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Abstract

Although deep neural networks have achieved amazing re-
sults on instance segmentation, they are still ill-equipped
when they are required to learn new tasks incrementally. Con-
cretely, they suffer from “catastrophic forgetting”, an abrup-
t degradation of performance on old classes with the initial
training data missing. Moreover, they are subjected to a nega-
tive transfer problem on new classes, which renders the model
unable to update its knowledge while preserving the previous
knowledge. To address these problems, we propose an incre-
mental instance segmentation method that consists of three
networks: Former Teacher Network (FTN), Current Student
Network (CSN) and Current Teacher Network (CTN). Specif-
ically, FTN supervises CSN to preserve the previous knowl-
edge, and CTN supervises CSN to adapt to new classes. The
supervision of two teacher networks is achieved by a distil-
lation loss function for instances, bounding boxes, and class-
es. In addition, we adjust the supervision weights of different
teacher networks to balance between the knowledge preserva-
tion for former classes and the adaption to new classes. Exten-
sive experimental results on PASCAL 2012 SBD and COCO
datasets show the effectiveness of the proposed method.

Introduction
Instance segmentation is one of the fundamental tasks in
computer vision, which is challenging because it not on-
ly needs to detect all objects in an image correctly but al-
so needs to segment each instance precisely. Thanks to the
development of deep learning, like other visual tasks (Wei
et al. 2019; Yang et al. 2019; Han et al. 2020; Feng et al.
2020), current instance segmentation methods (He et al.
2017; Bolya et al. 2019; Chen et al. 2020) based on convo-
lutional neural networks (CNNs) have achieved remarkable
results. However, a fatal limitation of these methods lies in
assuming the training data for all categories are always avail-
able, making them unsuitable in some real-world situations.

In some real-world situations, training data are received
sequentially. The training data for the new task are available,
but the data for the previous task are often not accessible
due to various problems such as storage budget and privacy.
A well-qualified incremental system needs to be upgraded
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Figure 1: Comparison of incremental learning and fine-
tuning. An instance segmentation model is firstly trained on
two classes, including car and bicycle. Then it is retrained
with images of the new class person.

continuously by absorbing knowledge from new tasks while
preserving initially learned capabilities. Therefore, there are
two main aspects to judge whether an incremental model is
good or not: the ability to maintain knowledge of the previ-
ous tasks and capture new knowledge from the current task.

For the first aspect, the critical challenge is catastrophic
forgetting, an abrupt degradation of performance on the o-
riginal set of classes, when the training objective is adapted
to the new classes without access to previous training data.
For the second aspect, the critical challenge is the inability
of a model to update its knowledge while preserving the pre-
vious knowledge, which is a special negative transfer prob-
lem. Recently, many studies on incremental schemes (Li and
Hoiem 2017; Chaudhry et al. 2018; Shmelkov, Schmid, and
Alahari 2017; Yu et al. 2020) for image classification or
object detection have been proposed. However, catastroph-
ic forgetting and negative transfer problem in incremental
instance segmentation algorithms are still ignored and un-
solved.

Figure 1 shows an incremental situation. We first train an
instance segmentation model on two classes, including car
and bicycle. As shown in Figure 1(a), the model segments
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car and bicycle clearly. Then the new class person is added to
the training. Figure 1(c) shows a fine-tuning (Girshick et al.
2014) result on new class data. We can see that the bicycle
is lost in the segmentation result, and the confidence score
of the car becomes lower than before. Besides, the segmen-
tation of the new class person is not only low in confidence
score but also inaccurate. Unlike fine-tuning, we want all
three classes to be segmented accurately in the final result.
As shown in Figure 1(b), the old classes are preserved, and
the new class is segmented precisely.

Using only the training data for the new classes, we pro-
pose an incremental instance segmentation method, which
utilizes multi-teacher networks to supervise the model to p-
reserve old knowledge and adapt to the new classes. The
concept of multi-teacher networks is inspired by the hu-
man learning process (Hou et al. 2018). If a person wants
to have good academic performance, he needs the guidance
of multiple excellent teachers. Under the guidance of multi-
ple teachers with different labor divisions, he can learn new
knowledge better without forgetting the knowledge learned
before. In our method, we introduce a Former Teacher Net-
work (FTN) to help the Current Student Network (CSN) to
preserve the previous knowledge and a Current Teacher Net-
work (CTN) to help CSN adapt to new classes. Specifically,
we utilize knowledge distillation to simulate the guidance
process, which is proposed in (Hinton, Vinyals, and Dean
2015) and widely used in incremental tasks (Li and Hoiem
2017; Hou et al. 2018; Wei, Deng, and Yang 2020) and other
tasks (Yang et al. 2020c). The core of the knowledge distil-
lation in our method is to minimize the discrepancy between
teacher and student networks responses. In instance segmen-
tation task, the responses can be divided into three aspect-
s: instance, bounding box, and classification. Therefore, we
propose a distillation loss function that includes three corre-
sponding distillation losses. Besides, we also seek a balance
between those distillation losses to achieve better segmenta-
tion precision. What’s more, the supervision is performed on
the learning of both old and new classes, the balance of su-
pervision between different teachers is also considered. Ex-
periment results on PASCAL 2012 SBD and COCO dataset
demonstrate our method can segment the new classes well
while preserving the ability to segment old classes.

In summary, the major contributions of this paper are
three folds:

• We propose an algorithm to achieve instance segmen-
tation in incremental scenarios. This is the first attempt that
applies incremental setting in instance segmentation task to
the best of our knowledge.

• We formulate our proposed incremental instance seg-
mentation method with multi-teacher networks to balance
between the knowledge preservation for former classes and
the adaption to new classes.

• Extensive experimental results on PASCAL 2012 SBD
and COCO datasets prove the effectiveness of the proposed
method. And we evaluate variants of our method with abla-
tion studies to verify the effectiveness of each component in
our model.
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Figure 2: The incremental learning process of our method.

Related Work
Incremental Learning
A variety of incremental learning strategies (Li and Hoiem
2017; Dhar et al. 2019; Zhao et al. 2021) have been ex-
plored to prevent models from forgetting previously learned
tasks. Li et al. proposed Learning with Forgetting (LwF) (Li
and Hoiem 2017), which uses the new data to supervise the
learning of the new tasks and to provide unsupervised out-
put guidance on the previous tasks to prevent catastrophic
forgetting. Further, Dhar et al. introduced Learning with-
out Memorizing (Dhar et al. 2019), which extends LwF by
adding a distillation term based on attention maps. Inspired
by bayesian learning, Elastic Weight Consolidation (EWC)
(Kirkpatrick et al. 2016) remembers previous tasks by selec-
tively slowing down the learning on the important weights
for those tasks. Specifically, it estimates the fisher matrix to
weight a regularization term to constrain important param-
eters to stay close to their old values. Serra et al. proposed
Hard Attention to the Task (HAT) (Serra et al. 2018) to learn
hard attention masks concurrently to every task. The atten-
tion vectors of previous models are used to define a mask
and constrain the updates of the weights of current models.

Recently, the more challenging class-incremental setting
has attracted more attention. The difficulty of this setting
is that the network has no access to the class-ID at the in-
ference phase, which makes this setting more challenging.
Our method uses this challenging setting, and the incremen-
tal learning process is performed on the same dataset.

In addition, different from the image classification task,
it is widespread for the new classes and the old classes to
appear in the same picture simultaneously in instance seg-
mentation, which may confuse the network. For example,
the new class that appeared in the previous task is regarded
as the background class and is regarded as its genuine class
in the current task, which increases the difficulty of incre-
mental learning in instance segmentation.

Instance Segmentation
Instance segmentation is an essential task in computer vi-
sion, which enables numerous downstream vision applica-
tions. Due to the development of deep learning, like other
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visual tasks (Yang et al. 2018, 2020a; Dang et al. 2020; Yang
et al. 2020b; Deng et al. 2019), instance segmentation meth-
ods have achieved amazing results. Specifically, the current
instance segmentation methods are mainly divided into two
categories: two-stage methods and one-stage methods.

Two-stage methods formulate this task as the paradigm of
“Detect then Segment” (Li et al. 2017; He et al. 2017; Li-
u et al. 2018; Chen et al. 2019). These methods first detect
the objects and then predict the foreground masks on each
bounding box. Mask R-CNN (He et al. 2017), built upon
Faster R-CNN (Ren et al. 2015), extends the original detec-
tor by adding a branch for segmenting the instances within
the detected bounding boxes. In addition, ROI-Pooling (Gir-
shick 2015) is replaced by ROI-Align, which contributes
to the improvement of accuracy. Based on Mask R-CNN,
PANet (Liu et al. 2018) introduces bottom-up path augmen-
tation, adaptive feature pooling, and fully-connected fusion
to enhance the feature representation to improve the accura-
cy of instance segmentation. Further, Mask Scoring R-CNN
adds a mask-IoU branch to re-score the confidence of the
mask from the classification score. In summary, two-stage
methods first detect bounding boxes and then segment in
each bounding box. They can achieve the most advanced
performance but are generally slower.

One-stage methods (Dai et al. 2016; Liu et al. 2018; Bolya
et al. 2019; Chen et al. 2018) are conceptually faster than the
two-stage methods. InstanceFCN (Dai et al. 2016) first pro-
duces some instance-sensitive score maps, then it uses an
assembling module to generate object instances in a sliding
window. Using keypoint detection to predict eight extreme
points of one instance and generate an octagon mask, Ex-
tremeNet (Zhou, Zhuo, and Krahenbuhl 2019) can achieve
relatively reasonable object mask prediction. Instead of us-
ing position-controlled tiles, YOLACT (Bolya et al. 2019)
first generates a set of prototype masks and learns a set of
linear combination coefficients for each instance alongside
the box predictions. It linearly combines the prototypes us-
ing the corresponding predicted coefficients and then crops
with a predicted bounding box to generate the final mask.
Since this process does not depend on repooling, YOLACT
can produce high-quality masks and show temporal stability.

The above methods assume that the training data for all
categories are always available, which is unsuitable in incre-
mental situations. Different from those methods, we propose
an incremental instance segmentation method that perform-
s well in incremental situations. Specifically, considering
the computation of category-specific proposals (Shmelkov,
Schmid, and Alahari 2017) in two-stage methods like Mask
R-CNN (He et al. 2017), we choose the one-stage method Y-
OLACT (Bolya et al. 2019) as our incremental base instance
segmentation model, because the prior boxes in YOLACT
are agnostic to object categories.

Transfer Learning
Our work also involves transfer learning methods. Transfer
learning focuses on storing knowledge gained while solving
one task and applying it to a different but related task. Fine-
tuning is a special case of transfer learning, which is popular
in computer vision. The network trained on ImageNet for

image classification (Deng et al. 2009) is often used as the
basic model to train other tasks like semantic segmentation
and object detection (Zitnick et al. 2014; Oquab et al. 2014).

However, there are some issues in Transfer Learning, such
as “Negative Transfer”. This problem is that the transferred
knowledge will damage the performance of the target do-
main. This problem also exists in our setting.

Unlike the traditional negative transfer problem, which is
often caused by the large difference between the target do-
main and the source domain, there are two main reasons for
the negative transfer of our method. Firstly, since the current
task model needs to calculate the distillation loss with the
model of the previous task to preserve the old knowledge,
the optimization space of parameters in the current model
becomes smaller, limiting the learning ability of the curren-
t model on new classes. Secondly, to better retain the old
knowledge, the learning rate in the training process of the
new class is reduced, which also limits the learning of new
classes. To solve this problem, we introduce a current teach-
er network, which only considers the learning of the new
classes. A good current teacher network can give the current
task a good initialization and soft supervision, which leads
to a more gentle learning curve for the learning of the new
classes.

Proposed Method
Problem Definition
We consider a class-incremental learning scenario. The
model learns a series of tasks, each task contains several new
classes. Given a dataset D = {(x, y)|x ∈ X , y ∈ Y}, where
X represents images and Y represents labels. The number
of total classes is C. Given T tasks, we split C into T subsets
C1, C2, . . . , CT . We define task t as introducing new classes
Ct using dataset Dt = {(x, y)|y ∈ Ct}. The training images
and labels are defined as X t = {x|(x, y) ∈ Dt} and Yt =
{y|(x, y) ∈ Dt}, respectively. Especially, Yi

⋂
Yj = ∅ for

i 6= j. The goal of task T is to train a model that can segment
the objects belonging to class Ct, while still preserving the
ability to segment the objects belonging to class Ci, i < t.

Instance Segmentation Network
In this section, we will introduce the details of the base net-
work. We use the one-stage method YOLACT (Bolya et al.
2019) as our base network for the reason that the prior boxes
in YOLACT are agnostic to object categories. In YOLACT,
the complex instance segmentation task is split into two par-
allel and straightforward tasks. One branch uses FCN (Long,
Shelhamer, and Darrell 2015) to generate a set of image-
sized “prototype masks” which does not depend on anyone
instance. Another branch utilizes an object detection module
to predict a vector of “mask coefficients” for each anchor.
The “mask coefficients” are used to encode the representa-
tion of instances in the prototype space. Then the predicted
instances are selected by NMS operation. Finally, a mask is
constructed for each predicted instance by linearly combin-
ing the work of these two branches.

The generation of prototypes is similar to standard seman-
tic segmentation, however, it differs in that there is no explic-
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Figure 3: This is the flow of our method in task t, t > 1. All the networks extract the features using the Feature Pyramid
Network (FPN) (Lin et al. 2017) from the input data. The extracted features will be utilized to generate prototype masks and be
sent to the prediction network to produce three values: bounding box coordinates, classification scores, and mask coefficients.
To preserve the old knowledge and overcome negative transfer, we compute the distillation loss between CSN and two teacher
networks. The orange lines between ProtoFTN , P rotoCSN and ProtoCSN are the prototype distillation losses. The orange
lines between PredFTN , PredCTN and PredCSN are bounding box, classification, and mask distillation losses, respectively.
The outputs of CSN are handled by NMS to produce the final output.

it loss of prototypes. The supervision of this generation pro-
cess comes from the final mask loss after assembly. The pre-
diction of the mask coefficients is achieved by adding a third
branch to typical anchor-based object detectors. To subtract
out prototypes from the final mask, we sent the mask coeffi-
cients to a tanh layer to produce more stable outputs.

Three losses are used to train the network: classification
loss Lcls, box regression loss Lbbx, and mask loss Lmask

with weights 1, 1.5, and 6.125 respectively. The classifica-
tion loss and box regression loss are the same as (Liu et al.
2016). And the mask loss is computed by the pixel-wise bi-
nary cross entropy:

Lmask = BCE(M,MGT ), (1)

where M is the predicted mask and MGT is the ground
truth mask. The total loss is formulated as:

LY OLACT = Lcls + 1.5Lbbx + 6.125Lmask. (2)

Multi-Teacher Networks
The flow of our method is shown in Figure 2. Our method
consists of three main parts in task t (t > 1): Former Teacher
Network (FTN), Current Student Network (CSN), and Cur-
rent Teacher Network (CTN).

For task t, FTN is a model pre-trained on Dt−1 =
{(x, y)|y ∈ Ct−1}, it can segment instances belonging to
class Ci, i <= t − 1. CSN is built upon FTN, which is ob-
tained by increasing a prediction layer for the new classes.
And CSN uses the parameters of the pre-trained FTN as its

initialization parameters. The initialization of the new pre-
diction layers is accomplished by CTN, then the initialized
CSN is trained on Dt = {(x, y)|y ∈ Ct}. The goal of C-
SN is to segment instances belonging to class Ci, i <= t.
In order to achieve this goal without accessing to Dt−1, it
needs to accept the supervision of FTN and CTN. CTN is
also trained on Dt = {(x, y)|y ∈ Ct}, different from CSN,
the goal of CTN is to only segment instances belonging to
class Ci, i = t. This network does not consider the informa-
tion from the previous task. Therefore, it can achieve better
performance on the current task. CTN can also be called Ex-
pert Network, which means that this network specializes in
segmenting instances belonging to the new classes. It will
give CSN more accurate guidance on new classes to allevi-
ate the influence of negative transfer.

To overcome catastrophic forgetting and negative transfer
problems in incremental instance segmentation, as shown in
Figure 3, we compute the distillation losses between CSN,
FTN and CTN. Concretely, to preserve the previous knowl-
edge, we compute the distillation losses between CSN and
FTN. To help CSN better adapt to new classes, we also com-
pute distillation losses between CSN and CTN besides the
standard YOLACT loss function.

The purpose of distillation loss is that the two networks
participating in the distillation maintain the same output for
the same input. In the compute of proposed distillation loss-
es, the parameters of the two teacher networks are frozen.
It means that CSN needs to make its output close to its two
teachers.

Given an image It in Dt = {(x, y)|y ∈ Ct}, the re-
sponses of the FTN are recorded as FTN(It), consist-
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ing of instance prototype masks FTNproto, mask coeffi-
cients FTNmask, class logits FTNcls, and bounding box
regressions FTNbbx. Even if no instance is segmented by
FTN, the FTN(It) can carry enough information about
the previous classes to CSN(It) by distillation. Special-
ly, the class logits for the new classes Ct are not con-
sidered in the loss between FTN(It) and CSN(It). The
definition of CSN(It) is similar to FTN(It). Similarly,
the responses of CTN are recorded as CTN(It), including
CTNproto, CTNmask, CTNcls, and CTNbbx. The class
logits for the old classes {C1, . . . , Ct−1} are not considered
in the loss betweenCTN(It) andCSN(It).CTN(It) will
give a good initialization and soft supervision to the learning
of CSN(It), which indeed reduces the influence of nega-
tive transfer. We make a lot of ablation experiments to val-
idate the effectiveness of multi-teacher learning, which will
be shown in the experimental part. We use L2 loss to com-
pute the distillation losses. Therefore, the loss formulations
between CSN and two teacher networks are defined as:

LFTN = [λ1(FTNproto − CSNproto)
2

+ λ1(FTNmask − CSNmask)
2

+ λ2(FTNcls − CSNcls)
2

+ λ3(FTNbbx − CSNbbx)
2],

(3)

LCTN = [λ1(CTNproto − CSNproto)
2

+ λ1(CTNmask − CSNmask)
2

+ λ2(CTNcls − CSNcls)
2

+ λ3(CTNbbx − CSNbbx)
2].

(4)

We define the sum of prototype and mask losses as instance
loss. λ1, λ2, λ3 are the hyper-parameters to balance the three
losses.

The total loss can be formulated as:

L = β1LFTN + β2LY OLACT + β3LCTN , (5)

where β1, β2, β3 are the hyper-parameters. By adjusting the
values of these three hyper-parameters, we can control the
influence of catastrophic forgetting and negative transfer
problem to achieve higher segmentation precision.

Experiments
Datasets and Evaluation
We evaluate our method on the PASCAL 2012 SBD (Har-
iharan et al. 2011) dataset and Microsoft COCO (Lin et al.
2014) dataset. PASCAL 2012 SBD has 20 object categories.
It consists of 8498 training images and 2857 testing images.
On the other hand, COCO has 80k images in the training set
and 40k images in the validation set. The total number of
object classes in COCO is 80, which includes all the classes
in PASCAL 2012 SBD. We report mean average precision
(mAP) weighted across different IoU from 0.5 to 0.95 on
the two datasets, which can better demonstrate the overall
degree of forgetting and adaption.

      

Figure 4: The influence of λ (a) and β (b) in distillation loss-
es. The abscissa is the ratio of λ or β. For example, if the
value of abscissa in (a) is x, it means that λ1 : λ2 : λ3 is
x : 1 : 1. The ordinate is the mAP on addition of one class
“tvmonitor” task.

Implementation Details
We use SGD (Bottou 2012) to train all the models in the
experiments. The backbone in YOLACT is ResNet-50 (He
et al. 2016) and the base image size is 550×550. For the
first task, we set the learning rate to 1e-4, and for the next
tasks, we set the learning rate to 5e-5. For PASCAL 2012
SBD dataset, we train the model for 120k iterations, and
the learning rate will decay at iterations 60k and 100k us-
ing a weight decay of 5e-4. For COCO dataset, the model
is trained for 400k iterations, and the learning rate decays
at iterations 140k, 300k, and 350k. The weight decay is the
same as PASCAL 2012 SBD.

Addition of One Class
In the first task, we train the model using 19 classes in PAS-
CAL 2012 SBD and then train the model on the remaining
class without access to the data of previous classes in the
second task. A summary of the evaluation of these networks
is shown in Table 2, with the full results in Table 1.

Fine-tuning is a baseline method for adding a new class,
which trains the model directly on new data without adding
any constraints on the model to preserve the previous knowl-
edge. This operation causes a rapid drop in the performance
of the old classes. Besides, there are not many iterations of
the fine-tuning method for the reason to keep the perfor-
mance of previous classes. Therefore, it learns badly on the
new class due to the lack of optimization times. As shown
in Table 2, it has forgotten more than half of the previous
knowledge. And the mAP of the new class only achieves
8.49%. Compared with fine-tuning, our model performs bet-
ter under the guidance of two teacher networks, both in new
and old classes. It has achieved 39.65% mAP on old classes
and 41.29% mAP on the new class.

We also make ablation studies to validate the effectiveness
of the component in our method. FTN is the most important
part to preserve the performance of our method on old class-
es. Thus, if FTN is removed, the incomplete model will suf-
fer from catastrophic forgetting on old classes. It is similar to
fine-tuning at this point. Therefore, we train the model with-
out FTN for the same iterations as fine-tuning. As is shown
in Table 2, the mAP on old classes dropped from 39.65%
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Method Aero Bike Bird Boat Bottle Bus Car Cat Chair Cow
Table Dog Horse Mbike Person Plant Sheep Sofa Train Tv mAP

(1-19) 53.93 36.68 45.77 27.05 28.42 68.47 50.37 66.08 19.19 36.36
13.14 63.29 45.35 43.37 38.88 22.03 42.59 30.40 63.25 - 41.82

+(20) fine-tuning 13.86 11.51 17.75 3.34 6.86 13.96 13.98 39.73 3.32 13.32
0.00 27.49 17.29 6.12 3.73 4.57 9.18 4.64 17.29 8.49 11.82

+(20) w/o FTN 4.03 0.05 1.97 1.04 0.10 5.50 1.97 0.30 0.12 0.55
0.18 1.69 0.16 0.18 0.05 0.35 2.14 0.46 4.83 9.74 1.77

+(20) w/o CTN 53.24 34.13 44.35 24.86 27.39 66.47 45.73 64.51 17.74 36.58
12.56 61.38 44.23 40.39 36.70 20.69 39.21 29.06 59.03 33.38 39.58

+(20) w/o Ins 0.02 0.00 0.00 0.32 0.40 2.03 0.01 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00 34.62 1.88

+(20) w/o Bbox 52.92 33.3 43.46 25.03 26.54 65.27 44.55 63.49 16.72 34.94
13.65 60.55 43.39 39.76 34.09 20.07 38.77 30.71 59.90 42.86 39.50

+(20) w/o Cls 52.61 33.42 45.53 25.37 26.95 65.33 45.17 63.91 16.54 33.86
14.83 59.69 42.03 39.18 34.20 20.61 37.84 31.07 60.75 38.83 39.39

+(20) w two teachers 52.84 33.97 44.04 25.67 26.99 67.28 44.87 63.4 16.72 36.29
12.98 60.98 43.17 39.79 34.61 19.37 39.01 30.00 61.31 41.29 39.73

(1-20) 53.63 35.46 45.88 28.22 28.43 67.45 49.73 64.56 20.14 37.53
13.95 63.11 42.54 43.97 38.13 22.10 41.74 31.84 62.47 51.10 42.10

Table 1: PASCAL 2012 SBD test per-class weighted mAP (%) under different settings when the “tvmonitor” class is added.
“Ins”, “Bbox”, “Cls” represent instance distillation loss, bounding box distillation loss and classification score distillation loss,
respectively. Bold text indicates the best incremental learning performance.

to 1.36%. The efficiency of previous knowledge forgetting
has been accelerated compared to fine-tuning due to the ex-
istence of CTN. In order to verify the effectiveness of CTN
in learning the new class, we also remove the CTN from our
method. As shown in Table 2, the mAP of “tvmonitor” is
dropped from 41.29% to 33.38%.

The instance distillation loss, including prototype and
mask coefficients distillation loss, is most critical in our
loss function. As shown in Table 2, the model removing
instance distillation almost forgets all previous knowledge.
This result is very similar to the final output of a model that
has been fine-tuned many iterations. The bounding box and
classification distillation losses also contribute to the perfor-
mance of the model, while it is relatively small compared to
instance distillation loss.

Addition of Multiple Classes
In this scenario, we train the network on the first ten PAS-
CAL 2012 SBD classes, which are in alphabetical order.
And in the second task, we retrain the model on the remain-
ing ten classes. The evaluation results of these networks are
shown in Table 3.

The model trained on new ten classes achieves 37.39%
mAP compared to 42.10% of the baseline network trained
on all the classes. The performance degradation is mainly
caused by the learning of new classes. As shown in Table
3, the baseline model trained on only the first ten classes
achieves 40.82% mAP on the old classes, while the retrained
model with two teachers achieves 40.27% mAP. It means
that little previous knowledge is forgotten. In contrast, the
learning of the new classes is not satisfactory. The retrained
model with two teacher networks achieves 34.50% mAP

on new classes while the baseline model (1-20) achieves
41.09% mAP. However, the learning of the new classes gets
worse when we remove the CTN from the network, its mAP
drops from 34.50% to 32.29%. Interestingly, the mAP on the
old classes is also dropped when the CTN is removed. We
guess this phenomenon is because CTN can help the model
adapt to the new classes quickly, which avoids the changes
of some unnecessary parameters.

We also conduct the experiments on COCO dataset. The
results are shown in Table 5. The initial set contains the first
40 classes, and the remaining 40 classes are used in the sec-
ond task.

Sequential Addition of Multiple Classes
We evaluate the sequential learning ability of our method. In
the first task, we train the first ten classes. And we add five
new classes in the second stage. Finally, we add the remain-
ing five classes. The evaluation results of all the models are
shown in Table 4.

As shown in Table 4, our method successfully preserves
the old knowledge in a sequential setting. And the retention
rate of old knowledge is very stable. The second learning
preserves 98.7% mAP of the first learning in the old class-
es. And the third learning keeps 98.3% mAP of the second
learning in the previous classes. Although the learning of
the new classes is still not good, the addition of the CTN is
a great improvement compared with learning directly on the
new classes. For example, CTN helps the network improve
17.8% mAP on the new classes in the third task.

We also show some visualization results. As shown in
Figure 5, the old classes like bicycle, boat and car are p-
reserved, and the new classes person and motorbike are seg-
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Method Old New All

(1-19) 41.82 - -
+ (20) fine-tuning 12.00 8.49 11.82
+ (20) w/o FTN 1.35 9.74 1.77
+ (20) w/o CTN 39.91 33.38 39.58
+ (20) w/o Ins 0.16 34.62 1.88

+ (20) w/o Bbox. 39.32 42.86 39.50
+ (20) w/o Cls 39.41 41.82 39.39

+ (20) w two teachers 39.65 41.29 39.73
(1-20) 41.63 51.10 42.10

Table 2: PASCAL 2012 SBD test weighted mAP (%) under
different settings when the “tvmonitor” class is added. Bold
text indicates the best incremental learning performance.

Method Old New All

(1-10) 40.82 - -
+ (11-20) finetune 17.82 2.07 9.95
+ (11-20) w/o FTN 2.07 9.88 5.98
+ (11-20) w/o CTN 38.69 32.29 35.49

+ (11-20) w two teachers 40.27 34.50 37.39
(1-20) 43.1 41.09 42.10

Table 3: PASCAL 2012 SBD test weighted mAP (%) when
ten classes are added at once.

Method Old New All

(1-10) 40.82 - -
+ (11-15) w/o CTN 39.80 32.26 37.29

+ (11-15) w two teachers 40.28 33.04 37.87
+ (15-20) w/o CTN 39.28 24.16 33.76

+ (15-20) w two teachers 39.63 29.40 34.51
(1-20) 42.10

Table 4: PASCAL 2012 SBD test weighted mAP (%) when
five classes are added at once and add twice in total.

mented successfully.

The Balance of the Supervision
We adjust the value of λ and β in the distillation loss func-
tion to achieve higher mAP. The ratio of the three parame-
ters λ1,λ2, and λ3 determine the importance of three differ-
ent distillation losses. And the ratio of the three parameters
β1,β2, and β3 decide the balance between the learning of old
and new classes.

Considering the performance of the three kinds of loss in
the ablation experiment, we think the value of λ1 should be
greater than λ2 and λ3. The experimental results also prove
this point of view. As shown in Figure 4(a), the value of
mAP increases as the ratio of λ1 to λ2, λ3 increases. The
performance growth slows down when the ratio reaches 10.
Therefore, we set the ratio of λ1 : λ2 : λ3 to 10 : 1 : 1.

To seek a balance between old knowledge preservation

         

Figure 5: Visualization of some results. The color of the seg-
mented object is random. The model first trained on the first
ten classes and retrained on the latter five classes. Classes
“car”, “boat”, and “bicycle” are in the first ten classes, while
“person” and “motorbike” are in the latter five classes.

Method mAP@.5 mAP@[.5, .95]

(1-40)+ (41-80) 31.13 16.72
(1-80) 36.62 20.82

Table 5: COCO minival (first 5000 validation images) av-
erage precision (%). We compare the model learned incre-
mentally on half the classes with the baseline trained on all
jointly.

and adaption to new classes, we adjust the value of β to
change the supervision of the two teacher networks. As
shown in Figure 4(b), the mAP of new classes keeps increas-
ing until the ratio exceeds 10. And the mAPs of the old and
total classes grow slowly after the ratio of 10. Thus, the ratio
of β1 : β2 : β3 is also set to 10 : 1 : 1.

Conclusion and Future Work
In this paper, we propose an approach for incremental learn-
ing of instance segmentation model without access to the
training data of previous classes. We address the problem
of catastrophic forgetting on old classes and overcome the
negative transfer problem to help the model better adapt to
new classes. The key to solving these two problems is to
make the current task network obtain the supervision of the
two teacher networks. Extensive experimental results have
demonstrated that our approach performs well under differ-
ent incremental settings. Our future work aims to handle
the incremental instance segmentation based on two-stage
methods, which requires a category-agnostic proposal net-
work.
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