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Abstract

Single-image deraining is rather challenging due to the un-
known rain model. Existing methods often make specific as-
sumptions of the rain model, which can hardly cover many
diverse circumstances in the real world, compelling them
to employ complex optimization or progressive refinement.
This, however, significantly affects these methods’ efficiency
and effectiveness for many efficiency-critical applications.
To fill this gap, in this paper, we regard the single-image
deraining as a general image-enhancing problem and origi-
nally propose a model-free deraining method, i.e., Efficient-
DeRain, which is able to process a rainy image within 10 ms
(i.e., around 6 ms on average), over 80 times faster than the
state-of-the-art method (i.e., RCDNet), while achieving sim-
ilar de-rain effects. We first propose the novel pixel-wise di-
lation filtering. In particular, a rainy image is filtered with
the pixel-wise kernels estimated from a kernel prediction net-
work, by which suitable multi-scale kernels for each pixel
can be efficiently predicted. Then, to eliminate the gap be-
tween synthetic and real data, we further propose an ef-
fective data augmentation method (i.e., RainMix) that helps
to train network for handling real rainy images. We per-
form comprehensive evaluation on both synthetic and real-
world rainy datasets to demonstrate the effectiveness and ef-
ficiency of our method. We release the model and code in
https://github.com/tsingqguo/efficientderain.git.

1 Introduction
Rain patterns or streaks captured by outdoor vision systems
(e.g., stationary image or dynamic video sequence), often
lead to sharp intensity fluctuations in images or videos, caus-
ing performance degradation for the visual perception sys-
tems (Garg and Nayar 2005, 2007) across different tasks,
e.g., pedestrian detection (Wang et al. 2018), object tracking
(Li et al. 2018a), semantic segmentation (Chen et al. 2020),
etc. As a common real-world phenomenon, it is almost
mandatory that an all-weather vision system is equipped
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Real Rainy Image EfDeRain w/o RainMix (Ours)
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SSIM Comparison on Rain100H
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Figure 1: Top: Comparison results (i.e., PSNR vs. Time &
SSIM vs. Time) on the Rain100H dataset. Down: an exam-
ple of using EfDeRain, EfDeRain without RainMix and the
state-of-the-art RCDNet (Wang et al. 2020a) to handle a real
rainy image. Note that, the time cost of all compared meth-
ods are one-by-one evaluated on the same PC.

with the deraining capability for usage. A deraining method
processes the rain-corrupted image/video data and removes
the rain streaks, with the intention to achieve good image
quality for the downstream vision tasks.

In many real-time applications that are efficiency-
sensitive and critical, (e.g., vision-based autonomous driv-
ing or navigation), being able to perform deraining effi-
ciently on-chip is of great importance. A deraining algorithm
achieving both high efficiency and high performance (e.g., in
terms of PSNR, SSIM), while remaining at low overhead, is
of great importance for practical usage.
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Figure 2: Pipeline of our EfficientDeRain. (a) represents the pixel-wise image filtering introduced in Sec. 3.1 where each pixel
is processed by an exclusive kernel predicted by a kernel prediction network. (b) we further extend this simple structure and
propose the pixel-wise dilation filtering in Sec. 3.2 to handle multi-scale rain streaks. (c) we show that the predicted kernels can
be adapted to different image contents while recovering the object boundary in the original image.

Although we have witnessed the recent progress for de-
raining, existing methods mostly focus on studying the phys-
ical models of rain and background layers, removing rain
streaks via solving an optimization problem and employing
the power of deep learning and some priors, e.g., the rain
having similar local patterns across the image domain (Wang
et al. 2020a; Li et al. 2016; Wei et al. 2019; Hu et al. 2019;
Yang et al. 2019). An essential problem, i.e., the efficiency
of the derain method, however, is largely neglected so far,
which brings great limitation for real-time applications.

In particular, existing methods (see Sec. 2) often heav-
ily rely on various rain-generating assumptions and rain-
background models, whose goal is to revert such a rain-
adding step in the deraining process, involving heavy iter-
ative optimization and subsequent refinement steps. How-
ever, some caveats of theirs cannot be overlooked: ¶ the
rain model assumptions adopted by many of the algorithms
may be limited, which do not well represent and reflect the
real-world rain patterns. The models based on these rain
model assumptions may not perform as strongly under the
real-world scenarios; · many of the existing methods are
computationally expensive, either requiring complex itera-
tive optimization to find the optimal solution, or constructing
the deraining framework in multiple stages with recurrent or
progressive refinement steps involved.

In this work, we approach the single-image deraining
problem from a different angle, aiming to propose a efficient
while general derain method. First, our proposed method is
model-free, which makes no assumptions of how the rain
is generated. As we show in the experimental section, rain
model assumption is somewhat not mandatory for achieving
high-performance deraining, and sometimes such assump-
tions can even impair the deraining performance. Second,

our proposed method follows a single-stage and does not re-
quire either iterative optimization or progressive refinement,
thus leading to high-efficiency deraining. Overall, our main
contributions are three-fold:

• We propose the pixel-wise dilation filtering for efficient
deraining. A rainy image is filtered by the pixel-wise ker-
nels estimated from a kernel prediction network that can
automatically and efficiently predict the suitable multi-
scale kernels for each pixel.

• To bridge the gap between synthetic and real data, we fur-
ther propose the RainMix component for simple yet effec-
tive data augmentation, which enables us to train networks
for handling real rainy images

• We demonstrate the advantage of our method on syn-
thetic and real-world rainy datasets, achieving both high-
performance and high-efficiency deraining. As shown in
Fig. 1, our method (i.e., EfDeRain) runs around 88 times
faster than the state-of-the-art method RCDNet (Wang
et al. 2020a) with similar performance in terms of PSNR
and SSIM. Furthermore, equipped with the RainMix,
EfDeRain can achieve much better visualization result on
the real rainy images than RCDNet.

2 Related Work
Existing deraining algorithms can be largely categorized
into two groups: video-based deraining, e.g., (Kim, Sim, and
Kim 2015), and single image deraining. In this section, we
discuss several representative DL-based single-image de-
raining methods, which are most relevant to ours.

In (Wang et al. 2020a), a rain convolutional dictionary
network (RCD-Net) is proposed for single image derain-
ing, where the rain shapes are encoded by exploiting the in-
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Figure 3: An example of RainMix to generate a rainy image.

trinsic convolutional dictionary learning mechanism, lever-
aging the proximal gradient technique as the optimization
method to seek the optimal solution. RCD-Net is designed
as multiple stages to iteratively solve the deraining problem.
In (Du et al. 2020), a conditional variational image derain-
ing (CVID) network is proposed for draining, which uses
the conditional variational auto-encoder (CVAE) architec-
ture as the backbone. As a variational method, multiple pre-
dictions of the derained images from the input rainy image
can be generated by the learned decoder, and the final single-
image output is obtained by integrating these predictions.
In (Yang et al. 2019), a multi-task network to perform joint
rain detection and removal (JORDER) is proposed to solve
the inverse problem of single-image deraining. Contextual
dilated networks are incorporated to extract regional contex-
tual information so that the learned feature can be invari-
ant to rain streaks. To further process rain streaks with vari-
ous directions and shapes, a recurrent process is adopted to
progressively remove the rain streaks in stages. In (Li et al.
2018b), a recurrent squeeze-and-excitation context aggrega-
tion net (RESCAN) is designed for single-image deraining.
Similarly, the entire procedure is also performed in multi-
ple stages, with a memory enabled RNN architecture to ag-
gregate useful information of earlier stages. In (Wang et al.
2019), a spatial attentive network (SPANet) based on a two-
round four-directional RNN architecture is proposed, where
three standard residual blocks are used to extract features,
and four spatial attentive blocks are used to identify rain
streaks progressively in four stages.

Overall, these existing methods share some commonal-
ities. In particular, they often heavily rely on a presumed
rain model to develop their algorithms such as (Yang et al.
2019; Li et al. 2018b; Wang et al. 2020a), or require spe-
cific a priori domain knowledge of the rain streaks such as
(Wang et al. 2019; Du et al. 2020; Fu et al. 2017). Again,
many of these methods are built on a recurrent or progressive
framework, where later stage deraining can help refine the
early stage results such as (Yang et al. 2019; Li et al. 2018b;
Wang et al. 2019, 2020a). However, we believe that these
strong prerequisites and constraints can potentially hinder
both universality and efficiency of the derain method and its
real-world deployment. In this work, we originally propose
a deraining method from a different perspective, aiming to
address both issues.

Algorithm 1: Learning EfficientDeRain via RainMix

Input: KPN(·), fusion Convolution Conv(·), Loss
function L, Rainy Images Ir, Clean Images
I, real rain streak setR, Operation set
O = {rot, shearx/y, transx/y, zoomx/y}.

Output: Pre-trained Network KPN(·) and Conv(·).
1 Function RainMix(R):
2 Sample a rain map Rorg ∼ R;
3 Initialize an empty map Rmix;
4 Sample mixing weights

(w1, w2, w3, w4) ∼ Dirichlet;
5 for i = 1 to 4 do
6 Sample operations (o1, o2, o3) ∼ O;
7 Combine via o12 = o2o1 and o123 = o3o2o1;
8 Sample o ∼ {o1, o12, o123};
9 Rmix+ = wio(Rorg)

10 Sample a blending weight w ∼ Beta;
11 return R = wRorg + (1− w)Rmix;
12 End function;
13 for i = 1 to |Ir| do
14 Generate rain map via R = RainMix(R);
15 Sample an image pair via (Ir, I) ∼ (Ir, I);
16 Sample X ∼ {Ir, I} and Perform Irm = R+X;
17 Predict pixel-wise kernels via K = KPN(Irm);
18 Derain via Eq. (4) and get Î = Conv({Îl});
19 Calculate Eq. (5) and do back-propagation;
20 Update parameters of KPN(·) and Conv(·);

3 Methodology
3.1 Pixel-wise Image Filtering for Deraining
In this part, we propose an image filtering-based method for
model-free deraining. The rain can be regarded as a kind of
degradation that may cause effects such as occlusion, fog,
motion blur, etc. As a result, it is reasonable to use image
filtering methods to handle it, which can be efficient and ef-
fective for various degradations. Specifically, we process an
input rainy image Ir ∈ RH×W 1 via pixel-wise filtering

Î = K~ Ir, (1)

where Î ∈ RH×W is the estimated derained image, and ~
denotes the pixel-wise filtering operation where each pixel
is processed by its exclusive kernel and K ∈ RH×W×K2

contains the kernels of all pixels. Specifically, when derain-
ing the p-th pixel of Ir, we have its exclusive kernel, i.e., the
vector at p-th position of K, which is reshaped and denoted
as Kp ∈ RK×K . We use p as 2D coordinates for a pixel.
Then, we can predict the derained pixel by

Î(p) =
∑

t,q=p+t

Kp(t)I
r(q), (2)

where t ranges from (−K−1
2 ,−K−1

2 ) to (K−1
2 , K−1

2 ).

1We exemplify our method via the gray-scale image for better understanding. For
color images, we can handle each channel independently.
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Figure 4: Comparing EfDeRain with nine baseline methods on Rain100H (Yang et al. 2017, 2019), Rain1400 (Fu et al. 2017),
and the real SPA dataset (Wang et al. 2019) with PSNR vs. Time and SSIM vs. Time plots.

To realize effective deraining with the simple pixel-
wise filtering, we should consider the following chal-
lenges: ¶ how to estimate spatial-variant, scale-variant,
and semantic-aware kernels effectively and efficiently. Rain
may cause streak occlusion, fog, and blur, at different posi-
tions with different appearances. For example, rain streaks
could exhibit different scales, directions, and transparency
across the image and semantically related to the image con-
tents, e.g., the scene depth (Hu et al. 2019). As a result,
the pixel-wise kernels should be adapted to scene informa-
tion, the spatial and scale variations of rain streaks. Obvi-
ously, hand-craft designed kernels can hardly satisfy such re-
quirements. To address this challenge, we propose the multi-
dilated-kernel prediction network in Sec. 3.2, which takes
the rainy image as the input and predict multi-scale ker-
nels for each pixel via the deep neural network (DNN). ·
how to train a powerful deraining DNN to bridge the gap
to real rain with synthetic data. Most of the existing derain-
ing DNNs are trained on the synthetic data. However, there
is still a gap between real and synthetic rain. Bridging this
gap is of great importance for real-world applications. We
propose a simple yet effective rain augmentation method,
denoted as RainMix in Sec. 3.3 to reduce such a gap.

3.2 Learnable Pixel-wise Dilation Filtering
Kernel prediction network. Inspired by recent works on
image denoising (Bako et al. 2017; Mildenhall et al. 2018),
we propose to estimate the pixel-wise kernels K for derain-
ing by taking the rainy image as input,

K = KPN(Ir), (3)

where KPN(·) denotes a UNet-like network and we show the
architecture in Fig. 2. By offline training on rainy-clean im-
age pairs, the kernel prediction network can predict spatial-
variant kernels that adapt to the rain streaks with different

thickness and strength while preserving the object boundary.
We show a deraining example in Fig. 2, where we validate
our method on six representative regions and observe that: ¶
Our method can effectively remove the rain steak while re-
covering the occluded boundary, as shown in the region one
(R1) (see Fig. 2 (c)). · The predicted kernels can adapt to
the rain with different strengths. As shown in Fig. 2 (c), from
R2 to R5, the rain strength gradually becomes weak and our
method can remove all trace effectively. Moreover, accord-
ing to the visualization of predicted kernels, our network can
perceive the positions of rain streak. As a result, the predict
kernels assign higher weights to non-rainy pixels and low-
ers ones to rainy pixels, confirming the effectiveness of our
method. ¸ According to the results on R6, our method does
not harm the original boundary and makes it even sharper.

Multi-dilated image filtering and fusion. To enable our
method to handle multi-scale streaks without harming the
efficiency, we extend each predicted kernel to three scales
via the idea of dilated convolution (Yu and Koltun 2016).

Intuitively, when the rain streak covers a large region of
the image, the large scale kernel can use related pixels far
from the rain for effective deraining. A simple solution is to
predict multi-scale kernels directly, leading to extra param-
eters and time costs. Alternatively, we propose to extend the
pixel-wise filtering in Eq. (1) to pixel-wise dilation filtering
(Yu and Koltun 2016) for convolution layer,

Îl(p) =
∑

t,q=p+lt

Kp(t)I
r(q), (4)

where l is the dilation factor to control the applying range
of the same filter. In practical, we consider four scales, i.e.,
l = 1, 2, 3, 4. With Eq. (4), we get four derained images, i.e.,
Î1, Î2, Î3, and Î4. Then, we use a convolution layer with the
size 3×3 to fuse the four images and obtain the final output.
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PSNR: 31.41 PSNR: 31.31 PSNR: 30.57PSNR: 28.14 Case1
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SSIM: 0.50 SSIM: 0.88 SSIM: 0.88 SSIM: 0.84

SSIM: 0.75  SSIM: 0.91 SSIM: 0.91  SSIM: 0.90
Figure 5: Two visualization results of EfDeRain, RCDNet
(Wang et al. 2020a), and PReNet (Ren et al. 2019) on
Rain100H (Case1) and Rain1400 (Case2). We magnify the
main difference to highlight the advantages of our method.

Loss function. We consider two loss functions for training
the network, i.e., L1 and SSIM. Given the derained image,
i.e., Î, and the clean image I as ground truth, we have

L(Î, I) = ‖Î− I‖1 − λ SSIM(Î, I) (5)

where we fix λ = 0.2 for all experiments.

3.3 RainMix: Bridging the Gap to Real Rain
How to reduce the gap of synthetic rainy images to real data
is still an open problem. Inspired by recent data augmenta-
tion methods (Hendrycks et al. 2020), we explore a novel
solution RainMix to address this challenge. Garg and Nayar
(2006) conducted a detailed study about the appearance of
rain streaks and constructed a dataset of real rain streaks by
considering different lighting and viewing conditions. Even
then, it is still hard to say the collected real rain is exhaustive,
which covers all possible situations in the real world, since
the rain has diverse appearances due to the influences of var-
ious natural factors, such as the wind, the light reflection,
and refraction, etc. However, it is reasonable to use these
real rain streaks to generate more rain streaks through trans-
formations that may occur in the real world, e.g., zooming,
shearing, translation, and rotation. RainMix is originally de-
signed based on this such intuition.

We show our RainMix-based learning algorithm in Algo-
rithm 1. At each training iteration, we generate a rain map
via RainMix and add it to the clean or rainy images, to obtain
a new rain image for training the kernel prediction network
and the fusion convolution layer. Our RainMix randomly
samples a rain map from the real rain streak dataset (Garg
and Nayar 2006) (i.e., line 2 in Algorithm 1) and performs
three transformations on the rain map via randomly sam-
pled and combined operations (i.e., line 5-9 in Algorithm 1).
Finally, the three transformed rain maps are aggregated via
the weights from Dirichlet distribution and further blended
with the original sampled rain map via the weight from Beta

PSNR: 43.99 PSNR: 43.47 PSNR: 41.58PSNR: 37.59 Case1SSIM: 0.95 SSIM: 0.99 SSIM: 0.99 SSIM: 0.98
PSNR: 48.20 PSNR: 45.28 PSNR: 44.46PSNR: 40.64 Case2 SSIM: 0.98 SSIM: 0.99 SSIM: 0.99 SSIM: 0.99
PSNR: 47.68 PSNR: 41.59 PSNR: 41.68PSNR: 41.03 Cas3SSIM: 0.98 SSIM: 0.99  SSIM: 0.98 SSIM: 0.98Input Ground Truth EfDeRain RCDNet PReNet

Figure 6: Three visualization results of EfDeRain, RCDNet
(Wang et al. 2020a) and SPANet (Wang et al. 2019) on the
real-world SPA dataset. The red arrow shows the main dif-
ference between EfDeRain and other two methods.

distribution (i.e., line 4 and 11 in Algorithm 1). Intuitively,
the multiple random processes simulate the diverse rain ap-
pearance patterns in the real world. We give an example of
RainMix for generating a rainy image in Figure 3.

4 Experiments
4.1 Setups
Datasets. To comprehensively validate and evaluate our
method, we conduct the comparison and analysis experi-
ments on 4 popular datasets, including Rain100H (Yang
et al. 2017, 2019), Rain1400 (Fu et al. 2017) synthetic
dataset, the recent proposed SPA real rain dataset (Wang
et al. 2019), and the real Raindrop dataset (Qian et al. 2018).

Metrics. We employ the commonly used peak signal to
noise ratio (PSNR) and structural similarity (SSIM) as the
quantitative evaluation metric for all datasets. In general, the
larger PSNR and SSIM indicate better deraining results.

Baselines. We perform a large-scale evaluation to com-
pare with a total of 14 (=9+5) state-of-the-art deraining
methods, i.e., 9 baselines for the derain streak task (remov-
ing rain streak), including rain convolutional dictionary net-
work (RCDNet) (Wang et al. 2020a), conditional variational
image deraining (CVID) (Du et al. 2020), joint rain detection
and removing (JORDERE) (Yang et al. 2019), spatial atten-
tive deraining method (SPANet) (Wang et al. 2019), progres-
sive image deraining network (PReNet) (Ren et al. 2019),
semi-supervised transfer learning for rain removal (SIRR)
(Wei et al. 2019), recurrent squeeze-and-excitation context
aggregation net (RESCAN) (Li et al. 2018b), deep detail
network (Fu et al. 2017), and Clear (Fu et al. 2017). Fur-
thermore, for deraindrop task (i.e., removing train drop) on
the Raindrop dataset (Qian et al. 2018), we compare another
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Figure 7: Three visualization results of four variants of EfDeRain: v1 denotes the pixel-wise filtering based on KPN without
dilation; v2 is the pixel-wise dilation filtering for deraining. v1 and v2 are trained via the L1 loss. v3 and v4 have the same
structure with v2 but are trained via L1 and SSIM loss functions, i.e., Eq. (5). In addition, the v4 uses RainMix for training.

5 state-of-the-art methods (Li et al. 2019) as baselines, in-
cluding GMM (Li et al. 2016), JORDER (Yang et al. 2017),
DDN (Fu et al. 2017), CGAN (Zhang, Sindagi, and Patel
2019), DID-MDN (Zhang and Patel 2018), and DeRaindrop
(Qian et al. 2018). Note that, the time cost of all methods are
one-by-one evaluated on the same PC with the Intel Xeon
CPU (E5-1650) and NVIDIA Quadro P6000 GPU.

4.2 Comparison on Rain100H&1400 Dataset
We compare our method with the 9 baseline methods in
Fig. 4 on Rain100H and Rain1400 datasets. In general, our
method, i.e., EfDeRain, achieves the lowest time cost while
obtaining comparable PSNR or SSIM with the top meth-
ods on both datasets. More specifically, on the challenging
Rain100H dataset where the rain streaks cover a large por-
tion of the image, we observe that EfDeRain achieves almost
the same PSNR and SSIM with the rank1 method, i.e., RCD-
Net (Wang et al. 2020a), while being 88 times faster. Com-
pared with other methods, e.g., JORDERE (Yang et al. 2019)
and CVID (Du et al. 2020), our method exhibits clear advan-
tages on both recovery quality and efficiency. For example,
EfDeRain achieves 11. 4% relative PSNR improvement over
CVID while running over 50 times faster. Similarly, in terms
of the Rain1400 dataset, our method still achieves the low-
est time cost while maintaining the competitive PSNR and
SSIM in line with the state-of-the-art methods, e.g., PReNet
and RCDNet. The main reason is likely to be that the rain
streak of Rain1400 is slighter than Rain100H and a lot of the
regions are not covered by the rain. Meanwhile, as shown in
the Fig. 2, our method can not only remove rain streaks but
enhance the object boundary, leading to the negative score of
PSNR and SSIM that evaluate the recovery quality instead
of the enhancement capability.

We further compare the visualization results of EfDeRain
with the state-of-the-art baseline methods, i.e., RCDNet and
PReNet, in Fig. 5 and observe that: ¶ In Case1, EfDeRain
can remove the rain streaks more effectively than the other
two methods since there are clear rain traces on derained im-
ages, i.e., the white streaks near the nose. · Compared with

the baseline methods, EfDeRain removes the rain streak
while recovering the original details well. In Case2, RCD-
Net and PReNet remove or destroy the original streak-like
details, e.g., the fine lines. In contrast, our method preserves
these details while removing the rain effectively, demon-
strating that our method could understand the scene better
and predict kernels for different pixels.

4.3 Comparison on Real-world SPA Rain Dataset
We further compare our method with 8 baseline methods on
the SPA dataset (Wang et al. 2019), where the rainy image is
real and its ground truth is obtained by human labeling and
multi-frame fusion. As shown in Fig. 4, our method achieves
almost the same PSNR and SSIM with the top method, i.e.,
RCDNet, and outperforms all other baselines while running
over 71 times more efficient than RCDNet.

We also visually compare our method with RCDNet and
SPANet in Fig. 6. Obviously, all the results demonstrate that
our method can handle various rain traces with different pat-
terns and achieves better visualization results than RCDNet
and SPANet. In particular, both RCDNet and SPANet fail to
remove the wider rain streak in Case2 while our method suc-
cessfully handles all rain streaks and the obtained derained
image is almost the same with the ground truth.

4.4 Comparison on Real-world Raindrop Dataset
Besides the rainy streak image dataset, we also compare
our method on the deraindrop task to show the generaliza-
tion capability of our method. We train our network on the
Raindrop dataset (Qian et al. 2018) and compare it with 6
state-of-the-art baseline methods. In particular, the method
DeRaindrop (Qian et al. 2018) is specifically designed for
this problem, where the region of the raindrop is perceived
by an attentive-recurrent network. As shown in Table 1,
our method without changing any architectures or hyper-
parameters, achieves the second-best results with competi-
tive SSIM to DeRaindrop, and outperforms all other derain-
ing methods, demonstrating both the effectiveness and gen-
erality of our method.
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GMM JORDER DDN CGAN DID-MDN DeRaindrop EfDeRaiin

PSNR 24.58 27.52 25.23 21.35 24.76 31.57 28.48
SSIM 0.7808 0.8239 0.8366 0.7306 0.7930 0.9023 0.8971

Table 1: Results on Raindrop dataset (Qian et al. 2018). The baseline results are reported by (Li et al. 2019) and (Qian et al.
2018). We highlight the top three results.

EfDeRain w/o dilation(v1) +dilation(v2) +ssim loss(v3) +RainMix(v4)

PSNR 30.12 30.27 30.35 31.02
SSIM 0.8834 0.8918 0.8970 0.9079
Time (ms) 4.41 6.05 5.93 5.97

Table 2: Ablation study on Rain100H. We consider 4 variants of EfDeRain: v1 is the pixel-wise filtering based on KPN without
dilation structure; v2 is the pixel-wise dilation filtering for deraining. v1 and v2 are trained based on the L1 loss. v3 and v4 have
the same structure with v2 but are trained via L1 and SSIM loss functions, i.e., Eq. (5). The v4 uses RainMix for training.

4.5 Ablation Study

We validate the effectiveness of our main contributions,
i.e., pixel-wise dilation filtering (Sec. 3.2) and RainMix
(Sec. 3.3), on Rain100H dataset. We also discuss the effec-
tiveness of the loss function in Eq. (5). More specifically,
we develop four variants of our method: the first version
(v1) is the pixel-wise filtering based on KPN without the
dilation structure; the second version (v2, i.e., Sec. 3.2) de-
notes the pixel-wise dilation filtering for deraining. v1 and
v2 are trained based on the L1 loss. v3 and v4 share the same
structure with v2 but are trained via L1 and SSIM loss func-
tions, i.e., Eq. (5). In addition, the final version (v4) uses
RainMix in Sec. 3.3 for training. As shown in Table 2, the
PSNR and SSIM of the 4 versions gradually increase and
reach the highest performance on our final version with the
pixel-wise dilation filtering trained via the RainMix as well
as L1 and SSIM loss functions. This demonstrates that all of
our main contributions are beneficial for effective deraining.
Moreover, we also analyze the time cost of the four variants
and observe that: the proposed dilation filtering only leads
to around 1.5 ms additional costs.

We further validate the advantages of contributions via the
Rain100H visualization results in Fig. 7 and observe that: ¶
In general, our final version can not only remove the heavy
rain streak but recovering the original details, thus achiev-
ing the highest PSNR and SSIM scores. · When comparing
the EfDeRain-v1 with v2 (i.e., dilation-enhanced v1), we can
conclude that the dilation structure clearly facilitates to re-
move more rain streaks. For example, in Case 1, the rain
traces in v1 have been obviously suppressed in v2. ¸ The
SSIM loss function helps recover the details but enhances
the rain streak. For example, in Case 1, with the SSIM loss
function(i.e., EfDeRain-v3), the boundary of the sun in v3
becomes much sharper than that in v2 and v1. However, the
rain streak boundary becomes obvious as well. We observe
similar results in other cases. ¹ By combing dilation struc-
ture, SSIM loss function, and RainMix, our final version,
i.e., EfDeRain-v4, is able to remove the heavy rain effec-
tively while recovering the details very well.

5 Conclusions
In this paper, we propose a novel model-free deraining
method denoted as EfficientDeRain. Our method can not
only achieve the significantly high performance but runs
over 80 times more efficient than the state-of-the-art method.
Two major contributions benefit to the results: First, we pro-
posed and designed the novel pixel-wise dilation filtering
where each pixel is filtered by multi-scale kernels estimated
from a pre-trained kernel prediction network. Second, we
propose a simple yet effective data augmentation method for
training the network, i.e., RainMix, bridging the gap between
synthesis data and real data. Finally, we perform a large-
scale evaluation to comprehensively validate our method on
popular and challenging synthesis datasets, i.e., Rain100H
and Rain1400, and real-world datasets, i.e., SPA and Rain-
drop, all of which demonstrate the advantage of our method
in terms of both efficiency and deraining quality.

In future, we will study the effects of deraining to other
computer vision tasks, e.g., object segmentation (Guo et al.
2018, 2017b) and object tracking (Guo et al. 2020c,a,
2017a), with the state-of-the-art DNN testing works (Xie
et al. 2019a; Du et al. 2019; Xie et al. 2019b; Ma et al.
2018a,b, 2019). We also would like to study the single-
image deraining from the view of adversarial attack meth-
ods, e.g., (Guo et al. 2020b; Wang et al. 2020b; Cheng et al.
2020a; Gao et al. 2020; Cheng et al. 2020b; Tian et al. 2020).
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