
Proxy Synthesis: Learning with Synthetic Classes for Deep Metric Learning

Geonmo Gu∗1, Byungsoo Ko∗1, Han-Gyu Kim 2

1 NAVER/LINE Vision, 2 NAVER Clova Speech
korgm403@gmail.com, kobiso62@gmail.com, hangyu.kim@navercorp.com

Abstract

One of the main purposes of deep metric learning is to con-
struct an embedding space that has well-generalized embed-
dings on both seen (training) classes and unseen (test) classes.
Most existing works have tried to achieve this using differ-
ent types of metric objectives and hard sample mining strate-
gies with given training data. However, learning with only
the training data can be overfitted to the seen classes, leading
to the lack of generalization capability on unseen classes. To
address this problem, we propose a simple regularizer called
Proxy Synthesis that exploits synthetic classes for stronger
generalization in deep metric learning. The proposed method
generates synthetic embeddings and proxies that work as syn-
thetic classes, and they mimic unseen classes when comput-
ing proxy-based losses. Proxy Synthesis derives an embed-
ding space considering class relations and smooth decision
boundaries for robustness on unseen classes. Our method is
applicable to any proxy-based losses, including softmax and
its variants. Extensive experiments on four famous bench-
marks in image retrieval tasks demonstrate that Proxy Synthe-
sis significantly boosts the performance of proxy-based losses
and achieves state-of-the-art performance. Our implementa-
tion is available at github.com/navervision/proxy-synthesis.

1 Introduction
Deep metric learning aims to learn a similarity metric among
arbitrary data points so that it defines an embedding space
where semantically similar images are close together, and
dissimilar images are far apart. Owing to its practical sig-
nificance, it has been used for a variety of tasks such as
image retrieval (Gordo et al. 2016; Sohn 2016), person re-
identification (Yu et al. 2018; Hermans, Beyer, and Leibe
2017), zero-shot learning (Zhang and Saligrama 2016), and
face recognition (Wen et al. 2016; Deng et al. 2019). The
well-structured embedding is requested to distinguish the
unseen classes properly, where the model is required to
learn image representation from seen classes. This has been
achieved by loss functions, which can be categorized into
two types: pair-based and proxy-based loss.

The pair-based losses are designed based on the pair-
wise similarity between data points in the embedding space,

∗Authors contributed equally.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

such as contrastive (Chopra, Hadsell, and LeCun 2005),
triplet (Weinberger and Saul 2009), N-pair loss (Sohn 2016),
etc. However, they require high training complexity and
empirically suffer from sampling issues (Movshovitz-Attias
et al. 2017). To address these issues, the concept of proxy has
been introduced. A proxy is a representative of each class,
which can be trained as a part of the network parameters.
Given a selected data point as an anchor, proxy-based losses
consider its relations with proxies. This alleviates the train-
ing complexity and sampling issues because only data-to-
proxy relations are considered with a relatively small num-
ber of proxies compared to that of data points.

Although the performance of metric learning losses has
been improved, a network trained only with training (seen)
data can be overfitted to the seen classes and suffer from low
generalization on unseen classes. To resolve this problem,
previous works (Zheng et al. 2019; Gu and Ko 2020; Ko
and Gu 2020) have generated synthetic samples to exploit
additional training signals and more informative represen-
tations. However, these methods can only be used for pair-
based losses; thus, they still suffer from the training com-
plexity and sampling issues.

In this paper, we propose Proxy Synthesis (PS), which is
a simple regularizer for proxy-based losses that encourages
networks to construct better generalized embedding space
for unseen classes. As illustrated in Figure 1, our method
generates synthetic embeddings and proxies as synthetic
classes for computing a proxy-based loss. Proxy Synthesis
exploits synthetic classes generated by semantic interpola-
tions to mimic unseen classes, obtaining smooth decision
boundaries and an embedding space considering class re-
lations. Moreover, the proposed method can be used with
any proxy-based loss, including softmax loss and its vari-
ants. We demonstrate that our proposed method yields bet-
ter robustness on unseen classes and deformation on the in-
put and embedding feature. We achieve a significant perfor-
mance boost on every proxy-based loss with Proxy Synthesis
and obtain state-of-the-art performance with respect to four
famous benchmarks in image retrieval tasks.

2 Related Work
Sample Generation: To achieve better generalization,
previous works (Zhao et al. 2018; Duan et al. 2018; Zheng
et al. 2019) have leveraged a generative network to cre-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

1460

SPRP

P

P

P

P P

P

(a) Pair-based loss (b) Proxy-based loss (c) Proxy Synthesis + proxy-based loss

a

: Embedding, a : Anchor, P PP : Proxy, P : Synthetic Proxy,: Synthetic embedding, : Positive relation, : Negative relation

P

PP

P

a aa

P

Figure 1: Comparison among concepts. (a) Pair-based loss maximizes similarity of positive pairs and minimizes similarity of
negative pairs (i.e., Triplet loss). (b) Given an anchor embedding, proxy-based loss maximizes similarity with positive proxy and
minimizes similarity with all negative proxies (i.e., Proxy NCA and Softmax variants). (c) Proxy Synthesis exploits synthetic
classes in-between original classes for additional training signals and competitive hard classes.

ate synthetic samples, which can lead to a bigger model
and slower training speed. To solve these problems, recent
works (Gu and Ko 2020; Ko and Gu 2020) have proposed
to generate samples by algebraic computation in the embed-
ding space. However, the above works can only be used for
pair-based losses, which causes the same drawbacks of high
training complexity and careful pair mining. In addition, the
above works exploit synthetic embeddings only for existing
(seen) classes, when Proxy Synthesis uses synthetic embed-
dings and proxies as virtual classes for generalization on un-
seen classes explicitly.

Mixup: Mixup techniques (Zhang et al. 2017; Verma et al.
2018; Guo, Mao, and Zhang 2019) have been proposed for
generalization in the classification task. These techniques
linearly interpolate a random pair of training samples and the
corresponding one-hot labels. Proxy Synthesis and Mixup
techniques share the common concept in terms of interpo-
lating features for augmentation but have three major dif-
ferences. First, Mixup techniques are proposed for gener-
alization, which aims for robustness on seen classes, such
as classification, whereas Proxy Synthesis is proposed for
generalization in metric learning tasks, aiming for robust-
ness on unseen classes. Second, Mixup techniques interpo-
late the input vectors and hidden representations, whereas
the proposed method interpolates the embedding features in
the output space. Third, Mixup techniques interpolate one-
hot labels, while Proxy Synthesis interpolates proxies, which
allow us to learn the positional relations of class representa-
tives in the embedding space explicitly.

Virtual Class: Virtual softmax (Chen, Deng, and Shen
2018) generates a single weight as a virtual negative class
for softmax function to enhance the discriminative property
of learned features in the classification task. Even though the
work proves that the constrained region for each class be-
comes more compact by the number of classes increase, Vir-
tual softmax considers a single synthetic weight without any
corresponding embedding as a virtual negative class. More-

over, generating virtual weight by Wvirt = ‖Wyi
‖xi/‖xi‖

is not applicable for softmax variants with weight normal-
ization (i.e. Norm-Softmax, ArcFace, Proxy-anchor, etc),
where xi is i-th embedding, and Wyi is its positive class
weight. This is because Wvirt of the synthetic negative
class will be equivalent to xi after normalization. In con-
trast, Proxy Synthesis generates multiple proxies (weights)
and corresponding embeddings as multiple virtual classes,
which can be used as negative and also positive classes.
Moreover, the proposed method is applicable for any proxy-
based loss and softmax variants.

3 Proposed Method
3.1 Preliminary

Consider a deep neural network f : D f−→ X , which maps
from an input data space D to an embedding space X . We
define a set of embedding feature X = [x1, x2, . . . , xN],
where each feature xi has label of yi ∈ {1, . . . , C} and
N is the number of embedding features. We denote a set
of proxy P = [p1, p2, . . . , pC] and formulate generalized
proxy-based loss as:

L(X,P) = E
(x,p)∼R

`(x, p), (1)

where (x, p) denotes random pair of embedding and match-
ing proxy from the pair distribution R.

Softmax loss is not only the most widely used classifica-
tion loss but also has been re-valued as competitive loss in
metric learning (Zhai and Wu 2018; Boudiaf et al. 2020). Let
Wj ∈ Rd denote the j-th column of the weight W ∈ Rd×C ,
where d is the size of embedding features. Then, Softmax
loss is presented as follows:

LSoftmax(X) = − 1

| X |

|X|∑
i=1

log
eW

T
yi
xi∑C

j=1 e
WT
j xi

, (2)

where we set the bias b = 0 because it does not affect the
performance (Liu et al. 2017; Deng et al. 2019). Because
the proxy P is learned as model parameter, the weight W of

1461

softmax loss can be interpreted as proxy, which is the center
of each class (Deng et al. 2019; Wang et al. 2018b).

Normalizing the weights and feature vector is proposed
to lay them on a hypersphere of a fixed radius for better
interpretation and performance (Wang et al. 2017, 2018a;
Liu et al. 2017). When we transform the logit (Pereyra et al.
2017) as WT

j xi = ‖Wj ‖‖ xi ‖ cos θj and fix the individ-
ual proxy (weight) ‖ Wj ‖= 1 and feature ‖ xi ‖= 1 by
l2-normalization, the normalized softmax (Norm-softmax)
loss can be written with proxy-wise form as:

LNorm(X,P) = − 1
|X|

∑
x∈X log eγs(x,p

+)

eγs(x,p+)+
∑

q∈P−
eγs(x,q)

, (3)

where p+ is a positive proxy, P− is a set of negative prox-
ies, γ is a scale factor, and s(a, b) denotes the cosine simi-
larity between a and b. More details of proxy-based (Proxy-
NCA (Movshovitz-Attias et al. 2017), SoftTriple (Qian et al.
2019), and Proxy-anchor (Kim et al. 2020)) and softmax
variants (SphereFace (Liu et al. 2017), ArcFace (Deng et al.
2019), and CosFace (Wang et al. 2018b)) losses are pre-
sented in the supplementary Section A.

3.2 Proxy Synthesis
One of the key purposes of metric learning is to construct a
robust embedding space for unseen classes. For this purpose,
the proposed method allows proxy-based losses to exploit
synthetic classes. Training a proxy-based loss using Proxy
Synthesis is performed in three steps. First, we process a
mini-batch of input data with a network f to obtain a set
of embeddings X . Second, given two random pairs of an
embedding and corresponding proxy from different classes,
(x, p) and (x′, p′), we generate a pair of synthetic embed-
ding and proxy (x̃, p̃) as follows:

(x̃, p̃) ≡ (Iλ(x, x
′), Iλ(p, p

′)), (4)
where Iλ(a, b) = λa+(1−λ)b is a linear interpolation func-
tion with the coefficient of λ ∼ Beta(α, α) for α ∈ (0,∞),
and λ ∈ [0, 1]. We perform µ × batch size generations of
Eq. 4, where hyper-parameter µ = # of synthetics

batch size is a gen-
eration ratio by batch size. Thereafter, we define X̂ as a set
of original and synthetic embeddings, and P̂ as a set of orig-
inal and synthetic proxies. Synthetic proxy p̃ will work as a
representative of the synthetic class, which has a mixed rep-
resentation of class p and p′, whereas the synthetic embed-
ding x̃ will be a synthetic data point of the synthetic class.
Third, we compute the loss, including synthetic embeddings
and proxies, as if they are new classes. The generalized loss
with Proxy Synthesis is formulated as:

L(X̂, P̂) = E
λ∼Beta(α,α)

E
(x,p)∼R̂λ

`(x, p), (5)

where R̂λ is a distribution of the embedding and proxy pairs
including originals and synthetics generated with λ. Imple-
menting Proxy Synthesis is extremely simple with few lines
of codes. Moreover, it does not require to modify any code
of proxy-based loss and can be used in a plug-and-play man-
ner with negligible computation cost. Code-level description
and experiment of training time and memory are presented
in the supplementary Section B.1 and D.1, respectively.

3.3 Discussion
Learning with Class Relations: Unlike tasks that only
test with seen classes such as classification, metric learn-
ing is desired to construct a structural embedding space for
robustness on unseen classes. A well-structured embedding
space should contain meaningful relations among embed-
dings; an example from the previous work (Mikolov et al.
2013) is as follows: king − man + woman ≈ queen in
a word embedding space. To achieve this, Proxy Synthesis
explicitly inserts in-between class relations with synthetic
classes (i.e., Iλ(wolf, dog) ≈ wolfdog) and they mimic
unseen classes for training with a diverse range of data char-
acteristics. Proxy Synthesis considers class relations with
Equation 4 and 5 in forward propagation. This characteristic
is reflected in backward propagation as well.

For convenience in gradient analysis, we write the loss of
softmax function on (x, pi), where x is an anchor embedding
of input, and pi is corresponding positive proxy, as follows,

Li = LSoftmax(x, pi) = − log
E(pi)

E(pi) +
∑
q∈P− E(q)

, (6)

where E(p) = eS(x,p) and S(x, p) = s(x, p) ‖ x ‖‖ p ‖=
xT p. Then, gradient over positive similarity S(x, pi) is,

∂Li
∂S(x, pi)

=
E(pi)∑
q∈P E(q)

− 1. (7)

It shows that the gradient over S(x, pi) only considers the
similarity of the anchor embedding and its proxy by E(pi).

When Proxy Synthesis is applied, the gradient changes. In
this gradient induction, we assume that the positive proxy pi
of input is used for generating synthesized proxy p̃ with pj
as p̃ = λpi + λ′pj , where λ′ = 1 − λ. Then, the gradients
over S(x, pi) and S(x, pj) are inducted as follows,

∂Li
∂S(x, pi)

=
λE(p̃) + E(pi)

E(p̃) +
∑
q∈P E(q)

− 1, (8)

∂Li
∂S(x, pj)

=
λ′E(p̃) + E(pj)

E(p̃) +
∑
q∈P E(q)

. (9)

In contrast to the softmax loss, Proxy Synthesis enables the
gradient over S(x, pi) and S(x, pj) to consider class rela-
tion between pi and pj via E(p̃) = E(λpi + λ′pj) in the
backward propagation. The detailed induction is presented
in supplementary Section B.2.

Obtaining a Smooth Decision Boundary: Synthetic
classes work as hard competitors of original classes be-
cause of positional proximity, which leads to lower pre-
diction confidence and, thus, smoother decision boundaries.
The smoothness of the decision boundary is a main factor of
generalization (Bartlett and Shawe-Taylor 1999; Verma et al.
2018), and it is more desirable in metric learning to provide a
relaxed estimate of uncertainty for unseen classes. For better
intuitions, we conduct an experiment to visualize the gener-
alization effect of Proxy Synthesis, as depicted in Figure 2.
For both the input and embedding spaces, Norm-softmax has
a strict decision boundary, whereas PS + Norm-softmax has
a smooth decision boundary that transitions linearly from

1462

Input space visualization Embedding space visualization

(a) Norm-softmax (b) PS + Norm-softmax (c) Norm-softmax (d) PS + Norm-softmax

Figure 2: Experiment with 2D isotropic Gaussian dataset including red, blue, and gray classes. Simple feed-forward network
with two-dimensional embedding is used, while we train network with red and blue classes and let gray class remain unseen. The
darker the intensity of the blue or red in the background, the higher the prediction confidence to blue or red class, respectively.

the red to the blue class. Further theoretical analysis of such
phenomenon is provided below.

A network with ordinary softmax outputs the probability
of an embedding x belonging to a specific class i as follows,

Pr(x, i) =
eS(x,pi)

eS(x,pi) +
∑
q∈P\{pi} e

S(x,q)
. (10)

Considering the linearity of similarity function S(x, p) =
xT p, the strict decision boundary is constructed when the
network always outputs embedding vector close to one
proxy, even though the input has shared visual semantics
among different classes. Such phenomenon occurs because
the softmax function forces all embedding vectors to be-
come as close to the corresponding proxies as possible dur-
ing training. Considering the softmax loss of an embedding
vector and its positive proxy (x, pi) as Equation 6, the gra-
dient of such loss over x can be inducted as follows:

∂Li
∂x

= τipi +
∑

pk∈P−
τkpk, (11)

τi =
E(pi)∑
q∈P E(q)

− 1 , τk =
E(pk)∑
q∈P E(q)

. (12)

It is obvious that τi < 0 and τk > 0. Considering the pa-
rameter update is performed by x = x− η ∂Li∂x , where η is a
learning rate, the gradient descent forces x to be closer to pi
and to be distant from other proxies pk.

Proxy Synthesis overcomes such problem of embedding
space to overfit to the proxies by providing a gradient of
opposite direction compared to ordinary softmax. To de-
scribe major difference of Proxy Synthesis and ordinary soft-
max, we consider softmax loss for synthesized pair x̃ =
λx + λ′x′, p̃ = λpi + λ′pj , where (x, pi) and (x′, pj) are
pairs of an embedding and a corresponding proxy:

L̃ = LSoftmax(x̃, p̃) (13)

= − log
E(p̃)

E(p̃) + E(pi) + E(pj) +
∑
q∈P− E(q)

,

where E(p) = eS(x̃,p) and P− = P \ {pi, pj}. It should
be noted that p̃ /∈ P . Since we suggest to sample λ from
Beta(α, α) with small α in Section 4.3, p̃ has high chance

to be generated either close to pi with λ >> 0.5 or close to
pj with λ << 0.5. As the proofs for both cases are equiv-
alent, we assume the first case: x̃ is much closer to x than
x′. We consider gradient over x because the loss will affect
the closer embedding vector more than the other one. The
inducted gradient over x is as follows:

∂L̃
∂x

= −λ
∑
q∈P (p̃− q)E(q)

E(p̃) +
∑
q∈P E(q)

. (14)

As x̃ is closer to pi and p̃ compared to other proxies,
E(pi), E(p̃) >> E(q) ∀q 6= pi, p̃. Thus, Equation 14 can
be re-written as follows,

∂L̃
∂x
≈ −λ (p̃− pi)E(pi)

E(p̃) + E(pi)
= τ ′ipi + τ ′jpj , (15)

τ ′i =
λλ′E(pi)

E(p̃) + E(pi)
, τ ′j = −

λλ′E(pi)

E(p̃) + E(pi)
. (16)

It is obvious that τ ′i > 0, implying that by adopting Proxy
Synthesis, softmax loss for synthesized pair provides gradi-
ent which leads embedding vector not too close to the cor-
responding proxy pi; it is also obvious that τ ′j < 0, imply-
ing that softmax loss for synthesized pair provides gradi-
ent which makes embedding vector not too distant from the
competing proxy pj . In such a manner, Proxy Synthesis pre-
vents embedding vectors lying too close to proxies, which
finally leads to the smooth decision boundary. The detailed
induction is provided in the supplementary Section B.3.

4 Experiments
4.1 Experimental Setting
We evaluate the proposed method with respect to
four benchmarks in metric learning: CUB-200-2011
(CUB200) (Wah et al. 2011), CARS196 (Krause et al.
2013), Standford Online Products (SOP) (Oh Song et al.
2016), and In-Shop Clothes (In-Shop) (Liu et al. 2016).
We follow the widely used training and evaluation proce-
dure from (Oh Song et al. 2016; Kim et al. 2020) and call
it conventional evaluation. Experiments are performed on
an Inception network with batch normalization (Ioffe and
Szegedy 2015) with a 512 embedding dimension. For the
hyper-parameters of Proxy Synthesis, α and µ are set to

1463

(a) Original train + original test (b) Original train + synthetic train

: Proxy (train), : Embedding (train), : Embedding (test), : Synthetic proxy (train), : Synthetic embedding (train)

Figure 3: t-SNE visualization (Maaten and Hinton 2008) of converged network trained with PS + Norm-softmax loss on
CARS196. (a) We project both train (seen) and test (unseen) embeddings. (b) With the same train embeddings as in (a), we
project synthetic embeddings and proxies.

Model Embedding Proxy R@1
Original Synthetic Original Synthetic

M1 (baseline) X X 83.3
M2 X X 83.1
M3 X X X 83.7
M4 X X X 83.7
Proxy Synthesis X X X X 84.7

Table 1: Recall@1(%) comparison among different us-
ages of original and synthetic embedding and proxy on
CARS196. We set elements of X̂ and P̂ to be checked(X)
embeddings and proxies to compute LNorm(X̂, P̂).

0.4 and 1.0, respectively. Considering recent works (Mus-
grave, Belongie, and Lim 2020; Fehervari, Ravichandran,
and Appalaraju 2019) that have presented enhanced evalu-
ation procedure with regard to fairness, we include an eval-
uation procedure designed from work “A metric learning re-
ality check” (Musgrave, Belongie, and Lim 2020) and call
it MLRC evaluation, which contains 4-fold cross-validation,
ensemble evaluation, and usage of fair metrics (P@1, RP,
and MAP@R). Please refer to supplementary Section C for
further details on the benchmarks and implementation.

4.2 Impact of Synthetic Class
Embedding Space Visualization: Exploiting synthetic
classes is preferable in metric learning because the main goal
is to develop robustness on unseen classes. This is depicted
visually in Figure 3. In Figure 3a, unseen test embeddings
are located in-between the clusters of train embeddings by
forming clusters. Similarly, synthetic classes are also gener-
ated in-between train embeddings, as depicted in Figure 3b,
and play an important role in mimicking unseen classes dur-
ing the training phase. Thus, these additional training signals
enable a network to capture extra discriminative features for
better robustness on unseen classes. Extended visualization

λ R@1(%)

0.1 83.1
0.2 83.8
0.3 83.7
0.4 83.5
0.5 83.3

(a) Static generation

α R@1(%)

0.2 84.0
0.4 84.7
0.8 83.9
1.0 83.7
1.5 83.7

(b) Stochastic generation

Table 2: Comparison between static and stochastic gener-
ation of synthetics while training with PS + Norm-softmax
on CARS196. For static generation, synthetics are generated
with fixed value of λ. For stochastic generation, synthetics
are generated with sampled λ from Beta(α, α).

is in supplementary Section D.5.

Impact of Synthetic Embedding and Proxy: To inves-
tigate the quantitative impact of synthetic embedding and
proxy, we conduct an experiment by differentiating the ele-
ments of X̂ and P̂ in Norm-softmax loss. Table 1 illustrates
that using only synthetic embeddings and proxies (M2) leads
to a slightly lower performance than the baseline (M1).
Adding synthetic proxies (M3) and using synthetic embed-
ding instead of the original embedding (M4) leads to im-
proved performance when compared with the baseline (M1).
This indicates that the generated synthetic embeddings and
proxies build meaningful virtual classes for training. Finally,
using all embeddings and proxies (Proxy Synthesis) achieves
the best performance among all cases by considering the
fundamental and additional training signals.

4.3 Synthetic Class as Hard Competitor
Impact of Hardness: Generating synthetic classes is re-
quired to be hard enough so that the model can learn more
discriminative representations. The hardness of synthetic
classes can be controlled by α, which decides probability
distribution for the sampling of the interpolation coefficient

1464

O
rig

in
al

Sy
nt

he
tic

Original Synthetic

Em
be

dd
in

g

Proxy

𝑫𝑫𝟏𝟏 𝑫𝑫𝟒𝟒

O
rig

in
al

 E
m

be
dd

in
g

Original Proxy

(a) Norm-softmax loss

(b) PS + Norm-softmax loss

𝑫𝑫𝟑𝟑

𝑫𝑫𝟓𝟓

𝑝𝑝1𝑥𝑥1
𝑝𝑝𝐶𝐶

𝑥𝑥𝐶𝐶

�𝑝𝑝1 �𝑝𝑝𝐶𝐶

�𝑥𝑥1

�𝑥𝑥𝐶𝐶

𝑝𝑝1 𝑝𝑝𝐶𝐶
𝑥𝑥1

𝑥𝑥𝐶𝐶

𝑫𝑫𝟎𝟎 𝑫𝑫𝟏𝟏 𝑫𝑫𝟐𝟐

𝑫𝑫𝟑𝟑 𝑫𝑫𝟒𝟒

Notation
• 𝑥𝑥𝑖𝑖: Original embedding of class 𝑖𝑖
• 𝑝𝑝𝑖𝑖: Original proxy of class 𝑖𝑖
• �𝑥𝑥𝑖𝑖: Synthetic embedding generated

with class 𝑖𝑖 and a random class
• �𝑝𝑝𝑖𝑖: Synthetic proxy generated with

class 𝑖𝑖 and a random class

• 𝐶𝐶: Number of classes used
• 𝐷𝐷0,𝐷𝐷1,𝐷𝐷4: GT logits diagonal
• 𝐷𝐷2,𝐷𝐷3: Competitors’ logits diagonal
• Color bar

1.00.50.0

Figure 4: Heatmap visualization of cosine similarity (logit)
at 100th epoch of training on CARS196. (a) Norm-softmax
loss with original embedding and proxy. (b) PS + Norm-
softmax loss including synthetic embedding and proxy.

λ. In Table 2, static λ = 0.1 shows low performance be-
cause synthetic classes are too close to original classes, and
static λ = 0.5 also shows low performance because it gen-
erates synthetic classes in the middle of two original classes,
which is relatively easy to distinguish. The optimal static
λ value is around 0.2, which establishes the proper diffi-
culty of distinguishment. Moreover, the result shows that the
stochastic generation is better than the static generation. This
is because stochastic generation can generate more num-
ber of different synthetic classes with wide variation. In the
stochastic generation, α = 1.0 is the same with uniform dis-
tribution, and α = 1.5 has a high chance of generating syn-
thetics in the middle of two classes; thus, their performance
is relatively low. Similar to the experiment of static genera-
tion, α around 0.4 shows the best performance, which has a
high chance of generating synthetic classes close enough to
an original class. We provide additional experiments on the
effect of hyper-parameter in supplementary Section D.2.

Logits Visualization: We compare the cosine similarity
(logits) between embeddings and proxies during the train-
ing procedure. In Figure 4a, the logit values of ground truth
(GT), which are represented by the main diagonal D0, are
clearly red owing to high prediction confidence. This leads
to a strict decision boundary, as depicted in Figure 2a and
Figure 2c, and may cause an overfitting problem. On the
other hand, the GT logit values of PS + Norm-softmax (D1

and D4) have lower confidence, represented with yellow to
orange color. This is because synthetic classes generated
near the original classes work as hard competitors (D2 and
D3), which prevents excessively high confidence, while the
confidence of main diagonals (D1 and D4) is still higher
than that of competitors’ diagonals (D2 andD3) with redder

Deformation Norm-softmax PS + Norm-softmax

Cutout 75.3 77.0 (+1.7)
Dropout 59.7 62.2 (+2.5)
Zoom in 64.3 65.6 (+1.3)
Zoom out 78.3 80.0 (+1.7)
Rotation 70.8 72.1 (+1.3)
Shearing 70.3 72.0 (+1.7)
Gaussian noise 65.1 67.2 (+2.1)
Gaussian blur 74.4 76.3 (+1.9)

Table 3: Recall@1(%) of input deformations with CARS196
trained models. Deformation details are presented in supple-
mentary Section C.3.

(a) Train set (b) Test set

Figure 5: Recall@1(%) of embedding deformations with
trained networks on CARS196. For a gallery set, synthetic
embeddings generated with λ and original embeddings are
used. For a query set, synthetic embeddings are used to find
other synthetic embeddings generated with same manner.

color for the same embedding. This smoothens the decision
boundary, as depicted in Figure 2b and Figure 2d, and leads
to stronger generalization.

4.4 Robustness to Deformation
Input Deformation: To further evaluate the quality of
representations learned with Proxy Synthesis, we perform a
deformation test on the input data with trained networks. In
Table 3, we evaluate the test data with several input defor-
mations that are not used in training. A better-generalized
model should be more robust to a large variety of input
deformations. The result indicates that the network trained
using Proxy Synthesis demonstrates significantly improved
performance to input deformations.

Embedding Deformation: To see the robustness on em-
bedding deformation of trained networks, we evaluate per-
formance with synthetic embeddings. Figure 5 depicts a net-
work trained with Norm-softmax loss struggling with low
performance on both the train and test set. In contrast, a net-
work trained with Proxy Synthesis performs almost twice as
well when compared with Norm-softmax loss on both the
train and test set. This demonstrates that Proxy Synthesis
provides more robust embedding features, which also leads
to robustness on unseen classes. Besides, the patterns of per-
formance are similar to those discussed in Section 4.3. When
λ is close to 0 and 1, the performance is low because of hard
synthetics, and when λ is close to 0.5, the performance is

1465

CUB200 CARS196 SOP
Loss P@1 RP MAP@R P@1 RP MAP@R P@1 RP MAP@R

Norm-softmax 65.65±0.30 35.99±0.15 25.25±0.13 83.16±0.25 36.20±0.26 26.00±0.30 75.67±0.17 50.01±0.22 47.13±0.22
PS+Norm-softmax 69.19±0.34 37.32±0.29 26.40±0.29 85.70±0.24 38.33±0.31 28.31±0.32 76.73±0.15 51.46±0.21 48.52±0.20
CosFace 67.32±0.32 37.49±0.21 26.70±0.23 85.52±0.24 37.32±0.28 27.57±0.30 75.79±0.14 49.77±0.19 46.92±0.19
PS+CosFace 69.52±0.26 37.99±0.23 27.10±0.23 85.58±0.27 38.01±0.19 27.89±0.20 76.89±0.20 51.60±0.31 48.68±0.33
ArcFace 67.50±0.25 37.31±0.21 26.45±0.20 85.44±0.28 37.02±0.29 27.22±0.30 76.20±0.27 50.27±0.38 47.41±0.40
PS+ArcFace 68.79±0.31 37.46±0.26 26.79±0.27 85.59±0.25 38.31±0.22 28.24±0.20 77.21±0.20 51.90±0.23 49.02±0.21
SoftTriple 67.73±0.39 37.34±0.19 26.51±0.20 84.49±0.26 37.03±0.21 28.07±0.21 76.12±0.17 50.21±0.18 47.35±0.19
PS+SoftTriple 68.26±0.16 37.98±0.21 27.02±0.21 85.53±0.12 38.40±0.20 28.45±0.19 77.59±0.26 52.45±0.21 49.53±0.23
Proxy-NCA 65.69±0.43 35.14±0.26 24.21±0.27 83.56±0.27 35.62±0.28 25.38±0.31 75.89±0.17 50.10±0.22 47.22±0.21
PS+Proxy-NCA 66.02±0.29 35.73±0.24 24.84±0.22 84.61±0.19 36.39±0.25 26.04±0.27 76.78±0.21 51.39±0.27 48.44±0.27
Proxy-anchor 69.73±0.31 38.23±0.37 27.44±0.35 86.20±0.21 39.08±0.31 29.37±0.29 75.37±0.15 50.19±0.14 47.25±0.15
PS+Proxy-anchor 70.41±0.36 38.82±0.29 28.11±0.29 86.90±0.35 39.38±0.27 29.71±0.25 75.52±0.21 50.45±0.22 47.49±0.20

Table 4: [MLRC evaluation] Performance (%) on the famous benchmarks of image retrieval task. We report the performance of
concatenated 512-dim over 10 training runs. Bold numbers indicate the best score within the same loss and benchmark.

Regularizer Softmax Norm-softmax
CARS196 SOP CARS196 SOP

Baseline 81.5 76.3 83.3 78
Virtual Softmax 77.3(-4.2) 76.2(-0.1) - -
Input Mixup 81.1(-0.4) 77.0(+0.7) 82.2(-1.1) 78.2(+0.2)
Manifold Mixup 81.6(+0.1) 77.5(+1.2) 83.6(+0.3) 78.4(+0.4)
Proxy Synthesis 84.3(+2.8) 78.1(+1.8) 84.7(+1.4) 79.6(+1.6)

Table 5: Recall@1(%) comparison with other regularizers in
image retrieval task.

high because of relatively easy synthetics. Additional exper-
iments are in the supplementary Section D.3.

4.5 Comparison with Other Regularizers
Further, we compare the proposed method with other regu-
larizers, including Virtual Softmax, Input Mixup, and Man-
ifold Mixup in the image retrieval task. Note that Virtual
Softmax is not applicable to Norm-softmax loss because
Wvirt will always be constant 1. As presented in Table 5,
Virtual Softmax degrades the performance of all cases with
a margin of average -2.15%. Input Mixup degrades the per-
formance on CARS196 with an average margin -0.75% and
improves the performance on SOP with an average margin
+0.45%. Manifold Mixup increases the performance of all
cases with an average margin +0.5%. This illustrates that al-
though these techniques are powerful for generalizing seen
classes, such as classification tasks, they lack discriminative
ability on unseen classes. On the other hand, Proxy Synthe-
sis improves performance for all cases with a large margin
of average +1.9% and achieves the best performance among
all. Further analysis, including hyper-parameter search for
Mixup and experiments in the classification task, is pre-
sented in the supplementary material Section D.4.

4.6 Comparison with State-of-the-Art
Finally, we compare the performance of our proposed
method with state-of-the-art losses in two ways: conven-
tional and MLRC evaluation. In conventional evaluation, the
combinations of Proxy Synthesis with proxy-based losses
improve performance by a large margin in every bench-
mark as presented in Table 6. For fine-grained datasets with

Method CUB200 CARS196 SOP In-Shop

Softmax 64.2 81.5 76.3 90.4
PS+Softmax 64.9(+0.7) 84.3(+2.8) 77.6(+1.3) 90.9(+0.5)
Norm-softmax 64.9 83.3 78.6 90.4
PS+Norm-softmax 66.0(+1.1) 84.7(+1.4) 79.6(+1.0) 91.5(+1.1)
SphereFace 65.4 83.6 78.9 90.3
PS+SphereFace 66.6(+1.2) 85.1(+1.5) 79.4(+0.5) 91.6(+1.3)
CosFace 65.7 83.6 78.6 90.7
PS+CosFace 66.6(+0.9) 84.6(+1.0) 79.3(+0.7) 91.4(+0.7)
ArcFace 66.1 83.7 78.8 91.0
PS+ArcFace 66.8(+0.7) 84.7(+1.0) 79.7(+0.9) 91.7(+0.7)
Proxy-NCA 65.1 83.7 78.1 90.0
PS+Proxy-NCA 66.4(+1.3) 84.5(+0.8) 79.1(+1.0) 91.4(+1.4)
SoftTriple 65.4 84.5 78.3 91.1
PS+SoftTriple 66.6(+1.2) 85.3(+0.8) 79.5(+1.2) 91.8(+0.7)
Proxy-anchor† 68.4 86.1 79.1 91.5
PS+Proxy-anchor† 69.2(+0.8) 86.9(+0.8) 79.8(+0.7) 91.9(+0.4)

Table 6: [Conventional evaluation] Recall@1 (%) in image
retrieval task. Bold numbers indicate the best score within
the same loss and benchmark. † denotes exceptional settings
as described in the supplementary Section C.2.

few categories such as CUB200 and CARS196, the perfor-
mance gain ranges between a minimum of +0.7% and a max-
imum of +2.8%, and the average improvement is +1.1%. For
large-scale datasets with numerous categories such as SOP
and In-Shop, the performance gain ranges between a mini-
mum of +0.4% and a maximum of +1.4%, and the average
improvement is +0.9%. Even in the specifically designed
MLRC evaluation, Table 4 shows that Proxy Synthesis en-
hances performance for every metric and benchmark. Ex-
tended comparisons with Recall@k for conventional evalu-
ation and performance of seperated 128-dim for MLRC eval-
uation are presented in the supplementary Section D.6.

5 Conclusion
In this paper, we have proposed a novel regularizer called
Proxy Synthesis for proxy-based losses that exploits syn-
thetic classes for stronger generalization. Such effect is
achieved by deriving class relations and smoothened deci-
sion boundaries. The proposed method provides a significant
performance boost for all proxy-based losses and achieves
state-of-the-art performance in image retrieval tasks.

1466

References
Bartlett, P.; and Shawe-Taylor, J. 1999. Generalization per-
formance of support vector machines and other pattern clas-
sifiers. Advances in Kernel methods—support vector learn-
ing 43–54.

Boudiaf, M.; Rony, J.; Ziko, I. M.; Granger, E.; Pedersoli,
M.; Piantanida, P.; and Ayed, I. B. 2020. A unifying mu-
tual information view of metric learning: cross-entropy vs.
pairwise losses. arXiv preprint arXiv:2003.08983 .

Chen, B.; Deng, W.; and Shen, H. 2018. Virtual class en-
hanced discriminative embedding learning. In Advances in
Neural Information Processing Systems, 1942–1952.

Chopra, S.; Hadsell, R.; and LeCun, Y. 2005. Learning a
similarity metric discriminatively, with application to face
verification. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 1, 539–546. IEEE.

Deng, J.; Guo, J.; Xue, N.; and Zafeiriou, S. 2019. Arcface:
Additive angular margin loss for deep face recognition. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 4690–4699.

Duan, Y.; Zheng, W.; Lin, X.; Lu, J.; and Zhou, J. 2018.
Deep adversarial metric learning. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 2780–2789.

Fehervari, I.; Ravichandran, A.; and Appalaraju, S. 2019.
Unbiased evaluation of deep metric learning algorithms.
arXiv preprint arXiv:1911.12528 .

Gordo, A.; Almazán, J.; Revaud, J.; and Larlus, D. 2016.
Deep image retrieval: Learning global representations for
image search. In European conference on computer vision,
241–257. Springer.

Gu, G.; and Ko, B. 2020. Symmetrical Synthesis for Deep
Metric Learning. In Proceedings of the AAAI Conference on
Artificial Intelligence.

Guo, H.; Mao, Y.; and Zhang, R. 2019. Mixup as locally
linear out-of-manifold regularization. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
3714–3722.

Hermans, A.; Beyer, L.; and Leibe, B. 2017. In defense of
the triplet loss for person re-identification. arXiv preprint
arXiv:1703.07737 .

Ioffe, S.; and Szegedy, C. 2015. Batch normalization: Accel-
erating deep network training by reducing internal covariate
shift. arXiv preprint arXiv:1502.03167 .

Kim, S.; Kim, D.; Cho, M.; and Kwak, S. 2020. Proxy
Anchor Loss for Deep Metric Learning. arXiv preprint
arXiv:2003.13911 .

Ko, B.; and Gu, G. 2020. Embedding Expansion: Augmen-
tation in Embedding Space for Deep Metric Learning. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition.

Krause, J.; Stark, M.; Deng, J.; and Fei-Fei, L. 2013. 3d ob-
ject representations for fine-grained categorization. In Pro-
ceedings of the IEEE international conference on computer
vision workshops, 554–561.

Liu, W.; Wen, Y.; Yu, Z.; Li, M.; Raj, B.; and Song, L. 2017.
Sphereface: Deep hypersphere embedding for face recogni-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 212–220.

Liu, Z.; Luo, P.; Qiu, S.; Wang, X.; and Tang, X. 2016. Deep-
fashion: Powering robust clothes recognition and retrieval
with rich annotations. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, 1096–
1104.

Maaten, L. v. d.; and Hinton, G. 2008. Visualizing data using
t-SNE. Journal of machine learning research 9(Nov): 2579–
2605.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 .

Movshovitz-Attias, Y.; Toshev, A.; Leung, T. K.; Ioffe, S.;
and Singh, S. 2017. No fuss distance metric learning using
proxies. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 360–368.

Musgrave, K.; Belongie, S.; and Lim, S.-N. 2020. A Metric
Learning Reality Check. arXiv preprint arXiv:2003.08505 .

Oh Song, H.; Xiang, Y.; Jegelka, S.; and Savarese, S. 2016.
Deep metric learning via lifted structured feature embed-
ding. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 4004–4012.

Pereyra, G.; Tucker, G.; Chorowski, J.; Kaiser, Ł.; and
Hinton, G. 2017. Regularizing neural networks by pe-
nalizing confident output distributions. arXiv preprint
arXiv:1701.06548 .

Qian, Q.; Shang, L.; Sun, B.; Hu, J.; Li, H.; and Jin, R.
2019. SoftTriple Loss: Deep Metric Learning Without
Triplet Sampling. In Proceedings of the IEEE International
Conference on Computer Vision, 6450–6458.

Sohn, K. 2016. Improved deep metric learning with multi-
class n-pair loss objective. In Advances in neural informa-
tion processing systems, 1857–1865.

Verma, V.; Lamb, A.; Beckham, C.; Najafi, A.; Mitliagkas,
I.; Courville, A.; Lopez-Paz, D.; and Bengio, Y. 2018. Man-
ifold mixup: Better representations by interpolating hidden
states. arXiv preprint arXiv:1806.05236 .

Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The caltech-ucsd birds-200-2011 dataset .

Wang, F.; Cheng, J.; Liu, W.; and Liu, H. 2018a. Additive
margin softmax for face verification. IEEE Signal Process-
ing Letters 25(7): 926–930.

Wang, F.; Xiang, X.; Cheng, J.; and Yuille, A. L. 2017.
Normface: L2 hypersphere embedding for face verification.
In Proceedings of the 25th ACM international conference on
Multimedia, 1041–1049.

1467

Wang, H.; Wang, Y.; Zhou, Z.; Ji, X.; Gong, D.; Zhou, J.;
Li, Z.; and Liu, W. 2018b. Cosface: Large margin cosine
loss for deep face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
5265–5274.
Weinberger, K. Q.; and Saul, L. K. 2009. Distance met-
ric learning for large margin nearest neighbor classification.
Journal of Machine Learning Research 10(Feb): 207–244.
Wen, Y.; Zhang, K.; Li, Z.; and Qiao, Y. 2016. A dis-
criminative feature learning approach for deep face recogni-
tion. In European conference on computer vision, 499–515.
Springer.
Yu, R.; Dou, Z.; Bai, S.; Zhang, Z.; Xu, Y.; and Bai, X.
2018. Hard-aware point-to-set deep metric for person re-
identification. In Proceedings of the European Conference
on Computer Vision (ECCV), 188–204.
Zhai, A.; and Wu, H.-Y. 2018. Classification is a
Strong Baseline for Deep Metric Learning. arXiv preprint
arXiv:1811.12649 .
Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2017. mixup: Beyond empirical risk minimization. arXiv
preprint arXiv:1710.09412 .
Zhang, Z.; and Saligrama, V. 2016. Zero-shot learning via
joint latent similarity embedding. In proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, 6034–6042.
Zhao, Y.; Jin, Z.; Qi, G.-j.; Lu, H.; and Hua, X.-s. 2018.
An adversarial approach to hard triplet generation. In Pro-
ceedings of the European conference on computer vision
(ECCV), 501–517.
Zheng, W.; Chen, Z.; Lu, J.; and Zhou, J. 2019. Hardness-
aware deep metric learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
72–81.

1468

