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Abstract

Ordinal loss is widely used in solving regression problems
with deep learning technologies. Its basic idea is to convert
regression to classification while preserving the natural order.
However, the order constraint is enforced only by ordinal la-
bel implicitly, leading to the real output values not strictly in
order. It causes the network to learn separable feature rather
than discriminative feature, and possibly overfit on training
set. In this paper, we propose order regularization on ordinal
loss, which makes the outputs in order by explicitly constrain-
ing the ordinal classifiers in order. The proposed method con-
tains two parts, i.e. similar-weights constraint, which reduces
the ineffective space between classifiers, and differential-bias
constraint, which enforces the decision planes in order and
enhances the discrimination power of the classifiers. Experi-
mental results show that our proposed method boosts the per-
formance of original ordinal loss on various regression prob-
lems such as head pose, age, and gaze estimation, with signif-
icant error reduction of around 5%. Furthermore, our method
outperforms the state of the art on all these tasks, with the per-
formance gain of 14.4%, 2.2% and 6.5% on head pose, age
and gaze estimation respectively.

Introduction
Benefiting from the strong ability of feature representation,
convolution neural network (CNN) is widely used to solve
regression problems, such as head pose (Yang et al. 2019;
Ruiz, Chong, and Rehg 2018), age (Li et al. 2019; Chen
et al. 2017; Zhang et al. 2017b), gaze (Park et al. 2019;
Krafka et al. 2016; Cheng et al. 2020), and depth estimation
(Fu et al. 2018). Most researchers prefer enhanced Softmax
(Gao et al. 2017) or ordinal loss (Chen et al. 2017; Fu et al.
2018) to L2 loss, because such loss functions quantize the
continuous value to discrete value, converting the regression
problem to a classification problem, which is less sensitive to
outliers compared with L2 loss. Among them, ordinal loss is
outstanding, because it preserves the property of the regres-
sion problem, which means that the farther from the ground
truth the prediction, the larger the punishment.

In order to employ the ordinal loss, a continuous value gt
is converted to an ordinal label y, which is a vector with the

*Work was done when they were employed by SRC-B.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

length of N , using the following formula:

yn =

{
1, if (n+ 1) ·BinSize+Rmin ≤ gt
0, otherwise

(1)

Where yn(0≤n < N) is the n-th component of y, and
BinSize quantizes the regression range [Rmin, Rmax] into
N + 1 intervals. Each yn has a corresponding binary classi-
fier, i.e. ordinal classifier, and the ordinal loss is defined as
the cross-entropy loss to supervise all N binary classifiers
with y.

Now we focus on the ordinal classifier. The decision plane
of the n-th classifier is denoted as g(wn, bn) := wT

nx + bn,
for a feature x extracted by CNN. It judges whether the con-
dition in Eq. 1 is satisfied. For greater regression values,
more and more classifiers output 1 sequentially. Thus, in-
tuitively there should be the following constraint:

g(w0, b0) ≥ g(w1, b1) ≥ . . . ≥ g(wN−1, bN−1)

We call it implicit order constraint in ordinal loss.
However, this constraint may not be satisfied in real situ-

ations. We observed that the values computed with the de-
cision planes are not strictly in order, as shown in Fig. 1-
(a). The invalid order problem may cause the classifiers easy
to overfit, since the learned feature is separable rather than
discriminative. Fig. 1-(b) shows the 2D geometric interpre-
tation with a toy model consisting of three classifiers. The
training samples (represented as black shapes) can be per-
fectly classified. However, the feature is separable rather
than discriminative. Thus a test sample in star category (i.e.
the red star) may be misclassified to the circle category,
crossing several planes, which has larger error than misclas-
sified to the neighbouring triangle category.

In this paper, we propose an order regularization to con-
strain the order of the classifiers explicitly. The basic idea
is that given a x, the output values, i.e. wT

nx + bn, n =
0, 1 · · ·N − 1 in order can be accomplished through con-
straining the decision planes in order. To achieve this goal,
firstly, we make the weights of all decision planes be simi-
lar by introducing similar-weights constraint, which means
w0 ≈ w1 ≈ · · · ≈ wN−1. Secondly, we make all the bias
bn, n = 0, 1, · · ·N − 1 in order by introducing differential-
bias constraint. The 2D geometric interpretation is shown in
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Figure 1: Visualization of the problem in ordinal loss and
the benefit of our method. (a) shows the sequence of wT

nx +
bn, n = 0, 1 · · ·N − 1, which are not strictly in order, when
the original ordinal loss is employed. (b) shows the 2D geo-
metric interpretation of the feature space learned with ordi-
nal loss. The black-coloured training samples are perfectly
classified but the features are separable rather than discrimi-
native. Thus the test sample represented by the red star may
be misclassified to the circle category, which has large error.
The small arrow on each plane indicates the positive side. (c)
shows that the outputs of our proposed method are nearly in
order. (d) is the 2D geometric interpretation of our method.
The decision planes are in order, helping to learn discrim-
inative feature. The misclassified red star has smaller error
than that in (b). Best viewed in color and zoom-in.

Fig. 1-(d). The angles between the in-order planes are small,
which helps to learn discriminative features. In other words,
we hope to learn order-preserving feature space, where the
misclassified red star is much more likely to fall in a neigh-
bouring category with smaller error (Fig. 1-(d)), instead of
falling in the category far from the ground truth (shown in
Fig. 1-(b)). The output values with our method are nearly in
order, as shown in Fig. 1-(c).

The proposed method has two benefits: (1) improving the
interpretability of the classifiers and the feature discrimina-
tion power, (2) mitigating overfitting by adding explicit or-
der constraint. The major contributions of this paper can be
summarized as follows.

• We analyse the possible weak point of the original ordi-
nal loss. There is no explicit order constraint, leading to
invalid order of the outputs, which is easy to overfit.

• An order regularization, which consists of similar-weights
constraint and differential-bias constraint, is proposed to
solve this problem by making decision planes in order.
Multiple variant realizations are discussed and experi-
mentally compared to verify its novelty and effectiveness.

• Our proposed method significantly boosts the perfor-
mance of the ordinal loss on multiple regression problems
such as head pose, age and gaze estimation. Especially,
we outperform the state of the art on all these problems

without elaborate tuning for each specific task.

Related Work
CNNs are widely used to solve regression problems, e.g.
head pose, age and gaze estimation. Different from classi-
fication problem, the ground truth of the regression problem
is a continuous value. Though L2 loss is a natural choice
to optimize regression problem, it is sensitive to outliers.
SmoothL1 (Ren et al. 2015) and WingLoss (Feng et al.
2018) are proposed to solve this issue. By smoothing the
gradient of the abnormal prediction, the training procedure
is more stable. Such loss functions are widely used in object
localization and landmark detection problems.

Many existing methods convert regression problem to
classification problem, which is easy to optimize. Shen et al.
(Shen et al. 2018) proposed a deep regression forest to divide
the data with the split node. Rothe et al. (Rothe, Timofte, and
Van Gool 2018) used Softmax loss to solve this problem. To
get better performance, Ruiz et at. (Ruiz, Chong, and Rehg
2018) and Wang et at. (Wang et al. 2018) introduced a coarse
to fine scheme. They classified the data into several coarse
categories first, and then used a series of sub classifiers or re-
gressors to refine for each coarse category. However, most of
them provide the equal punishment no matter the prediction
is far or near from the ground truth, which is inconsistent
with the regression property. To solve this problem, Pan et
at. (Pan et al. 2018) computed the expectation of the predic-
tion according to the Softmax distribution, and then used L2

loss to optimize. Some researchers try to learn a distribution
instead of the hard label (Gao et al. 2017; Shen et al. 2017;
Yang et al. 2015).

In addition to this, ordinal loss (Chen et al. 2017; Niu et al.
2016; Chang, Chen, and Hung 2011; Guo et al. 2019) is em-
ployed benefiting from its ordered prediction. It is widely
used to solve regression problems, and continuously im-
proved in recent years. Liu et at. (Liu, Kong, and Goh 2017;
Liu, Wai Kin Kong, and Keong Goh 2018) paid attention on
the ordinal relationship from triplets samples to make sure
the prediction ranking is correct. Besides adding constraint
on the prediction ranking, some researchers also think that
there is a latent function mapping the instance to a real line
and there exists some bounds dividing the real line into some
continuous intervals. That is similar to our problem defini-
tion. Specifically, Diaz et at. (Diaz and Marathe 2019) pre-
sented a soft target to embed ordinal information into ground
truth, which outperforms the method using hard one-hot la-
bel. Liu et at. (Liu, Wang, and Kong 2019) employed Gaus-
sian Processes regression for ordinal regression. Different
from existing methods, we propose a regularization on the
ordinal classifiers, which is easy to interpret and optimize.
Besides, our method is evaluated on much larger datasets.

Method
Our basic idea is to make the decision planes in order. To
achieve this goal, we introduce the order regularization on
the original ordinal loss denoted as Losso. The proposed
regularization contains two parts, i.e. the similar-weights
constraint denoted as LossPlane, which reduces the ineffec-
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tive space between decision planes, and the differential-bias
constraint denoted as Loss∆Bias, which enforces the deci-
sion planes in order. Both constraints are necessary and work
together to achieve our goal. Finally, the total loss to be min-
imized is as follows

Losstotal = λpLossPlane + λ∆Loss∆Bias+

λoLosso
(2)

where λp, λ4 and λo are the respective coefficients.

Original Ordinal Loss
The formula of original ordinal loss is the cross-entropy loss
as follows,

Losso =
1

K

K∑
i=1

N−1∑
n=0

−(yni log(σ(wT
nNet(Si; Wnet) + bn))

+(1− yni )log(1− σ(wT
nNet(Si; Wnet) + bn))),

(3)

where Si is a training sample, Net(Si; Wnet) denotes the
feature extracted by the backbone network whose parame-
ters are Wnet, σ(·) is the sigmoid function, wn and bn are
the decision planes’ parameters (weights and bias), yi is the
corresponding ordinal label generated with Eq. 1, K is the
sample number in the training set.

The prediction for a test Sample is as follows,

predict = BS · (
N−1∑
n=0

I((wT
nNet(Sample; Wnet)

+bn) ≥ 0) + 0.5) +Rmin,

(4)

where BS is BinSize in Eq. 1, I(·) is indicator function.

Similar-Weights Constraint
The design idea of the similar-weights constraint is to reduce
the ineffective space between decision planes. Thus, we con-
strain the angles between the decision planes to be small and
make the L2 norm of all weights to be similar. Such strong
constraint helps mitigate overfitting.

Specifically, we denote all weights w0,w1 · · ·wN−1 as
W, whose shape is (N,Cin), where N is the number of
the decision planes, and Cin is the feature dimension. Let
w̃n =

wn

‖wn‖2
denote the normalized weight, where n =

0, 1 · · ·N − 1. We define F as the following,

F = W̃W̃
T
− I (5)

where W̃ consists of all w̃n, W̃W̃
T

is a matrix of sizeN×N ,
and I is the identity matrix. Note that the element in F com-
putes the cosine similarity between the normal directions
of two decision planes. Then we compute the plane loss
Lossplane as the following

Lossplane = (1−
∑N−1

row=0

∑N−1
col=0 Frow,col

N2 −N
)

+αvar · V ar({‖wn‖2, n = 0, 1 · · ·N − 1})
(6)

where Frow,col is an element in F. Thus the first part (i.e.
before αvar) constrains the angles between decision planes
to be small. V ar(·) term computes the variance of the L2

norm of all wn. αvar is a hyper parameter to balance the
angle and L2 norm terms.

The advantage of adding the V ar(·) term is two-folded.
First, constraining the L2 norm of all weights to be similar
force the network to find a distinguishing direction for de-
cision plane, since the value of wT x doesn’t depend on the
weight amplitude heavily. Second, compared with fixing the
L2 norm of all weights, allowing some weight norm varia-
tion is more flexible. Experimental results shown in Section
“Ablation Study” will verify the benefit of such design.

Differential-Bias Constraint
The design idea of the differential-bias constraint is to en-
force the decision planes in order by making the bias val-
ues in order. We first explain the guarantee of achieving this
goal. Then, we declare that its realization is not straightfor-
ward, and trivial implementation will cause that most of the
bias values are eliminated. Finally, we give our solution for
this elimination problem.

The Guarantee. To make the bias in order, we just make
the bias in the preceding classifier is greater than the bias in
the current one. In more detail, we define ∆bn = bn− bn+1,
and then minimize the Loss∆Bias in the following formula,

Loss∆Bias =

N−2∑
n=0

(max(0,mmin −∆bn)

+max(0,∆bn −mmax)),

(7)

where mmin and mmax are fixed hyper parameters which
means the lower and upper bounds of ∆b.

The lower bound mmin is a positive value, which gives
a guarantee of all the classifiers’ bias in order. In addition,
it also determines how large the space between the neigh-
bouring decision planes is enough. The upper bound mmax

restricts the bias not too large. In fact, given a x, both weight
and bias can be learned to make wT

0 x + b0 is greater than
wT

1 x + b1. If there is no upper bound limitation, the ampli-
tude of bias b may be very large, leading to limited effec-
tiveness of weight learning.

Implementation in Practice. Traditional fully connected
layer stores the bias b directly. Then ∆bn can be formulated
as bn−bn+1, n = 0, 1, · · ·N−2. However, such formulation
has an elimination problem in optimizing Loss∆Bias. In Eq.
8 we give a sample derivation when N is equal to 5. At the
beginning of the training, most ∆bn are smaller than mmin,
so the loss is as the following

Loss∆Bias =

3∑
n=0

(max(0,mmin −∆bn)

+max(0,∆bn −mmax))

= 4×mmin − (b0 − b1)− (b1 − b2)

− (b2 − b3)− (b3 − b4)

= 4×mmin − b0 + b4

(8)
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Only b0 and b4 are optimized and other bias terms are elim-
inated from Loss∆Bias.

To solve this problem, we parametrize the bias
as ∆b0,∆b1 · · · bref idx · · ·∆bN−2, where ref idx =
Floor(N/2). Then bias “b” is computed following Eq. 9.

bn =


bref idx +

∑ref idx−1
j=n ∆bj , if n < ref idx

bref idx, if n = ref idx

bref idx −
∑n−1

j=ref idx ∆bj , if n > ref idx

(9)

We give an example to explain Eq. 9 when N is equal to
5. The proposed parametrization scheme is as the following

b0 = b2 + ∆b0 + ∆b1
b1 = b2 + ∆b1
b2 = b2
b3 = b2 −∆b2
b4 = b2 −∆b2 −∆b3

(10)

As all the ∆bn are positive constrained by Eq. 7, the com-
puted {bn} are in order consequently. The benefit of this
parametrization scheme will be verified in Section “Ablation
Study”.

Discussion
As we explained above, to make the decision planes in order,
we introduce two constraints on weights and bias respec-
tively. Here raising some questions, can the order regular-
ization depend on only weights or bias, or without respective
constraints? In this section we describe three variant meth-
ods to realize the explicit order constraint. Their experimen-
tal results will be presented in Section “Ablation Study” to
show the advantage of our proposed method.

Comb. This realization employs a single, combined reg-
ularization term to constrain the decision plane outputs in
order, with the following formula

Loss∆w&b =
1

K

K∑
i=1

N−2∑
n=0

max(0,

− ((wT
nxi + bn)− (wT

n+1xi + bn+1)))

(11)

Parameters are learned by optimizing λoLosso +
λ∆Loss∆w&b.

B.Only. In this realization, all the decision planes are
parallel and the constraint depends on only bias. In imple-
mentation, all classifiers share the same weights, denoted
as ws. Parameters are learned by optimizing λoLosso +
λ∆Loss∆Bias.

W.Only. In this realization, the fully connected layer’s pa-
rameters only contain weights, and the order constraint is
formulated as

Lossweights =
1

K

K∑
i=1

N−2∑
n=0

max(0,−(wn − wn+1)T xi)

(12)
Parameters are learned by optimizing λoLosso +
λpLossweights.

Experiments
In this section we first introduce the datasets and our evalua-
tion protocols. After that, we will give the comparison with
several state of the art methods. Then ablation study will
be described, including the comparison with several differ-
ent realizations of similar-weights and differential-bias con-
straints, as well as the variant methods described in Section
“Discussion”. The running time of our method is also anal-
ysed.

Dataset and Configuration
300W-LP/BIWI protocol. 300W-LP (Zhu et al. 2016) is
a synthesized head pose estimation dataset which contains
122450 samples flipped from 61225 generated samples with
large poses. BIWI (Fanelli et al. 2012) is a real-world head
pose estimation dataset which contains about 15000 frames
from 24 videos of 20 subjects captured under laboratory en-
vironment. In 300W-LP/BIWI protocol, we follow the set-
ting of HopeNet (Ruiz, Chong, and Rehg 2018) and FSAnet
(Yang et al. 2019): training on 300W-LP dataset and test-
ing on BIWI dataset. We also follow their preprocessing
by using MTCNN (Zhang et al. 2016) face detection on
BIWI dataset and using only the samples within the range
of [−99◦,+99◦]. Following HopeNet, we use ResNet50 (He
et al. 2016) as backbone and we set the ordinal classifier’s
number N to 66 for all three pose angles. We train for 50
epochs with a learning rate of 1e-4 and the batch size is 16.
For hyper parameters, we set λo, λp and λ∆ to 1.0, 1.5, and
0.03 respectively. αvar inLossplane is 0.2.mmin andmmax

in Loss∆Bias are set to 0.4 and 0.8 respectively.
MORPH is a dataset for age estimation. It contains about

55000 images from about 13000 people of different races
(Ricanek and Tesafaye 2006). We use the five-fold, subject-
exclusive cross validation protocol (denoted as SE) and the
VGG-16 (Simonyan and Zisserman 2014) backbone, both
following (Pan et al. 2018). Note that there exists another
evaluation protocol, denoted as RS, which uses 5-fold split-
ting for all images. RS protocol has overlapped subjects in
training and testing sets, which may lead to overfitting, so
it is not employed. MTCNN (Zhang et al. 2016) are em-
ployed to detect faces, and faces are aligned with the sim-
ilarity transformation. The parameters of the backbone are
pre-trained on IMDB-WIKI (Rothe, Timofte, and Van Gool
2018). The dimension of final feature is 4096. The hyper
parameters such as learning rate also follow the settings in
(Pan et al. 2018). We set the ordinal classifier’s number N to
33. For hyper parameters, we set λo, λp and λ∆ to 1.0, 0.5,
and 0.01 respectively. αvar in Lossplane is 0.2. mmin and
mmax in Loss∆Bias are set to 0.5 and 1.0 respectively.

MPII is a gaze dataset captured by laptop for 15 persons
in everyday setting. It contains 1500 images for each per-
son, and two eye patches are cropped from each face im-
age. The test protocol we followed is a leave-one-person-out
fashion, and single eye patch is used to predict the 3D gaze
direction (Zhang et al. 2019). Note that there exists a differ-
ent setting that full-faces are available as input data (Zhang
et al. 2017a). Following RT-gene (Fischer, Jin Chang, and
Demiris 2018), we use the VGG-16 (Simonyan and Zisser-
man 2014) backbone. Note that (Fischer, Jin Chang, and
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Demiris 2018) used both left and right eye patches as input,
processing them with two branches, while we only use one
branch for single-eye input. We use the convolution parts of
VGG-16 architecture followed by two fully connected layers
with the size of 512 and 256, respectively. The head pose an-
gle provided by the dataset are concatenated to the 256-dim
feature. Batch normalization layer is inserted for fast con-
vergence. We set the ordinal classifier’s number N to 10 and
16 for theta “θ” and phi “φ” angles, respectively. We use the
pretrained weights on ImageNet for the convolution parts of
VGG-16. For hyper parameters, we set λo, λp and λ∆ to 1.0,
0.5, and 0.01 respectively. αvar in Lossplane is 0.2. mmin

and mmax in Loss∆Bias are set to 0.5 and 1.0 respectively.
GazeCapture is another gaze dataset captured by iphone

and ipad in different orientations (Krafka et al. 2016).
Following TAT (Guo et al. 2019), we use the iphone-
orientation-one subset for evaluation. It contains about 400k
training frames, 19k validation frames and 55k testing
frames. We follow the backbone of (Guo et al. 2019). We
set the ordinal classifier’s number N to 15 and 28 for hori-
zontal “x” and vertical “y” coordinates, respectively. For hy-
per parameters, we set λo, λp and λ∆ to 1.0, 1.0, and 0.01
respectively. αvar in Lossplane is 0.5. mmin and mmax in
Loss∆Bias are set to 0.5 and 1.0 respectively.

Comparison with State of the Art
Tab. 1a shows the head pose estimation results with 300W-
LP/BIWI protocol. The experiment results show that our
proposed method is a general method which can improve the
original ordinal loss on different backbones. In details, we
try the ordinal loss and our method on three different back-
bones: ResNet50 (He et al. 2016) from (Ruiz, Chong, and
Rehg 2018), the FSANet architecture (Yang et al. 2019), and
the EfficientNet-B0 (Tan and Le 2019). Our method boosts
the performance of original ordinal loss significantly (3%
to 8% for different backbones). Especially, we outperform
the single-model state-of-the-art, FSANet (Yang et al. 2019),
with the gain of 3.7%, by employing the same backbone.
The gain is further improved to 14.4% with a more powerful
backbone, EfficientNet-B0.

We give an analysis on why the performance drops when
we use ordinal loss on HopeNet backbone. We guess the rea-
son is that the feature dimension is high in HopeNet, which
is 2048. High feature dimension means complex hyperplane
in ordinal loss, which is difficult to optimize. The feature di-
mension is 48 in both FSANet and Efficient-B0 backbones
(the 16-dim features from 3 stages are concatenated after
capsule layer proposed in FSANet), which is more friendly
for ordinal loss and our proposed method.

Tab. 1b shows the age estimation results on MORPH
dataset. The accuracy comparable to state of the art is
achieved with ordinal loss, demonstrating its applicability
for regression problems. And our method can further im-
prove the ordinal loss, with the error reduction of 4.7%, to
set up new state of the art with the gain of 2.2%.

Tab. 1c shows the gaze estimation results on MPII dataset.
Our method improves 4.7% over ordinal loss and per-
forms the best. Also note that some reference methods em-
ployed additional information such as two-eye input (Fis-

cher, Jin Chang, and Demiris 2018) and additional gazemap
supervision (Park, Spurr, and Hilliges 2018).

Tab. 1d shows the gaze estimation results on GazeCapture
dataset. Our method improves 3.9% over ordinal loss. As
TAT (Guo et al. 2019) is a training scheme which is compat-
ible with our method, we employ our loss term in the TAT
training scheme, to set up the new state of the art.

We show the output values of the classifiers, i.e. wT
nx +

bn, n = 0, 1 · · ·N − 1 in Fig. 2. The output values are not
strictly in order using ordinal loss. Our results are nearly
in order, which demonstrates that the learned feature is dis-
criminative.

Output values of ordinal loss                                           Output values of our method

0       2       4       6       8      10     12     14 0       2       4       6       8      10     12     14
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Ordinal classifier number Ordinal classifier number
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Figure 2: Output values of the classifier.(a) is the ordinal
output values of phi angle from a sample in MPII dataset.
They are not strictly in order. (b) is the output values of
our method from the same sample. They are nearly in order.
Please zoom in to view clearly.

Analysis of Fisher Criterion
The proposed order regularization enhances the Fisher cri-
terion in the feature space along semantic dimension. Ide-
ally, in age estimation task, feature distance between sam-
ples with age 3 and age 10 will be larger than the feature
distance between samples with age 3 and age 5, because the
semantics distance is larger in the first case. If the Fisher cri-
terion between age 3 and age 5 is larger than that between
age 3 and age 10, the feature distribution loses the semantic
property. Thus the feature is more likely to be misclassified
by other category’s decision plane, as shown in Fig. 1-(b).
To solve this issue, our method maintains the feature’s se-
mantic property by constraining the plane nearly parallel and
thus enlarging the distance between the feature spaces along
the semantic dimension. Feature distance increases gradu-
ally and Fisher criterion becomes larger for the regression
values with more gap, as shown in Fig. 1-(d). Therefore, the
proposed order regularization enlarges discrimination in the
feature space along semantic dimension.

Ablation Study
Analysis on Variant Realizations of Similar-Weights
Constraint. In Eq. 6 we allow small variation for the L2

norm of the weights, whose necessity is shown in Tab. 2. The
methods in “Equal ‖w‖2” column means that the L2 norm of
all weights are the same, which includes two choices, fixed
to 1.0 or equal to a learnable value S. The methods in “Dif-
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Method Yaw(◦) Pitch(◦) Roll(◦) MAE(◦)

HopeNet (α = 1) (Ruiz, Chong, and Rehg 2018) 4.81 6.61 3.27 4.90
HopeNet + Ordinal 5.51 7.56 3.68 5.59

HopeNet + Ours: gain 8% 4.96 6.90 3.54 5.13
FSA (1×1) (Yang et al. 2019) 4.78 6.24 3.31 4.31

FSA + Ordinal 4.12 5.26 3.50 4.29
FSA + Ours: gain 3% 3.97 4.87 3.62 4.15

EfficientNet-B0(Tan and Le 2019) + Ordinal 3.88 4.50 3.23 3.87
EfficientNet-B0 + Ours: gain 5% 3.68 4.36 3.02 3.69

(a) Head pose estimation results with 300W-LP/BIWI protocol. The performance gain vs. SOTA is 14.4%.

Method Multi-Task
(Han et al. 2017)

MV
(Pan et al. 2018)

soft-ranking
(Zeng et al. 2019) MV+Ordinal Ours: gain 4.7%

Err (years) 3.0 2.79 2.71 2.78 2.65

(b) Age estimation results on MORPH dataset. The performance gain vs. SOTA is 2.2%.

Method Err (◦)

MPII (Zhang et al. 2015) 6.3
GazeNet (Zhang et al. 2019) 5.5

RT-gene (1 model) (Fischer, Jin Chang, and Demiris 2018) 4.8
Pict-Gaze (Park, Spurr, and Hilliges 2018) 4.56

MeNet (Xiong, Kim, and Singh 2019) 4.9
RT-gene + Ordinal 4.71
Ours: gain 4.7% 4.49

(c) Gaze estimation results on MPII dataset. The performance gain vs. SOTA (RT-gene, single model) is 6.5%. Note that Pict-Gaze (Park,
Spurr, and Hilliges 2018) employed additional supervision from gazemap, so it is unfair for direct performance comparison with other
methods. However, we still outperform it.

Method iTracker (Krafka et al. 2016) TAT (Guo et al. 2019) Ordinal Ours: gain 3.9% Ours+TAT

Err (cm.) 1.86 1.73 1.80 1.73 1.71

(d) Gaze estimation results on GazeCapture dataset. The performance gain vs. SOTA is 1.2%.

Table 1: Experimental results on four datasets: 300W-LP/BIWI, MORPH, MPII, and GazeCapture. The performance gain of
our method over original ordinal loss and the gain over state of the art (SOTA) are both shown. Note that we simply update the
loss term on the reference work to achieve such gain, without elaborate tuning for each specific task.

Setting Equal ‖w‖2 Different ‖w‖2
‖w‖2=1.0(fixed) ‖w‖2= S(learnable) αvar = 0.0 αvar = Best Setting

MPII Err (◦) 4.69 4.61 4.74 4.49 (αvar = 0.2)
GazeCapture Err (cm.) 1.79 1.75 1.80 1.73 (αvar = 0.5)

Table 2: Comparison of variant realizations of similar-weights constraint. The column “Equal ‖w‖2” means that the weight
norms are the same, including two choices of fixed and learnable value. The column “Different ‖w‖2” means that the weight
norms are different, including no-variation-constraint, denoted as “αvar = 0”, and our best setting on respective dataset.

ferent ‖w‖2” column means our method with different hyper
parameter αvar.

All the results in “Equal ‖w‖2” column are worse than
that in “Different ‖w‖2” with the best settings. Specifically,
the results from “‖w‖2 = 1.0 (fixed)” are worse than that
from the learnable setting, possibly because the “‖w‖2 =
S (learnable)” realization allows the feature scale fit to the
data. However, allowing variation for the weight norm, plus
the punishment on too large variation with the V ar(·) term
in Eq. 6, gives the best performance. Note that the “Differ-

ent ‖w‖2, αvar = 0.0” realization, which means that there is
no constraint on weight norm variation, performs the worst.
In this situation there is no constraint on L2 norm of the
weights, which leads to the weights are trained to find an
amplitude rather than the direction. In summary, the weight
norm variation should be both allowed and restricted.

Analysis on Variant Realizations of Differential-Bias
Constraint. In differential-bias constraint, we introduce the
upper bound mmax in Eq. 7, and propose a new bias
parametrization in Eq. 9. Their benefits are verified in Tab. 3.
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(a) Bias of “φ” (vertical angle) on MPII.

-5        0          5         10        15       20       25       30
Ordinal classifier number

-5        0          5         10       15       20        25       30

4

2

0

-2

-4

10

8

6

4

2

0

-2
-4

-6
-8

(b) Bias of “y” (vertical offset) on GazeCapture.

Figure 3: Learned bias values with different realizations.
“storing b” means the traditional realization and “storing
∆b” means our realization in Eq. 9. For both datasets the
bias values in the middle lose distinguishing ability with
“storing b” method, which verifies the bias elimination prob-
lem mentioned in Eq. 8. This bias elimination problem may
be the reason that the performance of “storing b” is worse
than ours, as shown in Tab. 3. Please zoom in to view clearly.

Setting storing b storing ∆b
w/o mmax Ours

MPII Err (◦) 4.57 4.57 4.49
GazeCapture Err (cm.) 1.81 1.76 1.73

Table 3: Comparison of variant realizations of differential-
bias constraint. “storing b” means the traditional realiza-
tion and “storing ∆b” means our realization in Eq. 9. “w/o
mmax” means Eq. 7 without the mmax term.

The “storing b” means the traditional implementation which
stores bias values directly. The “storing ∆b” means our real-
ization in Eq. 9. The column “w/ommax” means the method
obtained by removing the mmax term in Eq. 7. The results
in Tab. 3 shows that our realization performs the best.

Besides that, Fig. 3 verifies the bias elimination problem
in Eq. 8. The bias in the middle has little distinguishing abil-
ity in the “storing b” figures on both MPII and GazeCapture
datasets. We think that this is the reason why “storing b”
performs worse than “storing ∆b”.

In summary, we show that besides the lower bound, i.e.
mmin, who gives a guarantee to make the bias in order, the
upper bound, i.e. mmax, is also valuable. In addition, our
new scheme for bias parametrization, as described in Eq. 9,
is advantageous over the traditional bias implementation.

Comparison with Variant Methods. In Section “Discus-
sion”, we argue that both weight and bias constraints are
necessary for making the classifiers in order. In Tab. 4, we

Method B.Only W.Only Comb. Ours
MPII Err (◦) 4.66 4.60 4.64 4.49

GazeCapture Err (cm.) 1.82 1.75 1.80 1.73

Table 4: Comparison with variant methods defined in Sec-
tion “Discussion”.

will verify it with the result comparison to the variant meth-
ods defined in “Discussion”. The results of “B.Only” are
the worst on both MPII and GazeCapture datasets, which
means that allowing some variation for the weights are
important to learn distinguishing feature. The results of
“W.Only” are worse than ours, which means that depending
on only weights to make space between decision planes is
not enough for good feature. The results of “Comb.” are also
worse than ours. In “Comb.”, weights and bias are optimized
together in a combined form, without the separate consid-
eration like our Lossplane and Loss∆Bias, and it is hard to
converge to a good result. In summary, our proposed similar-
weights and differential-bias constraints are both necessary,
and they work together for discriminative feature learning.

Analysis of the Running Time

Since an additional order regularization is only added on the
last fully connection layer, there is no much additional time
cost in the training phase. We report the following results in
the head pose estimation experiments of Tab. 1a as an exam-
ple. The output dimension of the fully connection layer is 66
for each of the roll, pitch and yaw angles. Experiments are
conducted on a K80 GPU server, with single GPU config-
uration. For the time cost of one epoch, our method costs a
little more time (less than one minute) than the original ordi-
nal loss. For FSA backbone, ours vs. ordinal is 5.36 minutes
vs. 4.73 minutes, +0.63 minutes (13%); and for EfficientNet
backbone, ours vs. ordinal is 22.21 minutes vs. 21.35 min-
utes, +0.86 minutes (4%). Note that our method has the same
inference algorithm as the original ordinal loss.

Conclusion

In this paper, we revisit the ordinal loss, and find its weak
point, i.e. implicit order constraint leading to the invalid or-
der of the outputs. It causes the network to learn separa-
ble feature rather than discriminative feature. To solve this
issue, we propose an order regularization on ordinal loss.
It consists of two parts, i.e. similar-weights constraint and
differential-bias constraint. Multiple variant realizations are
discussed and comparison experiments are conducted to ver-
ify its novelty and effectiveness. The proposed method im-
proves the interpretability of the classifier and the discrim-
ination power of the feature, and boosts the performance
on various regression problems such as head pose, age and
gaze estimation. Especially, we outperform the state of the
art methods on all these tasks. Note that we simply update
the loss term on the reference work to achieve such gain,
without elaborate tuning for each specific task.
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