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Abstract

Generalized Zero-Shot Learning (GZSL) aims to recognize
images from either seen or unseen domain, mainly by learn-
ing a joint embedding space to associate image features
with the corresponding category descriptions. Recent meth-
ods have proved that localizing important object regions can
effectively bridge the semantic-visual gap. However, these are
all based on one-off visual localizers, lacking of interpretabil-
ity and flexibility. In this paper, we propose a novel Semantic-
guided Reinforced Region Embedding (SR2E) network that
can localize important objects in the long-term interests to
construct semantic-visual embedding space. SR2E consists of
Reinforced Region Module (R2M) and Semantic Alignment
Module (SAM). First, without the annotated bounding box
as supervision, R2M encodes the semantic category guidance
into the reward and punishment criteria to teach the localizer
serialized region searching. Besides, R2M explores different
action spaces during the serialized searching path to avoid
local optimal localization, which thereby generates discrim-
inative visual features with less redundancy. Second, SAM
preserves the semantic relationship into visual features via
semantic-visual alignment and designs a domain detector to
alleviate the domain confusion. Experiments on four public
benchmarks demonstrate that the proposed SR2E is an effec-
tive GZSL method with reinforced embedding space, which
obtains averaged 6.1% improvements.

Introduction
Recently, the deep learning algorithms (Min et al. 2020; Sio
et al. 2020; Wang et al. 2020; Xie et al. 2020) have devel-
oped rapidly due to the massive increase in labeled data. For
example, traditional classification tasks require a large num-
ber of images with category labels for training. However,
it is infeasible to annotate all kinds of species and learn a
classifier for them due to the species diversity in the real
world. To handle this issue, Generalized Zero-Shot Learn-
ing (GZSL) offers an effective solution, which utilizes cate-
gory descriptions, such as the representation of color, habit,
and some other features, to connect the seen and unseen do-
main categories (Yang et al. 2016; Cappallo, Mensink, and
Snoek 2015). Since the category descriptions for two do-
mains share the same semantic space, the recognition knowl-
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Figure 1: Localizing the bird in an image through a serial-
ized search. As the optimizing of the localizer, the visual
description can better match the semantic information in the
embedding space, which is indicated by the blue dotted line.

edge learned from the seen domain can be directly trans-
ferred to the unseen domain.

The commonly used semantic descriptor includes human-
defined information and learning-based information. The
former contains attributes information (Lampert, Nick-
isch, and Harmeling 2009; Jayaraman and Grauman 2014),
and the latter includes label embedding using Word2Vec
(Mikolov et al. 2013) or GloVe (Pennington, Socher, and
Manning 2014) algorithm. In order to associate the visual
image features with corresponding category descriptions, a
joint embedding space has been constructed in current meth-
ods, where both visual features and category descriptions are
projected, and the recognition becomes the nearest neigh-
bor searching problem. Among these methods, some works
(Socher et al. 2013; Fu et al. 2015; Morgado and Vascon-
celos 2017) span the embedding space directly using cate-
gory description to preserve the semantic topology, and oth-
ers (Zhang, Xiang, and Gong 2017; Yu et al. 2018; Annadani
and Biswas 2018) select the visual space as the embedding
space for better visual discrimination. According to (Fu et al.
2015), learning a latent intermediate space between the vi-
sual and semantic space can take both advantages of visual
discrimination and semantic preservation, but it is hard to
learn. Thus, current methods (Li et al. 2018; Xie et al. 2019)
leverage the visual attention mechanism to localize discrim-
inative local regions and select critical visual elements to
construct a good intermediate embedding space, thereby im-
proving the semantic-visual association. Nevertheless, these
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models are all based on the one-off object localizer with a
non-transparent region search process that limits their inter-
pretability and flexibility for further improvement.

In this paper, we propose a novel Semantic-guided
Reinforced Region Embedding (SR2E) network that can
gradually learn the embedding space according to the
reinforcement-learned region embedding mechanism with
semantic guidance. As shown in Figure 1, compared with
a simple one-off part localizer, our model targets to improve
the semantic-visual association mainly by localizing the im-
portant regions step by step, e.g., the bird region. SR2E con-
sists of two sub-modules, Reinforced Region Module (R2M)
for discriminative feature extraction and Semantic Align-
ment Module (SAM) for stable knowledge transfer. First,
notice that there is no extra annotation for the bounding
box as supervision. R2M leverages semantic-driven reward
signals designed by category confidence to teach the rein-
forced region localizer how to localize the semantically re-
lated region step by step. It also encodes historical action
information to obtain a stable search process that considers
long-term benefits. In this sense, R2M can obtain more dis-
criminative features, and thus it is considered well compati-
ble with the corresponding category description. Besides, to
avoid the early stopping of region searching, R2M applies
different action sets to different localizer states, which can
traverse more potential efficient areas for global optimiza-
tion. Second, SAM performs semantic-visual alignment in
the semantic space spanned by visual representations and
constructs a domain detector to reduce the bias recognition
problem.

The experimental results on four public benchmarks show
that the proposed SR2E model can outperform state-of-the-
art methods significantly. Our main contributions can be
summarized into three parts:

• We propose a novel Semantic-guided Reinforced Region
Embedding (SR2E) network that can adaptively and grad-
ually localize object regions to construct the semantic-
visual embedding space via a reinforcement-based region
embedding. To our best knowledge, this is the first work
to introduce the reinforcement mechanism into GZSL.

• A Reinforced Region Module (R2M) is designed to teach
the localizer how to localize the correct object region step
by step under the guidance of semantic category descrip-
tions for more discriminative features.

• A Semantic Alignment Module (SAM) is developed to
align semantic and visual information in the visual space
and determine the domain distribution for better knowl-
edge transfer.

Related Work
Generalized Zero-Shot Learning
Recent methods of GZSL are generally based on the embed-
ding model which focuses on building a shared embedding
space for visual data and corresponding semantic features.
For example, ALE (Akata et al. 2015a) trains a bilinear em-
bedding model using a hinge ranking loss, and SJE (Akata
et al. 2015b) creates a joint embedding space with the linear

combination of multiple compatibility functions. Although
these methods display good performance, it is vulnerable
to treat attribute space as the semantic space and map the
visual features into it for Hubness problem (Shigeto et al.
2015). Some methods (Shigeto et al. 2015; Xian et al. 2018a)
use the semantic space spanned by visual representations to
solve this problem, and others pay attention to building a
shared intermediate space (Yu et al. 2018; Lu 2016). Since
there is no limitation of attribute dimensions, these models
can retain more visual information and provide better re-
sults. Recently, the generative methods (Xian et al. 2018b;
Yu et al. 2020) use GANs to produce unseen visual features
from semantic attributes, which turns GZSL into a fully su-
pervised task and greatly improve the performance. In this
paper, our model is among the embedding-based methods
and does not contain any extra generated data.

The attention mechanism has been proven effective in var-
ious fields (Tay, Roy, and Yap 2019; Liu et al. 2020). Some
current methods (Li et al. 2018; Zhu et al. 2019) also take
advantage of this technique to construct useful semantic-
visual embedding, therefore obtain excellent results. LDF
(Li et al. 2018) combines the original and the cropped region
to get stable performance. SGMA (Zhu et al. 2019) focuses
on finding the crucial local regions containing the seman-
tic information of the corresponding attributes. Similar to
LDF, our model locates the object and extracts global visual
features. The difference is that LDF leverages a one-off lo-
calizer while our model uses semantic-driven reinforcement
learning to build a serialized search, which is proved to im-
prove the performance significantly.

Deep Reinforcement Learning
Reinforcement Learning (RL) (Kaelbling, Littman, and
Moore 1996), aiming to find the optimal strategy given a
Markov Decision Process (MDP), enables an agent to learn
effective behavior through many attempts. Considering the
mining sequence process of visual information and long-
term benefits, Deep Reinforcement Learning (DRL) has
been successfully applied in the field of computer vision.
For example, AOL (Caicedo and Lazebnik 2015) proposes
the Active Object Localization method to train an intelligent
agent to make the bounding box approach the ground truth.
DRL-RPN (Duan et al. 2018) uses DRL to mime bitwise
relationships and significantly improve the stability of the
ambiguous bits. Inspired by applying DRL in object detec-
tion, we regard the search process for important regions as
an MDP to obtain valid visual information. It is noted that
there is no extra annotation for the bounding box in GZSL.
Therefore we design a different reward signals by using the
prediction of the cropped image. Moreover, a new train strat-
egy of DRL is introduced according to the characteristics of
the GZSL task, which is also proved effective.

Semantic-guided Reinforced Region
Embedding

Task Definition
In GZSL, the seen domain data is defined by S =

{(xsi , ysi )}
Ns

i=1, where xsi ∈ XS is the ith image and ysi ∈ YS
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Figure 2: The framework of RL for GZSL (SR2E) model. SR2E achieves serialized search for discriminative regions using RL
skills. R2M and SAM modules are included. R2M aims to localize the object region for more discriminative features. SAM
focuses on facilitating semantic-visual alignment with a domain detector.

is the corresponding class label. Similarly, the unseen do-
main data is defined by U = {(xui , yui )}

Nu

i=1. Notably, the
seen classes YS and unseen classes YU are disjoint, i.e.,
YS ∩YU = ∅. Besides, As = {asi}

cs
i=1 and AU = {aui }

cu
i=1

are the semantic vectors which depict the seen and unseen
classes. The GZSL task aims to recognize X s and X u given
S and attributes A = AS ∪ AU .

A general paradigm of GZSL is to align the visual features
of images with corresponding semantic labels by

L =
N∑
i=1

d[f(xs
i ),a

s
i ], (1)

where f(·) is the visual embedding function, and d(·, ·) is a
metric function, e.g., cosine distance (Annadani and Biswas
2018). Since the semantic labels As and AU share a com-
mon semantic space, the semantic-aligned visual represen-
tation f(·) can be directly transferred to the unseen domain.
Thus, the inference of GZSL can be expressed as

y = arg min
y∈Ys∪Yu

d[f(x),a(y)], (2)

where x ∈ X s ∪ X u is the input image. Note that f(·)
is a core fact that determines the discrimination of embed-
ding space in Eq. (1). Instead of simple fully connections (Li
et al. 2018), the proposed Semantic-guided Reinforced Re-
gion Embedding (SR2E) is designed to adaptively and grad-
ually select important local regions in x to obtain more dis-
criminative visual features. Figure 2 shows the framework
of SR2E consisting of two sub-modules, i.e., Reinforced Re-
gion Module (R2M) for f(·) and Semantic Alignment Mod-
ule (SAM) for semantic-visual alignment with a new domain
detector.

The Reinforced Region Module
In order to avoid the non-transparency and inflexibility of
the one-off localizer, the Reinforced Region Module (R2M)

leverages the semantic guidance to predict the actions of
the image cropping process, which allows the locator to ap-
proach the object region step by step. Specially, we design
semantic-driven reward functions for R2M to teach the lo-
calizer how to localize the correct region step by step, thus
the network can search for semantically related regions and
extract more discriminative features. Moreover, considering
that the search space is large and the global image always
contains complex background noise, which indicates a lo-
cal optimum always exit, different action sets are selected
in different steps to explore more potential areas containing
semantic information.

R2M contains a feature extractor (CNN) and an action
predictor. As shown in Figure 2, given the input image Ik,
we firstly encode it to the CNN and get the visual features
pk. Then we calculate the current state of the localizer by

sk = fp(pk)⊕ fh(ak), (3)

where fp(·) is a maximum pooling operation which can ob-
tain the visual state vector from the visual feature, while
fh(ak) means replacing the oldest 6-dimensional vector
with ak which represents the latest action operation, and
then updates the 24-dimensional history state vector which
represents the four actions executed in the past. Finally,
fp(pk) and fh(ak) are concatenated as the state sk. In this
sense, the state sk can remember nearby historical infor-
mation, which indicates that the action is predicted based
on long-term benefits, thereby avoid redundancy and obtain
more discriminative features. Then sk is fed into the action
predictor to get the image cropping action. This process is
denoted by ak+1 = fa(sk), where fa(·) is an action pre-
diction function, which is implemented as a two-layer fully-
connected network with 1024 hidden units and six output
neurons that represent six actions. Noted that ak+1 deter-
mines the cropping action performed in Ik and then we get a
new input Ik+1. To achieve flexible region search, two kinds
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of actions are designed including movement action and ter-
mination action. Movement action instructs the area selec-
tion while termination action means stopping localization.
Specifically, the movement action includes zooming to the
top left region, top right region, bottom left region, bottom
right region and central region. Each action scales the crop
window with the scale factor α ∈ [0, 1], which denotes the
ratio of the length of selected regions between two adjacent
step. After scaling, the model gets a cropped image and then
the whole process is repeated until the model meets a termi-
nation action.

Then, R2M assesses the predicted action ak+1 accord-
ing to the reward signal R. Most of the rewards used in the
object detection task is guided by the ground-truth bound-
ing box. However, GZSL has only image-level annotations.
Thus we use the classification results instead of IoU to de-
sign our reward signals. The reward signals consist of two
types, reward for movement and reward for termination cor-
responding to different actions. Also, considering that high
confidence should get a high reward, we directly assign the
confidence to the reward. Thus the reward for movement is
defined as follows:

Ra (sk, sk+1) =

{
+Pt(Ik+1) if Pt(Ik+1) > Pt(Ik),
−Pt(Ik) otherwise , (4)

where Pt(·) denotes the prediction score performed by

Pt(Ik) = max
y∈Ys∪Yu

1− d[f(Ik), g(a(y))], (5)

where g(·) maps attributes to semantic space. We consider
the correct classification and the maximum number of iter-
ations as the triggers for termination action. When a termi-
nation action is obtained, we compare the predicted result
with the corresponding label. If the prediction is correct,
the model obtains a positive reward, otherwise a negative
reward. However, through experiments we found that it is
easy to achieve correct prediction during training that weak-
ens the distinction of reward signals, so we also focus on
the change in probability. We preserve the probability of the
target label from previous results and compare it with the
current prediction result. In the case of the right prediction,
the reward function obtains a higher value if the probability
result is higher than the previous one. The definition of the
reward function for termination action is as follows:
Rt (sk, sk+1)

=

 +η + 2Pt(Ik+1) if yp = yg, Pt(Ik+1) > Pt(Ik),
+η if yp = yg, Pt(Ik+1) ≤ Pt(Ik),
−η otherwise .

(6)

where η represents the termination reward value, yp and yg
are the predicted label and the ground-truth label.

In order to facilitate the convergence of R2M and avoid
local optimum, different action sets are utilized in different
steps. Since the original image always contains a complex
background that introduces complex noise, our R2M always
meets a local optimum at the beginning of the search pro-
cess. To alleviate this situation, we remove the termination
action from the action sets when we predict the action for
the first time. As shown in Figure 3, each line is a possible
path. When breaking through the first depth of the search,

Depth 0

Depth 1

Depth 2

Depth 3

Trigger

Trigger

Action 1
Action 2
Terminal Action
State in depth1
State in depth2
State in depth3

Trigger

Figure 3: Illustration of the search mechanism. Choose two
actions as an example. The termination action is removed in
depth 0.

our search process is expanded to enable R2M to explore
more regions and find the most representative one. When
we only perform different action sets in the first step, we set
d = 1, where d is the depth for removing the termination ac-
tion. Moreover, ε − greedy policy (Sutton and Barto 2018)
is introduced to expand the search space further.

Semantic Alignment Module
Semantic Alignment Module (SAM) aims to learn a se-
mantic space spanned by visual representations and perform
semantic-visual alignment for effective knowledge transfer.
We construct two mapping functions, i.e., f(·) and g(·), to
map both image x and attribute vector a into visual em-
bedding space. Thus, the inference of semantic prediction is
defined as follows:

y = arg min
y∈Ys∪Yu

d[f(x), g(a(y))], (7)

The loss can be expressed by

Lsem =
N∑
i=1

d[f(xs
i ), g(a

s
i )], (8)

However, we find that the semantic predictions of unseen
images tend to be recognized as the seen categories known
as the biased recognition problem (Fu et al. 2014; Min et al.
2019). Therefore, it is necessary to construct a domain de-
tector to determine whether the input sample comes from the
seen domain. We discover that the visual classifier output of
an unseen sample is smoother than the image from the seen
domain through experiments. For this reason, we take the
two largest scores of the prediction and calculate their dif-
ference Ĉ1,2(·), which is used to predict which domain the
input image belongs to, to develop a difference-based do-
main detector. This process is defined as follows:

ŷ =

{
argmaxy∈Ys

C(f(x)) if Ĉ1,2(x) > τ,
argminy∈Yu

d[f(x), g(a)] otherwise ,
(9)

where x is the input image cropped by R2M, f(·) denotes
the feature extractor, g(·) is a multi-layer perceptron, C(·) is
a |YS |-way classifier that is trained with cross-entropy loss
of seen categories by

Lvis = −
1

N

n∑
i

log
exp(C(f(x)))∑
c exp (C(f(x))c)

,x ∈ XS (10)
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and Ĉ1,2(·) is the difference between the maximum and
the sub-maximal classification scores in terms of the seen
classes YS , τ is the threshold for distinguishing the domain.
We divide the validation set from the training set to estimate
the threshold τ .

Finally, the whole GZSL prediction model is trained by
the following loss function:

Lall = Lsem + Lvis. (11)

Experiments
Experimental Settings
Datasets. We evaluate the proposed SR2E model on four
GZSL benchmarks: Caltech-UCSD Birds 200-2011(CUB)
(Wah et al. 2011), Animals with Attributes 2(AwA2) (Lam-
pert, Nickisch, and Harmeling 2013), SUN (Xiao et al. 2010)
and Yahoo dataset(aPY) (Farhadi et al. 2009). CUB is a fine-
grained bird dataset which contains 11,788 bird images from
200 classes, and each class has 312-dimension semantic vec-
tor. AwA2 contains 37,322 images of 50 animal categories,
each of which has an 85-dimension attribute vector. SUN
is a fine-grained dataset including 14,340 images from 717
scene categories. Each class in SUN has a 102-dimension
continuous semantic vector. aPY consists of 15,339 images
from 32 categories, and 64-dimension is associated with
each class. We adopt the splits of seen/unseen classes pro-
posed in (Xian et al. 2018a).

Implementation details. We adopt ResNet101 (He et al.
2016) as the visual feature extractor, which is pretrained on
the ImageNet dataset (Russakovsky et al. 2015). The input
image is randomly cropped on a 448 × 448 resized image
with random horizontal flipping. In this work, we train the
model with two stages: basic model construction and rein-
forcement feature capture. In the first stage, we get an avail-
able model trained on GZSL datasets, and semantic-driven
reinforcement learning is introduced in the second stage. Af-
ter that, we retrain the SR2E model based on the regions
extracted by R2M and perform a serialized search again. In
this way, our model can capture discriminative features and
facilitate the semantic-visual association.

Regarding the parameters, we set learning rate lr = 1 ×
10−4 and adopt Adam optimizer with β = (0.5, 0.999) and
weigh decay 1× 10−4 in the first stage. In the second stage,
the learning rate of the action predictor is fixed and set to
1× 10−6, while the termination action reward value η is set
to 3. We set α = 6/7 for the animal datasets like CUB and
AwA2 because their images have specific objects which are
useful for classification. SUN and aPY datasets have scene
pictures, which means the most areas of the image affect
prediction. In this case, we set α = 9/10. The maximum
number of iterations is set to 6 to avoid invalid search. The ε
value in ε − greedy is initialized to 1, and decreases by 0.1
at each epoch until the 10th epoch.

Evaluation metrics. We only consider generalized set-
tings in our experiments, which require both seen and un-
seen classes in searched label space. We follow the set-
tings in (Xian et al. 2018a) to adopt Mean Class Accu-
racy (MCA) as the evaluation indicator. We calculate the

MCA of the seen (MCAs) and unseen (MCAt) classes
separately, and use the harmonic mean (H) to evaluate our
model: H = 2×MCAt×MCAs

MCAt+MCAs
.

Baselines. To verify the effectiveness of different compo-
nents in SR2E model, three baselines are designed:

• SE-BS. This is a general GZSL classification model with-
out RL fine-tuning and domain detector.

• SE-DD. Different from SE-BS, we apply the domain de-
tector to alleviate the domain confusion.

• SR2E. We add an action predictor based on SE-DD and
execute the second stage (reinforcement feature capture).

Comparison with Existing Methods
The results of the GZSL compared with previous methods
are reported in Table 1. Compared to the non-generative
models, our model has been greatly improved, e.g., SR2E
obtains 7.7%, 0.4%, 6.5% and 9.8% improvement in terms
of the harmonic mean (H) on CUB, AwA2, SUN and aPY
datasets, respectively.

Also, from Table 1, an interesting phenomenon is that
some methods like VSE-S and MLSE can achieve a pretty
good performance on the seen domain but fail to get a high
value of MCAt. The unbalanced performance on seen and
unseen classes makes the metric H of VSE-S much lower
than ours on AwA2 dataset (57.2% vs 67.5%). Moreover,
the difference between the two domains of SR2E on CUB
is only 9%, while MLSE gets 49.3%. The reason is that
these models use more visual supervision but lack sufficient
knowledge transfer. In contrast, our model imposes visual
and semantic supervisions simultaneously, and enhances the
effectiveness of these two supervisions through serialized re-
gion search and discriminative feature extraction.

Notice that recent region-based methods could achieve
excellent performance. Most of them can get high values in
seen domain thanks to their effective selection of visual fea-
tures. However, the regional focus of these models is only
performed once in the forward propagation process, and it
makes the learning of the localizer insufficient. Different
from these methods, our search process is serialized, which
is more transparent and precise. We utilize the semantic-
driven reward signals to guide the localizer to perform a
serialized search so as to capture the import regions more
fully, leading to a higher harmonic mean H . Among these
methods, LDF obtains the key regions that contain global
information, which is most similar to our model. However,
it combines the original image with the selected region in a
combined method, which is stable but inefficient.

Different from embedding-based methods, generative
methods utilize the prior unseen semantic labels to synthetic
extra training samples, thereby transforming GZSL into a
general supervision problem, which leads to more compet-
itive results. Nevertheless, compared with generative mod-
els, our model still has competitiveness. With the help of
reinforced region localizer and semantic-visual alignment,
SR2E tends to extract better feature representations and per-
form stable knowledge transfer, resulting in superior perfor-
mance.
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CUB AwA2 SUN aPY
Methods MCAt MCAs H MCAt MCAs H MCAt MCAs H MCAt MCAs H

G
E

N

f-CLSWGAN (Xian et al. 2018b) 43.7 57.7 49.7 - - - 42.6 36.6 39.4 - - -
SE (Kumar Verma et al. 2018) 41.5 53.3 46.7 58.3 68.1 62.8 40.9 30.5 34.9 - - -
E-PGN (Yu et al. 2020) 52.0 61.1 56.2 52.6 83.5 64.6 - - - - - -

N
O

N
-G

E
N

VSE-S(Zhu, Wang, and Saligrama 2019) 33.4 87.5 48.4 41.6 91.3 57.2 - - - 24.5 72.0 36.6
PREN(Ye and Guo 2019) 32.5 55.8 43.1 32.4 88.6 47.4 35.4 27.2 30.8 - - -
MLSE(Ding and Liu 2019) 22.3 71.6 34.0 23.8 83.2 37.0 20.7 36.4 26.4 12.7 74.3 21.7
LDF*(Li et al. 2018) 26.4 81.6 39.9 9.8 87.4 17.6 - - - - - -
AREN*(Xie et al. 2019) 38.9 78.7 52.1 15.6 92.9 26.7 19.0 38.8 25.5 9.2 76.9 16.4
SGMA*(Zhu et al. 2019) 36.7 71.3 48.5 37.6 87.1 52.5 - - - - - -
DAZLE*(Huynh and Elhamifar 2020) 56.7 59.6 58.1 60.3 75.7 67.1 52.3 24.3 33.2 - - -
SE-BS (w/o domain detector) 41.0 85.1 55.4 14.8 95.7 25.7 16.9 46.1 24.7 9.54 68.1 16.7
SE-DD (w domain detector) 58.9 68.9 63.5 55.1 81.8 65.9 42.0 36.2 38.9 35.8 58.5 44.4
SR2E (w reinforcement learning) 61.6 70.6 65.8 58.0 80.7 67.5 43.1 36.8 39.7 38.4 58.8 46.4

Table 1: Results on GZSL. The harmonic mean (H) is the comprehensive evaluation ofMCAs andMCAt. The best results are
marked in bold font. GEN indicates generative methods, which utilize GANs to synthetic unseen data for training. * indicates
the models based on one-off object localizer.
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Figure 4: The performance of the domain detection.

Ablation Studies
Effects of domain detection. A general GZSL model al-
ways meets the biased recognition problem, and thus limit-
ing the performance of the classifier. As shown in Table 1,
SE-BS can only achieve modest performance on all four
datasets. However, combined with the difference-based do-
main detector, SE-DD achieves more than 20% improve-
ment on average in terms of a harmonic mean H compared
with SE-BS. The reason is that SE-DD can effectively distin-
guish the categories of different domains, thereby obtain sta-
ble transfer ability and more effective semantic-visual align-
ment. An interesting phenomenon is that our SE-DD raises
H from 25.7% to 65.9% over SE-BS on AwA2 datasets,
which is mainly contributed by the dramatically 40.3% im-
provement of MCAt. This is because there are sufficient
training samples for AwA2, leading to strong supervision in
the seen domain but weak knowledge transfer in the unseen
domain, while domain detector alleviates this phenomenon.

Effects of varying τ . As the τ is the factor that determines
the performance of our difference-based domain detector,
we calculate the results of different values and evaluate their
influence. As shown in Figure 4, we can observe that high
MCAt is always accompanied by low MCAs. The reason
is that higher τ prefers to divide the sample into the unseen
domain, causing MCAs to decrease. We consider the trade-
off between both two metrics and find that H reaches the
highest value when τ is set to 0.89 in CUB datasets. How-

CUB aPY
Methods MCAt MCAs H MCAt MCAs H

SR2E-Scale A 58.6 72.3 64.7 35.8 58.5 44.4
SR2E-Scale B 61.6 70.6 65.8 37.8 57.7 45.7
SR2E-Scale C 58.2 73.3 64.9 38.4 58.8 46.4

Table 2: Results on different scale factors α. Scale A, Scale
B and Scale C indicate 4

5 ,
6
7and

9
10 , respectively.

ever, we observe that the intersection of the three lines ap-
peared early in SUN datasets. This phenomenon is caused
by insufficient training samples. SUN has only 16 samples
per category on average, resulting in a smoother output even
when the input image is from the seen domain. To achieve
better performance, the τ is set to 0.89, 0.97, 0.81 and 0.22
for CUB, AwA2, aPY and SUN, respectively.

Effects of reinforcement feature capture. Different from
SAM that improves the semantic-visual alignment, R2M
improves the performance by extracting more discrimina-
tive features via reinforced region embedding. In the sec-
ond stage (reinforcement feature capture), we get the SR2E
model. This model adds another coarse-to-fine processing
based on SE-DD model by regarding the search process for
important regions as the Markov Decision Process (MDP).
As shown in Table 1, the SR2E gets a higher harmonic mean
(H) than SE-DD for all four datasets (65.8% in CUB, 67.5%
in AwA2, 39.7% in SUN, 46.4% in aPY). Also, we can ob-
serve that the reinforcement feature capture promotes both
MCAs and MCAt in CUB, SUN and aPY datasets, which
proves the validity of efficient features. It is noted that R2M
produces less performance improvement than SAM. The
reason is that the domain detector can adjust MCAs and
MCAt to obtain a higher H . This improvement is often rel-
atively large due to the mitigation of the biased recognition
problem.

Effects of scale factor α. For the SR2E model, the search
scale factor α can be set to different values. Large α means
a small range of variation for the cropped region between
two steps, and this careful search can avoid losing potential
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seen

unseen

CUB APY

Figure 5: The visual samples of SR2E on CUB and aPY datasets. The first two rows are the seen samples, and the other rows
are the unseen samples. Each image has multiple red bounding boxes, and these bounding boxes from large to small show the
serialized search process for the key regions. The scale factors on CUB and aPY are set to 6

7 and 9
10 , respectively.

CUB aPY
Methods MCAt MCAs H MCAt MCAs H

SR2E-ID0 58.8 72.0 64.8 35.7 60.6 45.0
SR2E-ID1 61.6 70.6 65.8 38.4 58.8 46.4
SR2E-ID2 58.9 72.5 65.0 37.7 58.3 45.8

Table 3: Results of depth d. ID0, ID1 and ID2 indicate d =
0,d = 1 and d = 2, respectively. d = 0 means SR2E does
not perform different action sets.

areas. However, there will be more time to pay and thus a
termination action will be triggered without fully expanding.
Based on this, it is worth choosing a proper α to search for
suitable areas. According to the observation of the GZSL
datasets, we choose three different scales: { 45 ,

6
7 ,

9
10}. The

results in CUB and aPY datasets are shown in Table 2. It can
be observed that the harmonic mean (H) of the SR2E using
Scale A achieves 64.7% in CUB, while gets no improvement
in aPY (using the performance of SE-DD). The reason is
that the object of an image from CUB is usually in a suitable
area, while the image from aPY has more noise and scale
change. From Table 2, we also observe that SR2E-Scale B
gets the best performance in CUB (65.8%) and SR2E-Scale
C obtains the highest H in aPY (46.4%). The results show
a suitable α can achieve a balance between the search speed
and search space.

Effects of depth d. We study the appropriate depth d to
better guide the localizer to find more discriminative re-
gions. Through Table 3, it can be seen that the technique of
selectively ignoring termination action can effectively im-
prove the performance of the SR2E model. For example,
on the aPY dataset, the SR2E-ID1 model raises a harmonic
mean (H) from 45.0% to 46.4% compared to the SR2E-
ID0 model, which is mainly attributed to the contribution of
2.7% improvement on the unseen domain. Further, SR2E-
ID1 obtains the best performance in terms of metric H on
both CUB and aPY dataset, which shows that the depth set
to 1 is enough to expand the search space and find a more
accurate object region.

Visualizations of the serialized search process. To ob-
tain the process of the serialized search for discriminative re-
gions, we save the coordinates of the cropped region at each
step and draw the bounding box on the corresponding image.
The results are shown in Figure 5. On the CUB datasets, our
model can catch the object in the first few steps because most
unrelated areas are relatively single. We can see that most
positioning results are finer, which also confirms that the re-
dundant background of the image has an impact on classi-
fication confidence. Additionally, we know that the bound-
ing box annotations can be provided by CUB datasets, while
our model can find the location of the object automatically
without these annotations, which illustrates that our model
has an outstanding performance on extracting key seman-
tic information. On aPY datasets, we can see that there are
some small objects, e.g., people and the donkey, which in-
dicates that aPY is more complex. Nonetheless, our model
can localize the key region through more steps, showing the
robustness and accuracy of our model.

Conclusion
In this paper, we proposed a novel Semantic-guided Rein-
forced Region Embedding (SR2E) network for challenging
generalized zero-shot image recognition. Different from ex-
isting methods focusing on a one-off localizer to directly se-
lect partial regions, we develop a serialized search guided by
category description which is interpretable and stable to con-
struct semantic-visual embedding space. By regarding the
search process for important regions as a Markov Decision
Process, we propose the R2M module that can adaptively
and gradually localize the semantically related object region.
Semantic-driven reward signals and different action sets are
designed to guide the R2M extract more discriminative fea-
tures, which is proved to greatly improve the performance of
our model. To further boost the semantic-visual alignment,
SAM with a domain detector is provided, which reduces the
bias recognition problem and improve the knowledge trans-
fer. And the experiment results show our model outperforms
existing state-of-the-art approaches.
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