-ROI layer, respectively. The variants
mentioned in rows (c) to (j) comprise the LH and the AN-
ROI layer but only differ with respect to the regression loss.
We make the following observations:
Ablation Studies: Comparing rows (a) and (b) with (c) of
Table 2, we observe that (1) adding linking module allows
us to handle longer textual elements (e.g., AP for plot-title
improved from 0.00% to 99.44%), and (2) adding neigh-
bourhood information using AN-ROI leads to a significant
improvement in the performance (e.g., mAP@0.9 improved
from 83.89% to 91.77%). Rows (d) to (i) suggest that when
we use any of the IOU-based loss functions, the mAP@0.9 is
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IOU @0.9 @0.75 @0.5

S.L PlotNet
Variants bar dot-

line
legend
label

legend
preview

plot
title

x-axis
label

x-axis
ticks

y-axis
label

y-axis
ticks mAP mAP mAP

(a) No LH 85.30 52.85 29.64 94.30 0.00 10.36 80.77 1.47 81.59 48.48 53.71 54.03
(b) No AN-ROI 91.02 31.69 97.08 81.57 99.36 96.06 85.33 82.00 90.95 83.89 97.21 98.11

(c) LSL1 92.16 61.18 98.38 93.46 99.44 97.21 94.21 95.45 94.42 91.77 97.74 98.24
(d) L1−IOU 91.79 41.86 93.74 94.64 98.29 83.11 85.69 89.32 49.36 80.87 96.38 98.20
(e) L− log IOU 91.83 45.78 91.48 94.15 98.95 74.24 87.19 89.34 50.11 80.34 96.97 98.26
(f) LGIOU 91.71 49.30 95.99 93.55 98.42 95.03 89.77 94.08 86.06 88.21 96.37 98.16
(g) LDIOU 91.35 52.22 96.31 93.45 96.82 96.18 89.63 95.46 94.07 89.50 97.17 98.22
(h) LCIOU 91.15 55.03 97.89 92.99 99.46 96.33 91.30 90.40 95.48 90.00 97.27 98.28
(i) LFIOU 91.88 61.44 96.44 95.58 99.27 97.19 90.64 97.55 87.66 90.88 97.30 98.31

(j) LCustom 92.80 70.11 98.47 96.33 99.52 97.31 94.29 97.66 94.48 93.44 97.93 98.32

Table 2: Comparison of variants of PlotNet on the PlotQA dataset with mAP scores (in %) at IOUs of 0.9, 0.75, and 0.5.

Models Precision Recall F1-score
FRCNN (FPN+RA) 0.63 0.02 0.04
FrRCNN (RA) 0.62 0.12 0.20
FrRCNN (FPN+RA) 0.62 0.52 0.57
PlotNet - Ours 0.78 0.76 0.77

Table 3: Comparison of different models on the plot-to-table
conversion task on the PlotQA dataset.

lower than what we obtain by using only the smooth `1-loss
(row (c)). However, among the IOU-based loss functions,
FIOU gives the best performance. Further, using our custom
loss (last row), we get the best performance with an overall
mAP@0.9 of 93.44%.
Comparison to other models: In Fig. 5, we compare the
mAP@0.9 and inference time of different models. We ob-
serve that PlotNet lies in the most favorable regime, i.e., high
mAP and low latency. In particular, PlotNet has the small-
est inference time, beating one-stage detectors. Further, it
improves upon its closest competitor (FrRCNN (FPN+RA))
by 16.22 absolute points in mAP. We also refer to Fig. 4(b)
which shows that PlotNet detects accurate boxes. We note
that this example is representative of the overall perfor-
mance. Amongst individual classes, PlotNet majorly im-
proves the accuracy on plot-titles which have long texts. We
attribute this to combining simple region proposals with an
explicit linking method. The improved accuracy of PlotNet
on small objects like dot-line can be attributed to the addi-
tional neighbouring information present in each ROI feature.
Extrinsic Evaluation: Once the objects in a plot are accu-
rately detected they can be used for inferences in a down-
stream task. For example, the data encoded in the plot can
be represented as a structured table and then QA can be per-
formed on this structured table. We follow the same pro-
cedure as outlined in (Methani et al. 2020) to construct a
structured table from the objects identified in the plot. The
quality of the generated structured table clearly depends on
accurate localisation and classification of objects in the plot.
The original PlotQA dataset also provides the gold standard
structured tables associated with each plot. We can compute

Figure 5: mAP (in %) v/s Inference Time per image (in ms)
for different object detection models on PlotQA at an IOU
setting of 0.9. (x, y) represents the tuple (mAP, time).

the F1-score by comparing the tables generated after object
detection with the ground truth tables. We report these num-
bers in Table 3. We observe that PlotNet improves the F1-
score by a significant 20 points w.r.t its closest competitor -
Faster R-CNN (FPN+RA). This signifies that the improved
results with PlotNet enable automated reasoning with plots.

Conclusion
Existing object detection networks do not work for scien-
tific plots - they have very low accuracy at the high IOU
values required for reasoning over plots. Our proposed Plot-
Net makes a series of contributions across region proposal,
model design, feature extraction, and loss function. These
contributions together give a significant improvement of
16.22 points at mAP@0.9 IOU. PlotNet is also much faster
with a 16x speedup in comparison with existing networks,
including one-stage detectors. On the extrinsic challenging
task of plot-to-table, PlotNet provides an improvement of 20
points in the F1 score. These significant results enable fur-
ther exploration of automated reasoning over plots.
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