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Abstract

Capsule Networks, as alternatives to Convolutional Neural
Networks, have been proposed to recognize objects from im-
ages. The current literature demonstrates many advantages
of CapsNets over CNNs. However, how to create explana-
tions for individual classifications of CapsNets has not been
well explored. The widely used saliency methods are mainly
proposed for explaining CNN-based classifications; they cre-
ate saliency map explanations by combining activation val-
ues and the corresponding gradients, e.g., Grad-CAM. These
saliency methods require a specific architecture of the un-
derlying classifiers and cannot be trivially applied to Cap-
sNets due to the iterative routing mechanism therein. To
overcome the lack of interpretability, we can either propose
new post-hoc interpretation methods for CapsNets or modi-
fying the model to have build-in explanations. In this work,
we explore the latter. Specifically, we propose interpretable
Graph Capsule Networks (GraCapsNets), where we replace
the routing part with a multi-head attention-based Graph
Pooling approach. In the proposed model, individual clas-
sification explanations can be created effectively and effi-
ciently. Our model also demonstrates some unexpected ben-
efits, even though it replaces the fundamental part of Cap-
sNets. Our GraCapsNets achieve better classification perfor-
mance with fewer parameters and better adversarial robust-
ness, when compared to CapsNets. Besides, GraCapsNets
still keep other advantages of CapsNets, namely, disentangled
representations and affine transformation robustness.

1 Introduction
In past years, Convolutional Neural Networks (CNNs) have
become the standard model applied in object recognition.
Our community has been pursuing more powerful CNN
models with compact size (He et al. 2016). Besides, two
weaknesses of CNNs have also been intensively investigated
recently. Namely, 1) Adversarial Vulnerability (Szegedy
et al. 2014): The predictions of CNNs can be misled by im-
perceptible perturbations of input images. 2) Lack of Inter-
pretability (Simonyan, Vedaldi, and Zisserman 2013): The
predictions of standard CNNs are based on highly entangled
representations. The two weaknesses might be attributed to
the fact that the representations learned by CNNs are not
aligned to human perception.
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Recently, Capsule Networks (CapsNets) (Sabour, Frosst,
and Hinton 2017) have been proposed and received much at-
tention since they can learn more human-aligned visual rep-
resentations (Qin et al. 2020). The disentangled represen-
tations captured by CapsNets often correspond to human-
understandable visual properties of input objects, e.g., ro-
tations and translations. Recent work on CapsNets aims to
propose more efficient routing algorithms (Hinton, Sabour,
and Frosst 2018; Hahn, Pyeon, and Kim 2019; Zhang,
Edraki, and Qi 2018; Tsai et al. 2020) and understand the
contributions of the routing algorithms (Gu and Tresp 2020;
Gu, Wu, and Tresp 2021).

However, how to explain individual classifications of
CapsNets has been less explored. The state-of-the-art
saliency methods are mainly proposed for CNNs, e.g., Grad-
CAM (Selvaraju et al. 2017). They combine activation val-
ues and the received gradients in specific layers, e.g., deep
convolutional layers. In CapsNets, instead of deep convo-
lutional layers, an iterative routing mechanism is applied
to extract high-level visual concepts. Hence, these saliency
methods cannot be trivially applied to CapsNets. Besides,
the routing mechanism makes it more challenging to iden-
tify interpretable input features relevant to a classification.

In this work, we propose interpretable Graph Capsule
Networks (GraCapsNets). In CapsNets, the primary cap-
sules represent object parts, e.g., eyes and nose of a cat. In
our GraCapsNets, we explicitly model the relationship be-
tween the primary capsules (i.e., part-part relationship) with
graphs. Then, the followed graph pooling operations pool
relevant object parts from the graphs to make a classifica-
tion vote. Since the graph pooling operation reveals which
input features are pooled as relevant ones, we can easily cre-
ate explanations to explain the classification decisions. Be-
sides the interpretability, another motivation of GraCapsNets
is that the explicit part-part relationship is also relevant for
object recognition, e.g., spatial relationships.

The classic graph pooling algorithms are clustering-
based, which requires high computational complexity. It is
challenging to integrate these graph pooling algorithms into
neural networks. Recent progress on graph pooling modules
of Graph Neural Networks makes similar integrations possi-
ble. E.g., (Ying et al. 2018) proposed a differentiable graph
pooling module, which can be integrated into various neural
network architectures in an end-to-end fashion.
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The capsule idea is also integrated into Graph Neural
Networks for better graph classification (Verma and Zhang
2018; Xinyi and Chen 2019). They treat node feature vec-
tors as primary capsules and aggregates information from
the capsules via a routing mechanism. Different from their
works, we integrate graph modeling into CapsNets for bet-
ter object recognition. On the contrary, our GraCapsNets
treat capsules as node feature vectors and represent them as
graphs so that we can leverage graph structure information
(e.g., the spatial part-part relationship between object parts).

Our main contribution of this work is to propose Gra-
CapsNets, where we replace the fundamental routing part
of CapsNets with multi-head attention-based Graph Pooling
operations. On GraCapsNets, we can create explanations for
individual classifications effectively and efficiently. Besides,
our empirical experiments show that GraCapsNets achieve
better performance with fewer parameters and also learn dis-
entangled representations. GraCapsNets are also shown to
be more robust to the primary white adversarial attacks than
CNNs and various CapsNets.

2 Related Work
Routing Mechanism: The goal of routing processes in Cap-
sNets is to identify the weights of predictions made by low-
level capsules, called coupling coefficients (CCs) in (Sabour,
Frosst, and Hinton 2017). Many routing mechanisms have
been proposed to improve Dynamic Routing (Sabour, Frosst,
and Hinton 2017); they differ from each other only in how
to identify CCs.

Dynamic Routing (Sabour, Frosst, and Hinton 2017) iden-
tifies CCs with an iterative routing-by-agreement mecha-
nism. EM Routing (Hinton, Sabour, and Frosst 2018) up-
dates CCs iteratively using the Expectation-Maximization
algorithm. (Chen and Crandall 2019) removes the compu-
tationally expensive routing iterations by predicting CCs
directly. To improve the prediction of CCs further, Self-
Routing (Hahn, Pyeon, and Kim 2019) predicts CCs using a
subordinate routing network. However, (Gu and Tresp 2020)
shows that similar performance can be achieved by simply
averaging predictions of low-level capsules without learning
CCs. In this work, we propose Graph Capsule Networks,
where a multi-head attention-based graph pooling mecha-
nism is used instead of routing.

Graph Pooling: Earlier works implement graph pooling
with clustering-based graph coarsening algorithms, e.g., Gr-
aclus (Dhillon, Guan, and Kulis 2007), where the nodes
with similar representations are clustered into one. In later
works (Set2Set (Vinyals, Bengio, and Kudlur 2015) and
SortPool (Zhang et al. 2018)), the graph features are also
taken into consideration. However, they require the order-
ing of the nodes by a user-defined meaningful criterium.
Recently, the seminal work (Ying et al. 2018) proposes a
differentiable graph pooling module, which can be com-
bined with various neural network architectures in an end-
to-end fashion. For simplification of (Ying et al. 2018), top-
K pooling (Gao and Ji 2019; Knyazev, Taylor, and Amer
2019) and self-attention pooling (Lee, Lee, and Kang 2019)
have been proposed. Almost all the graph pooling strate-
gies have been mainly used for graph classification. Based

Algorithm 1: Capsule Networks
Input: An image X

Output: Class capsules V ∈ RM×Dout

1. Extract primary capsules ui ∈ RDin from input X;
2. Transform each ui into ûj|i ∈ RDout ;
3. Identify all cij with a routing process;
4. Compute sj =

∑N
i=1 cij ∗ ûj|i;

5. Output capsules vj = squash(sj)

on the work (Ying et al. 2018), we propose multiple-heads
attention-based graph pooling for object recognition.

Adversarial Robustness: (Szegedy et al. 2014) shows
that imperceptible image perturbations can mislead stan-
dard CNNs. Since then, many adversarial attack methods
have been proposed, e.g., FGSM (Goodfellow, Shlens, and
Szegedy 2015), C&W (Carlini and Wagner 2017). Mean-
while, the approaches to defend these attacks have also
been widely investigated, e.g., Adversarial Training (Madry
et al. 2017; Athalye, Carlini, and Wagner 2018), Certified
Defenses (Wong and Kolter 2018; Cohen, Rosenfeld, and
Kolter 2019). One way to tackle the adversarial vulner-
ability is to propose new models that learn more human
perception-aligned feature representations, e.g., CapsNets
(Sabour, Frosst, and Hinton 2017; Qin et al. 2020). Recent
work (Hinton, Sabour, and Frosst 2018; Hahn, Pyeon, and
Kim 2019) shows that CapsNets with their routing processes
are more robust to white-box adversarial attacks.

Interpretability: A large number of interpretation meth-
ods have been proposed to understand individual classi-
fications of CNNs. Especially, saliency maps created by
post-hoc methods, as intuitive explanations, have received
much attention. We categorize the methods into two cate-
gories. The first category is architecture-agnostic, such as,
vanilla Gradients (Grad) (Simonyan, Vedaldi, and Zisserman
2013), Integrated Gradients (IG) (Sundararajan, Taly, and
Yan 2017) as well as their smoothed versions (SG) (Smilkov
et al. 2017). The second one requires specific layers or archi-
tecture of models, e.g., Guided Backpropagation (Springen-
berg et al. 2014; Gu and Tresp 2019), DeepLIFT (Shrikumar,
Greenside, and Kundaje 2017), LRP (Bach et al. 2015; Gu,
Yang, and Tresp 2018), Grad-CAM (Selvaraju et al. 2017).
Only the architecture-agnostic methods can be trivially gen-
eralized to CapsNets due to the routing mechanism therein.
In our GraCapsNets, the explanations can be created with
attention in the graph pooling operations.

3 Graph Capsule Networks
We first briefly review CapsNets. As shown in Algorithm 1,
CapsNets start with convolutional layers that convert the in-
put pixel intensities X into primary capsules ui (i.e., low-
level visual entities). Each ui is transformed to vote for
high-level capsules ûj|i with learned transformation matri-
ces. Then, a routing process is used to identify the coupling
coefficients cij , which describe how to weight votes from
primary capsules. Finally, a squashing function is applied
to the identified high-level capsules sj so that the lengths of
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Figure 1: The illustration of GraCapsNets: The extracted primary capsules are transformed and modeled as multiple graphs.
The pooling result on each graph (head) corresponds to one vote. The votes on multiple graphs (heads) are averaged to generate
the final prediction.

Algorithm 2: Graph Capsule Networks
Input: An image X

Output: Class capsules V ∈ RM×Dout

1. Extract primary capsules ui ∈ RDin from input X;
2. Project each ui into the feature space u′i ∈ RDout ;
3. Model all u′i as multiple graphs;
4. Compute sj ∈ RDout with multi-head graph pooling;
5. Output capsules vj = squash(sj)

them correspond to the confidence of the class’s existence. A
reconstruction part works as regularization during training.

Different routing mechanisms differ only in the 3rd step,
i.e., how to identify cij . Routing processes describe one way
to aggregate information from primary capsules into high-
level ones. In our GraCapsNets, we implement the informa-
tion aggregation by multi-head graph pooling processes.

As shown in Algorithm 2, GraCapsNets differ from Cap-
sNets in the steps of 2, 3, and 4. In GraCapsNet, the primary
capsules ui are transformed into a feature space. All trans-
formed capsules u′i are modeled as multiple graphs. Each
graph corresponds to one head, the pooling result on which
corresponds to one vote. The votes on multiple heads are
averaged as the final prediction. The GraCapsNets is also
illustrated in Figure 1.

In CapsNets, most of the parameters are from the transfor-
mation matrix Wt ∈ RN×Din×(M∗Dout) where Din, Dout

are the dimensions of input primary capsules and output
high-level capsules, N is the number of primary capsules,
and M is the number of output classes. In GraCapsNets,
the transformation matrix is Wt ∈ RN×Din×Dout and the
trainable parameters in the graph pooling layer is W ∈
RDout×M . Hence, the parameters are reduced signigicantly.

3.1 Multiple Heads in GraCapsNets
We now introduce how to model all transformed capsules u′i
as multiple graphs. A graph consists of a set of nodes and a
set of edges.

As shown in GraCapsNet in Figure 1, the primary cap-
sules are reshaped from L groups of feature maps. Each

group consists of C feature maps of the size K × K.
Correspondingly, the transformed capsules u′i where i ∈
{1, 2, ...K2} form a single graph with K2 nodes. Namely,
the capsules of the same type (the ones on the same feature
maps but different locations) are modeled in the same graph.
Each node corresponds to one transformed capsule u′i, and
the activation vector of u′i is taken as features of the corre-
sponding node.

The graph edge information can be represented by an ad-
jacency matrix, in which different priors can be modeled,
e.g., camera geometry (Khasanova 2019) and spatial rela-
tionships (Knyazev et al. 2019). In this work, we model the
spatial relationship between primary capsules since they can
be computed without supervision.

For the above graph with K2 nodes, elements in the adja-
cency matrix A ∈ RK2×K2

can be computed as

Aij = e(−
‖pi−pj‖2

2σ2
) (1)

where i, j are indice of nodes and pi ∈ R2,pj ∈ R2 are co-
ordinates of the nodes, i.e. from (1, 1) to (K,K). Similarly,
we can build l graphs (heads) in total with the same adjcency
matrix. They differ from each other in node features.

3.2 Graph Pooling in GraCapsNets
Given node features Xl ∈ R(K2×Dout) and adjacency ma-
trix A ∈ R(K2×K2) in the l-th head of GraCapsNet, we now
describe how to make a vote for the final prediction by a
attention-based graph pooling operation. We first compute
the attention of the head as

Attl = softmax(AXlW) (2)

where W ∈ RDout×M are learnable parameters. Dout is
the dimension of the node features and M is the number of
output classes. The output is of the shape (K2 ×M). In our
GraCapsNet for object recognition, Attl corresponds to the
visual attention of the heads.

The visual attention describes how important each low-
level visual entity is to an output class. We normalize atten-
tion output with softmax function in the first dimension, i.e.,
between low-level entities. Hence, the attention on a visual
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Datasets MNIST Fashion MNIST CIFAR10
Model #Para.(M) Accuracy #Para.(M) Accuracy #Para.(M) Accuracy

CapsNets (Sabour, Frosst, and Hinton 2017) 6.54 99.41(± 0.08) 6.54 92.12(± 0.29) 7.66 74.64(± 1.02)
GraCapsNets 1.18 99.50(± 0.09) 1.18 93.1(± 0.09) 2.90 82.21(± 0.11)

Table 1: Compared to CapsNets, GraCapsNets achieve slightly better performance on grayscale image datasets and significantly
better performance on CIFAR10 with fewer parameters.

entity could be nearly zero for all classes. Namely, a visual
entity can abstain from voting. When some visual entities
correspond to the noisy background of the input image, the
noise can be filtered out by the corresponding abstentions.

The attention is used to pool nodes of the graph for output
classes. The graph pooling output Sl ∈ R(M×Dout) of the
head is computed as

Sl = (Attl)TXl. (3)
The final predictions of GraCapsNets are based on all L

heads with outputs Sl where l ∈ {1, 2, ..., L}. The output
capsules are

V = squash(
1

L

L∑
l=1

Sl) (4)

Following CapsNets (Sabour, Frosst, and Hinton 2017),
the squashing function is applied to each high-level capsule
sj ∈ RDout .

squash(sj) =
‖sj‖2

1 + ‖sj‖2
sj
‖sj‖

(5)

and the loss function used to train our GraCapsNets is

Lk =Tk max(0,m+ − ‖vk‖)2

+ λ(1− Tk)max(0, ‖vk‖ −m−)2
(6)

where Tk = 1 if the object of the k-th class is present. As
in (Sabour, Frosst, and Hinton 2017), the hyper-parameters
are often empirically set as m+ = 0.9, m− = 0.1 and λ =
0.5. The effectiveness of Graph Pooling as well as Multiple
Heads is verified in the experimental section.

3.3 Interpretability in GraCapsNets
There is no interpretation method designed specifically for
CapsNets. The existing ones were proposed for CNNs. Only
the architecture-agnostic ones (Simonyan, Vedaldi, and Zis-
serman 2013; Sundararajan, Taly, and Yan 2017; Smilkov
et al. 2017) can be trivially generalized to CapsNets, which
only requires the gradients of the output with respect to the
input.

In our GraCapsNet, we can use visual attention as built-in
explanation to explain the predictions of GraCapsNets. The
averaged attenion over l heads is

E =
1

L

L∑
l=1

Attl (7)

where Attl corresponds to the attention of the l-th head. The
created explanations E are of the shape (K2 ×M). Given
the predicted class, theK×K attention map indicates which
pixels of the input image support the prediction.

4 Experiments
Many new versions of CapsNets have been proposed, and
they report competitive classification performance. How-
ever, the advantages of CapsNets over CNNs are not only
in performance but also in other properties, e.g., disentan-
gled representations, adversarial robustness. Additionally,
instead of pure convolutional layers, ResNet backbones(He
et al. 2016) are often applied to extract primary capsules to
achieve better performance.

Hence, in this work, we comprehensively evaluate our
GraCapsNets from the four following aspects. All scores re-
ported in this paper are averaged over 5 runs.

1. Classification Performance: Comparison of our GraCap-
sNets with original CapsNets built on two convolutional
layers and the ones built on ResNet backbones.

2. Classification Interpretability: Comparison of explana-
tions in Section 3.3 with the ones created by the
architecture-agnostic saliency methods.

3. Adversarial Robustness: Comparison of GraCapsNets
with various CapsNets and counter-part CNNs.

4. We show GraCapsNets also learn disentangled represen-
tations and achieve similar transformation robustness.

4.1 Classification Performance
The datasets, MNIST (LeCun et al. 1998), F-MNIST (Xiao,
Rasul, and Vollgraf 2017) and CIFAR10 (Krizhevsky et al.
2009), are used in this experiment. The data preprocessing,
the arhictectures and the training procedure are set identi-
cally to (Sabour, Frosst, and Hinton 2017) (See Supplement
A). Correspondingly, in GraCapsNets, 32 heads and 8D pri-
mary capsules are used. 3×3 kernels are used in Conv layers
to obtain graphs with 144 nodes on MNIST, 196 nodes on
CIFAR10.

Comparison with the original CapsNets The classifi-
cation results are reported in Table 1. In grayscale images,
GraCapsNets achieve slightly better performance with fewer
parameters. In CIFAR10, our model outperforms the Cap-
sNet by a large margin. The reason behind this is that our
graph pooling process can better filter out the background
noise. The pixel values of the background of grayscale im-
ages are often zeros, not noisy. Hence, our model performs
much better on realistic datasets.

Ablation Study on Multiple Heads In this experiment,
we set the number of feature maps fixed (e.g., 256 on F-
MNIST). We train GraCapsNets with different number of
heads 2n where n ∈ {0, 1, ...7}. The corresponding dimen-
sions of the primary capsules are 2n where n ∈ {8, 7, ...1}.
The performance is shown in Figure 2. The GraCapsNet
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Models #Para.(M) FLOPs(M) CIFAR10 SVHN

Backbone + Avg 0.27 41.3 7.94(±0.21) 3.55(±0.11)
Backbone + FC 0.89 61.0 10.01(±0.99) 3.98(±0.15)

Dynamic Routing (Sabour, Frosst, and Hinton 2017) 5.81 73.5 8.46(±0.27) 3.49(±0.69)
EM Routing (Hinton, Sabour, and Frosst 2018) 0.91 76.6 10.25(±0.45) 3.85(±0.13)

Self-Routing (Hahn, Pyeon, and Kim 2019) 0.93 62.2 8.17(±0.18) 3.34(±0.08)
GraCapsNets 0.28 59.6 7.99(±0.13) 2.98(±0.09)

Table 2: Comparison to state-of-the-art CapsNets performance on the benchmark datasets.
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(b) CIFAR10 Dataset

Figure 2: Ablation study on multiple heads: Given fixed
channels, the GraCapsNets with more heads perform bet-
ter in general. The GraCapsNets with too many heads can
degrade a little since the small primary capsules are not able
to represent visual entities well.

with more heads achieves better performance in general.
However, when too many heads are used, the performance
decreases a little. In that case, the dimensions of the primary
capsules are too small to capture the properties of low-level
visual entities. Overall, our model is not very sensitive to the
number of heads. When the number heads vary from 16 to
64, our models show similar performance with tiny variance.

Ablation Study on Graph Pooling In GraCapsNets, we
model the transformed capsules as multiple graphs. The spa-
tial relationship between the transformed capsules is mod-
eled in each graph. To investigate the effectiveness of the
graph modeling, we compare GraCapsNets with closely re-
lated pooling operations as well as routing mechanisms.

Top-K graph pooling (Gao and Ji 2019; Knyazev, Tay-
lor, and Amer 2019), simplified version of our graph pool-
ing approach, projects node features into a feature space,
and chooses the top-K ones to coarsen the graph, where the
graph structure (spatial relationship) is not used. In addition,
the trainable routing algorithm (Chen and Crandall 2019)
predict directly which primary capsules should be routed
to which output capsules. In No-routing algorithm (Gu and
Tresp 2020), the transformed capsules are simply averaged
to obtain output capsules. The two routing algorithms are
strong baselines and leverage no graph information when
aggregating information.

We report the performance of different graph pooling op-
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(b) CIFAR10 Dataset

Figure 3: Ablation Study on Graph Pooling: GraCapsNets
with graph modeling outperform others.

erations and routing algorithms in Figure 3. Our Graph-
Pooling with different heads outperforms others on both
datasets, which indicate the effectiveness of the part-part re-
lationship modeled in our Graph-Pooling process.

Comparison with various CapsNets on ResNet Back-
bones The backbones are supposed to extract more accurate
primary capsules. To compare with various CapsNets, we
also build our GraCapsNets on their backbones. Following
(Hahn, Pyeon, and Kim 2019), we apply Dynamic routing,
EM-routing, Self-routing, and our Multi-head Graph Pool-
ing on the ResNet20 (He et al. 2016) backbone. Two CNN
baselines are Avg): the original ResNet20 and FC): directly
followed by Conv + FC without pooling.

The performance is reported in Table 2. Our GraCap-
sNets outperform previous routing algorithm slightly, but
with fewer parameters and less computational cost. Our
GraCapsNets achieve better performance than similar-sized
CNNs. The size of GraCapsNets is even comparable to the
original ResNet20. Besides the popular routing mechanisms
above, other new CapsNets architectures (Ahmed and Tor-
resani 2019) and Routing mechanisms (Zhang, Edraki, and
Qi 2018; Tsai et al. 2020) have also been recently proposed.
They report scores on different backbones in different set-
tings. Compared to scores reported in their papers, ours also
achieves comparable performance with fewer parameters.
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(a) Visual Attention as Explanations on F-MNIST Dataset.

(b) Visual Attention as Explanations on CIFAR10 Dataset.

Figure 4: Visual Attention in GraCapsNets: the models focus on discriminative input visual features, e.g., the handles of the
handbags and the wings of the planes.

4.2 Classification Interpretability

The predictions of GraCapsNet can be easily explained with
their visual attention. We visualize the attention in infer-
ences and compare them with the explanations created by
other appliable interpretation methods, namely, Grad (Si-
monyan, Vedaldi, and Zisserman 2013), IG (Sundararajan,
Taly, and Yan 2017), Grad-SG and IG-SG (Smilkov et al.
2017). In this experiment, the settings of these methods fol-
low Captum package (Kokhlikyan et al. 2019) (See Supple-
ment B). Only GraCapsNets are used. We use the ones with
basic architecture from Section 4.1.

Qualitative Evaluation We make predictions with our
GraCapsNets for some examples chosen randomly from test
datasets. The visual attention is visualized on the original
input in Figure 4. The color bars right indicate the impor-
tance of the input features, where blue corresponds to little
relevance, dark red to high relevance.

For instance, in F-MNIST, the trouser legs and the gap
between them are relevant for the recognition of the class
Trouser, the handles is to Bag; In CIFAR10, the wings to
Plane, and the heads (especially the noses) to Dog. Since
the visual attention is more aligned with human-vision per-
ception, the observations also explain why our models are
more robust to adversarial examples. We also visualize ex-
planations created by all baseline methods, which are less
interpretable (see Supplement C).

Quantitative Evaluation The quantitative evaluation of
saliency map explanations is still an open research topic
(Sturmfels, Lundberg, and Lee 2020). In this work, we quan-
titatively evaluate explanations with a widely used met-
ric, i.e. Area Over the Perturbation Curve (AOPC) (Samek
et al. 2017)AOPC = 1

L+1 〈
∑L

k=1 f(X
(0))−f(X(k))〉p(X),

where L is the number of pixel deletion steps, f(·) is the
model, X(K) is the input image after k perturbation steps.
The order of perturbation steps follow the relevance order of
corresponding input pixels in explanations. In each pertur-
bation step, the target pixel is replaced by a patch (5 × 5)
with random values from [0, 1]. The higher the AOPC is, the
more accurate the explanation are.
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(a) On F-MNIST Dataset
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(b) On CIFAR10 Dataset

Figure 5: Quantitative evaluation of explanations with
AOPC metric: Our Graph-Att performs the best.

The AOPC scores are shown in Figure 5. The difference
between the baseline methods and their smoothed versions
is small since our model is robust to input random perturba-
tion noise. Our Graph-Att achieve better scores than other
explanations (more results in Supplement D). On F-MNIST
dataset, IG is not better than Grad, even worse than Random.
The existing advanced interpretation methods are not suit-
able for capsule-type networks. For more methods Squared-
Grad and VarGrad (Adebayo et al. 2018), our methods are
orthogonal to them and can also be combined with them.

Efficiency In GraCapsNets, the single explanation created
by visual attention can be obtained in half forward pass with-
out backpropagation. Grad requires a single forward and
backward pass. IG interpolates examples between a base-
line and inputs, which requires M(=50) times forward and
backward passes. SG variants achieve smoothy explanation
by adding different noise into inputs, which require N(=10)
times more forward and backward passes, i.e., N*M(=500)
for IG-SG. In summary, the explanations inside our GraCap-
sNets is better and require less computational cost.
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(b) C&W on SVHN
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(c) FGSM on CIFAR10
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(d) C&W on CIFAR10

Figure 6: On SVHN and CIFAR10, the attack methods attack our models (GP) with less success rate.

4.3 Adversarial Robustness
The work (Hahn, Pyeon, and Kim 2019) also claims that
their routing mechanism is more robust to adversarial at-
tacks. Follow their settings, we compare our model with
routing algorithms in terms of the adversarial robustness.

In this experiment, we use the trained models in Section
4.1. FGSM (Goodfellow, Shlens, and Szegedy 2015) (a pri-
mary attack method) and C&W (Carlini and Wagner 2017)
are applied to create adversarial examples. Their hyperpa-
rameter settings are default in Adversarial Robustness 360
Toolbox (Nicolae et al. 2018) (See Supplement E). The same
settings are used to attack all models. Instead of choosing
a single perturbation threshold, we use different thresholds,
i.e., in the range [0.01, 0.05] with the interval of 0.01.

Attack success rate is used to evaluate the model robust-
ness. Only correctly classified samples are considered in this
experiment. An untargeted attack is successful when the pre-
diction is changed, and a targeted attack is successful if the
input is misclassified into the target class.

Figure 6 shows the success rates of CNNs (Avg, FC), Cap-
sNets (DR, EM, SR) and our GraCapsNets (GP) under untar-
geted setting. Overall, CapsNets with various routing algo-
rithms more robust than CNNs. Especially, when the strong
attack C&W is used under a large threshold of 0.05, all the
predictions of CNNs can be misled by perturbations. The at-
tack methods achieve less success rate on our models (GP).
The experiments on the targeted setting also show similar re-
sults (See Supplement F). In our models, the attention-based
graph pooling process can filter out part of noisy input fea-
tures, which makes successful attacks more difficult.

4.4 Disentangled Representations and
Transformation Robustness

In CapsNets, the reconstruction net reconstructs the origi-
nal inputs from the disentangled activity vectors of the out-
put capsules. When elements of the vector representation are
perturbated, the reconstructed images are also changed cor-
respondingly. We also conduct the perturbation experiments
on output capsules of GraCapsNet. Similarly, we tweak one
dimension of capsule representation by intervals of 0.05 in
the range [−0.25, 0.25]. The reconstructed images are vi-
sualized in Figure 7. We can observe that our GraCapsNet
also captures disentangled representations. For instance, the
property Size of the class Bag in F-MNIST.

(a) MNIST Dataset

(b) F-MNIST Dataset

Figure 7: Disentangled Individual Dimensions of Represen-
tations in GraCapsNets: By perturbing one dimension of an
activity vector, the variations of an input image are recon-
structed.

On the affine transformation benchmark task, where mod-
els are trained on the MNIST dataset and tested on the
AffNIST dataset (novel affine transformed MNIST images),
the CapsNets are shown to be more robust to input affine
transformations than similar-sized CNNs (79% vs. 66%)
(Sabour, Frosst, and Hinton 2017). Following their setting,
we also test our GraCapsNet on this benchmark, the test per-
formance on AffNIST dataset is slightly better (80.45%).

5 Conclusion
We propose an interpretable GraCapsNet. The explanations
for individual classifications of GraCapsNets can be cre-
ated in an effective and efficient way. Surprisingly, without
a routing mechanism, our GraCapsNets can achieve better
classification performance and better adversarial robustness,
and still keep other advantages of CapsNets. This work also
reveals that we cannot attribute the advantages of CapsNets
to the routing mechanisms, even though they are fundamen-
tal parts of CapsNets.
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