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Abstract

Mail privacy protection aims to prevent unauthorized access
to hidden content within an envelope since normal paper en-
velopes are not as safe as we think. In this paper, for the first
time, we show that with a well designed deep learning model,
the hidden content may be largely recovered without open-
ing the envelope. We start by modeling deep learning-based
privacy attacks on physical mail content as learning the map-
ping from the camera-captured envelope front face image to
the hidden content, then we explicitly model the mapping as
a combination of perspective transformation, image dehaz-
ing and denoising using a deep convolutional neural network,
named Neural-STE (See-Through-Envelope). We show ex-
perimentally that hidden content details, such as texture and
image structure, can be clearly recovered. Finally, our for-
mulation and model allow us to design envelopes that can
counter deep learning-based privacy attacks on physical mail.

Introduction
With the recent advances in optical devices and deep learn-
ing algorithms, traditional paper envelopes may not be as
safe as we think. For example, (Redo-Sanchez et al. 2016)
show that a closed book can be read through using terahertz
time-domain spectroscopy; and imaging through scattering
media methods (Xin et al. 2019; Satat et al. 2017; Popoff
et al. 2010a,b; Kim et al. 2015; Drémeau et al. 2015; Feng
et al. 1988; Freund, Rosenbluh, and Feng 1988; Katz, Small,
and Silberberg 2012; Katz et al. 2014; Bertolotti et al. 2012;
Judkewitz et al. 2015; Yoon et al. 2020) can recover the hid-
den content behind a volume of refractive media, such as
ground glass and human tissue. These methods may be ex-
tended and applied to attack sealed physical mail.

In this paper, we show that with a carefully designed deep
learning model and sampled images captured in a controlled
lab environment (see Fig. 1), the hidden content within the
envelope such as the texture and image structure can be
recovered without opening it. We start by formulating pri-
vacy attacks on physical mail as learning the mapping from
the camera-captured envelope image to the hidden content,
then we decompose this mapping into a combination of
perspective transformation, image dehazing (He, Sun, and
Tang 2010; Ren et al. 2016) and deblurring (Ren et al.
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2019; Pan et al. 2020). Afterwards, we design three learnable
CNN modules to model the three subprocesses. By studying
why and how sealed paper mail privacy is subject to deep
learning-based attacks, we show that our model can be used
to test whether a paper envelope is safe against such attacks
and to design safer envelopes in the future.

For the deep learning-based attacks part, to account for
perspective transformations in camera image formation, we
use WarpingNet, a module similar to a spatial transformer
network (STN) (Jaderberg et al. 2015), to warp the camera-
captured envelope front face image to the canonical camera
frontal view (aligned with the ground truth hidden content).
Then, we extend the traditional dehazing formulation (He,
Sun, and Tang 2010; Ren et al. 2016) to account for the pa-
per envelope’s blur operation, transmittance and surface re-
flectance under the environment light, such that the camera-
captured image is a linear combination of the radiance of
blurred hidden content, the transmittance of the paper enve-
lope and the reflected light of the surface. Finally, we incor-
porate such formulation into a deep neural network and ex-
plicitly infer these essential intermediate components using
respective CNN modules (i.e., WarpingNet, DehazingNet
and RefineNet). This model is trained using sample image
pairs of the camera-captured envelope front face (with a hid-
den printed paper in it) and the ground truth of the printed
pattern. In order to counter hypothetical deep learning-based
attacks, we first use our model to test the privacy protection
ability of an envelope, and then leverage the envelope prop-
erties learned by our attack model to design envelopes that
are safe against deep learning-based attacks.

Our contributions can be summarized as follows:
• The proposed Neural-STE is the first to model deep

learning-based privacy attacks on physical mail.
• Neural-STE is non-trivially designed as a combination of

perspective transformation, image dehazing and deblur-
ring.

• Neural-STE can be used to test the privacy-preserving
properties of an envelope, and to design envelopes that
are safe against deep learning-based attacks.

• We propose the first benchmark for modeling privacy
attacks on physical mail. The source code, benchmark
dataset and experimental results are publicly available at
https://github.com/BingyaoHuang/Neural-STE.
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Related Work
Our work is most related to (Redo-Sanchez et al. 2016) that
reads through a closed book using terahertz time-domain
spectroscopy. The difference is that we aim to model deep
learning-based privacy attacks on physical mail without spe-
cialized devices such as a terahertz time-domain system.
Moreover, we leverage such an attack model to test enve-
lope safety, and to design safer envelopes. The next related
work is (Satat et al. 2017) that classifies hidden contents be-
hind the scattering media from the single photon avalanche
photodiode (SPAD) captured speckle patterns. It is differ-
ent from our work since we aim to recover the hidden im-
age rather than classify it. Our work is the first to focus
on modeling privacy attacks on physical mail, and to use
such a model for mail privacy protection. Another class of
related work is imaging through scattering media that aims
to recover hidden contents behind a scattering volume. Fi-
nally, our learning-based attack method also relates to image
dehazing and deblurring as our deep learning-based attack
model incorporates the two formulations in network design.
Imaging through scattering media In this paper, we only
review studies on occluding scattering media (Yoon et al.
2020), since they relate most to our work. Semi-transparent
media such as weather, water, etc., are beyond this paper’s
scope. Imaging through scattering media can be grouped
into traditional optics-based and learning-based methods.
Traditional methods use time-resolved measurements (Xin
et al. 2019; Satat et al. 2017), transmission matrices (Popoff
et al. 2010a,b; Kim et al. 2015; Drémeau et al. 2015) or op-
tical memory effects (Feng et al. 1988; Freund, Rosenbluh,
and Feng 1988; Katz, Small, and Silberberg 2012; Katz et al.
2014; Bertolotti et al. 2012; Judkewitz et al. 2015) to recon-
struct the hidden scene behind the scattering media. A com-
prehensive review can be found in (Yoon et al. 2020).

Rather than explicitly modeling the light scattering pro-
cess, learning-based methods (Horisaki, Takagi, and Tanida
2016; Lyu et al. 2019; Li et al. 2018; Sun, Xia, and Kamilov
2018; Guo et al. 2020; Satat et al. 2017; Li, Xue, and Tian
2018) address this issue as an image-to-image translation
problem, i.e., translating the sensor-captured speckle pat-
terns to the appearance of the real hidden contents (or pro-
jected virtual objects). The first work of this kind (Horisaki,
Takagi, and Tanida 2016) uses pixel-wise support vector re-
gression (SVR) to recover the projected faces behind the
scattering media. However, the pixel-wise SVR overfits on
faces such that when the testing objects are non-faces the
predictions still show strong face patterns. Instead of as-
suming pixel-wise mapping, deep CNN-based methods (Lyu
et al. 2019; Li et al. 2018; Sun, Xia, and Kamilov 2018; Guo
et al. 2020; Satat et al. 2017; Li, Xue, and Tian 2018) show
better accuracy and generalization.

It is worth noting that our problem is different from imag-
ing through scattering media methods, because sealed pieces
of physical mail are different from regular scattering me-
dia such as ground glass and human tissue. In addition: 1)
imaging through scattering media methods aim to recover
accurately the optical properties of a refractive media vol-
ume and the hidden contents behind it, while in our setting
we focus on recovering empirical properties of paper en-

velopes and the hidden contents inside them. Moreover, we
show how these empirical properties can be used for mail
privacy protection; 2) they usually require specialized op-
tical devices such as such as lasers, projectors, beam split-
ters, polarizers and SPAD, while we only use a DSLR cam-
era and controllable room lights; and 3) as for data collec-
tion they use an additional projector to project various sam-
pling patterns onto the back of the scattering media to create
sample images, and the model input/output image are geo-
metrically registered, while we manually replace the hidden
content within the paper envelopes. In our experiment, we
show that directly applying a deep learning-based imaging
through scattering media method to attack a piece of physi-
cal mail may not work well.
Image dehazing Image dehazing (He, Sun, and Tang 2010;
Ren et al. 2016; Pan et al. 2020) aims to remove haze and
reveal the hidden scene radiance. Due to haze weak scatter-
ing properties, blur can be ignored and the camera-captured
image I can be formulated as a linear combination of the
haze-free scene radiance J , the transmission of the haze t
and the atmospheric light A:

I(x) = J(x)t(x) + A(1− t(x)) (1)

Obviously the equation above cannot be applied to the phys-
ical mail attack problem because: (1) Eq. 1 assumes that
each pixel x is independent from other pixel radiance val-
ues, which only holds when blur is weak. However, un-
like haze, paper envelopes can strongly blur the scene ra-
diance, such that each pixel’s radiance is a linear combi-
nation (blur/convolution) of its neighboring radiance values
(see Fig. 1). (2) In Eq. 1, the transmittance t is assumed uni-
form across RGB channels and the atmospheric light A is
assumed uniform and spatially invariant, but for colored and
textured materials with spatially variant microstructures (Pa-
pas, de Mesa, and Jensen 2014), apparently t and A are spa-
tially nonuniform across RGB channels. Such complexity
makes explicitly solving for t and A impossible; instead we
can infer their empirical versions from sample images using
deep learning-based methods.
Image deblurring In general, image blurring can be for-
mulated as:

I = J ⊗ hx + n (2)
where I is a camera-captured blurred image, J is the latent
clean image, hx is an unknown spatially variant blur kernel,
⊗ is the convolution operator and n is the additive noise.
This problem can be solved by imposing certain priors on
the blurring kernel and noise, such as assuming a known hx
(Richardson 1972; Lucy 1974; Gonzales and Woods 2002),
the sparsity of image gradients (Chan and Wong 1998; Fer-
gus et al. 2006; Levin et al. 2009) and the dark channel prior
(Pan et al. 2016). Recently, deep image priors (Ulyanov,
Vedaldi, and Lempitsky 2018; Gandelsman, Shocher, and
Irani 2019) and GAN-based models (Pan et al. 2020; Kupyn
et al. 2018) show clear advantages over previous works. In
this paper, inspired by the state-of-the-art learning-based ap-
proaches (Ulyanov, Vedaldi, and Lempitsky 2018; Gandels-
man, Shocher, and Irani 2019; Pan et al. 2020; Kupyn et al.
2018), we show that it is possible to implicitly solve deblur-
ring in our attack model.
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Figure 1: System setup and empirical image formation model. A color printed paper is put within the envelope (distance
exaggerated for illustration). Deep learning-based privacy attacks aim to recover the hidden printed paper J from the camera-
captured envelope front surface image I . Our formulation models I as a linear combination of the incident environment light
L, blurred transmitted paper radiance J and the envelope’s front face reflected radiance A. We simplify inter-reflections and
subsurface scattering and absorb them in A.

Method
Problem Formulation
Our setup is shown in Fig. 1, where a hidden printed paper
is placed within an envelope. Following the notation of (He,
Sun, and Tang 2010), denote the camera-captured image as
I , the radiance of the hidden printed paper that we aim to
recover as J , and the transmittance of the envelope’s front
face as t. Let A be the reflected (not transmitted) radiance
of the envelope’s front face under normal environment light
(i.e., with room lights on).

Extending Eq. 1 and Eq. 2 to our problem, the radiance of
the camera-captured image I at pixel x is given by:

I(x) = L
∑

x′∈N (x)

ωiJ(x
′)t(x) + A(x)

= LJ ⊗ hxt(x) + A(x)

(3)

where L is the intensity of the incident environment light on
the back face of the hidden content and N (x) is a neigh-
borhood of x and {J(x′)|x′ ∈ N (x)} is a patch of J cen-
tered at x. The transmitted radiance at x is the weighted sum
of all radiance values above the blue hemisphere of x, i.e.,
L
∑
x′∈N (x) ωiJ(x

′) (Fig. 1). This operation can be approx-
imated by convolving J with a spatially variant convolution
kernel hx, i.e., LJ ⊗ hx, where ⊗ is the convolution oper-
ator. Note that the blurring kernel hx is also related to the
distance between the hidden content and the envelope, e.g.,
the size of the blurring kernel hx increases as the distance in-
creases. We assume that L is a constant scalar and it can be
absorbed in t(x). Then, the camera-captured radiance is the
sum of the transmitted radiance J⊗hxt(x) and the reflected
radiance A(x) of the envelope.

Clearly the problem in Eq. 3 is highly ill-posed, since the
unknown A, t and hx are hard to obtain. One intuition is to
directly estimate J from sample image pairs like (I, J) us-
ing an image-to-image translation model (Guo et al. 2020;
Isola et al. 2017; Wang et al. 2018), however, such general

models are not designed for this problem and tend to ob-
tain suboptimal solutions (see Fig. 3 and Table 1). In this
paper, for privacy attacks on physical mail, we decompose
this problem as dehazing, deblurring and denoising. First,
we estimate the unknownsA, t using a CNN with some con-
straints, then we explicitly compute the blurred radiance by
J ⊗ hx = (I − A)/t as inspired by (He, Sun, and Tang
2010). Finally, we recover the hidden printed paper radiance
J using an image refinement network to deblur and denoise
and to improve color and texture details.

One unaddressed challenge of mail privacy attack is that
the above operations assume that the camera-captured image
is aligned with the ground truth image as shown in Fig. 1.
However, in practice the hidden content J is real printed pa-
per, manually placed within the envelope, thus there is no
guarantee that it is aligned with the camera canonical frontal
view. Although some CNN-based image-to-image transla-
tion models, e.g., Pix2pix (Isola et al. 2017) can reconstruct
both geometry and colors without explicitly modeling the
geometry, the output may be subject to a suboptimal solu-
tion (color and texture detail loss) when the training samples
are limited, as shown in Fig. 3 columns 2-6 (Fig. 3).

To address this issue, we apply a differentiable image
warping module to automatically align the input and out-
put images. As shown in our setup Fig. 1, since for mail,
both the envelope and the hidden printed paper are approxi-
mately planar, a homography is sufficient to correct the geo-
metric distortions. Thus, we explicitly model the perspective
transformation by an 8-DoF homography. In summary, our
Neural-STE consists of three modules that infer the follow-
ing intermediate results, respectively:

A = FA(G(T (I)))
t = Ft(G(T (I)))
Ĵ = φ((T (I)−A)/t)

(4)

where T is an STN-like (Jaderberg et al. 2015) homogra-
phy warping network (Fig. 2) that warps the input image
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Figure 2: Network architecture of our Neural-STE. It consists of three modules: WarpingNet T , DehazingNet (G,FA,Ft) and
RefineNet φ. These modules together with the losses allow us to utilize our image formation model to effectively model privacy
attacks on physical mail problem.

to the camera canonical frontal view; G is a feature extrac-
tion function, and FA and Ft are two modules that infer the
envelope’s transmittance t and its surface reflected light A,
respectively. φ is an image refinement function which in-
cludes image deblurring, denoising and color and texture re-
finement, for conciseness we use image “refinement” in the
rest of the paper.

Network Architecture
Given the formulation in Eq. 4, we design our Neural-STE to
have three modules (Fig. 2): an STN-based (Jaderberg et al.
2015) WarpingNet that warps the camera-captured image
to the camera canonical frontal view (i.e., aligned with the
ground truth hidden image J); an encoder-decoder backbone
network DehazingNet to infer transmittance t and surface
reflected light A, and compute the coarse dehazed image
(T (I)−A)/t; and a RefineNet to improve texture and color
details of the coarse dehazed image.
WarpingNet (T ) is inspired by STN (Jaderberg et al. 2015)
and consists of two convolutional layers, two max pooling
layers and two fully connected layers. The module firstly
infers a 3 × 3 homography H from the input image, then
warps the input image using this predicted homography by
T (I) = imwarp(I,H)1, such that the warped image T (I)
is roughly aligned with the ground truth hidden image J
(Fig. 2). Our experimental comparisons show that for our
problem, directly learning this geometric transformation is
hard if not explicitly modeled as a homography (see Ours
w/o warp in Fig. 3 and Table 1).
DehazingNet (G, Ft,FA) consists of an encoder-decoder
backbone network G and two light weight subnets Ft and
FA, where the backbone network extracts a 64-dimensional
feature map from the input image. Then, we design Ft as
a deconvolutional layer and a convolutional layer followed
by a sigmoid activation layer, which predicts the envelope’s
transmittance t. Afterwards, we design FA as two convo-
lutional layers followed by a deconvolutional layer and a

1Taking MATLAB’s imwarp as an example.

sigmoid activation layer. Similarly, it predicts the envelope
reflected light A. Finally the coarse hidden printed paper ra-
diance is computed by Jcoarse = (T (I)−A)/t.
RefineNet (φ). According to our formulation in Eq. 3, recov-
ering the hidden content within a physical mail is more than
just dehazing; we need to account for other deformations
such as blurring and noise. Note that instead of explicitly es-
timating the blur kernel, inspired by the success of recently
proposed learning-based approaches (Ulyanov, Vedaldi, and
Lempitsky 2018; Gandelsman, Shocher, and Irani 2019; Pan
et al. 2020; Kupyn et al. 2018), we design RefineNet as a
CNN with a skip connection (He et al. 2016), such that the
color and texture details can be learned as a residual image.
In Fig. 4, comparing the refined image Ĵ = φ(Jcoarse) with
the coarse image Jcoarse, we see clearly improved details.
Additional constraints. With the three parameterized mod-
ules, training image pairs and a proper loss function L, the
network parameters can be learned by:

{T ,G,Ft,FA, φ}θ =
argminL(Ĵ = φ((T (I)−A)/t), J)

(5)

However, directly training this network may lead to a sub-
optimal solution and the output images may contain strange
color or lack color (the 8th-9th columns of Fig. 3). In our
setup, we have observed that the surface reflected light
A dominates the warped camera-capture image T (I) (i.e.,
contributes more light than the transmitted light) due to
the ambient light, thus we assume that A should look like
T (I). Then we impose this constraint as a pixel-wise L2

loss ‖T (I)−A‖22. Moreover, the computed coarse result
Jcoarse = (T (I) − A)/t should look like the ground truth
J , except for some differences in color and texture details,
for which we introduce a pixel-wise L2 loss ‖J − Jcoarse‖22.

Another constraint is that the paper envelopes are not fully
opaque (t 6≈ 0), otherwise not only the problem is meaning-
less, but also Eq. 4 may be divided by zero. Thus, we clip
the transmittance t to [0.01, 1].
Loss function. As shown in Eq. 6, our loss function consists
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Model PSNR↑ RMSE↓ SSIM↑ Model (degraded) PSNR↑ RMSE↓ SSIM↑
Cam-captured 8.2767 0.6682 0.2695 Ours “black box” 14.1106 0.3442 0.3914
PSDNet (Guo et al. 2020) 12.8952 0.3981 0.3717 Ours w/o refine 11.4025 0.4696 0.3034
Pix2pix (Isola et al. 2017) 12.2620 0.4238 0.3409 Ours w/o warp 14.3415 0.3345 0.4125
Pix2pixHD (Wang et al. 2018) 12.0964 0.4303 0.3193 Ours w/o A con. 14.7582 0.3239 0.4421
Neural-STE (ours) 15.0275 0.3127 0.4449 Ours w/o J con. 14.9082 0.3151 0.4460

Table 1: Quantitative comparison. Results are averaged over three setups, each containing 50 testing images. “Cam-captured”
is the similarity between the camera-captured envelope front face and the ground truth. See supplementary for separate mea-
surements for each setup.

of three terms, an image reconstruction loss Lrecon (Eq. 7),
i.e., the pixel-wise L1 + SSIM loss (Zhao et al. 2017) be-
tween the predicted hidden printed paper content image Ĵ
and the ground truth J ; and the two constraint-based losses
above. Then our deep learning-based attack model is trained
using Eq. 5 with the loss below.

L = Lrecon(J, Ĵ) + ‖J−Jcoarse‖22 + 0.1 ‖A−T (I)‖22 (6)

Lrecon(J, Ĵ) = |J − Ĵ |+ 1− SSIM(J, Ĵ) (7)

System configuration and implementation. The proposed
setup consists of a Canon 6D camera with the resolution set
to 320×240. We color print 500 colorful textured images at
US letter size as ground truth hidden contents. Unlike imag-
ing through scattering media, for each capture, we manually
replace the printed paper within the envelopes and this op-
eration requires touching the envelopes, thus the shape and
pose of the hidden printed paper and the envelopes are in-
evitably changed each time, making the hidden content re-
covery more difficult. The distance between the camera and
the envelope is around one meter. The only light sources are
various room lights. The collected data is available as our
Neural-STE dataset. We implement Neural-STE using Py-
Torch (Paszke et al. 2017) and Kornia (Riba et al. 2019),
and optimize it using the Adam optimizer (Kingma and Ba
2015). The initial learning rate and penalty factor are set to
10−3 and 5 ∗ 10−4, respectively. Then, we train the model
for 4,000 iterations on three Nvidia GeForce 1080Ti GPUs
with a batch size of 16, taking about 18 minutes to train.

Experimental Evaluations
Privacy Attacks on Physical Mail
In this section, we quantitatively and qualitatively evaluate
and compare the proposed Neural-STE with PSDNet (Guo
et al. 2020), a learning-based image through scattering me-
dia method, Pix2pix (Isola et al. 2017), a general GAN-
based image-to-image translation model, Pix2pixHD (Wang
et al. 2018), an improved version of Pix2pix, and degraded
versions of the proposed method.
Evaluation benchmark. We prepared two different sets of
envelopes and three different setups, which were configured
to cover three levels of difficulty. As shown in Fig. 3, the red
box shows a thin kraft envelope imaged under bright room
light. The green box shows a thick kraft envelope imaged
under bright room light; and the blue box shows a thick kraft

envelope under normal room light. For each setup, we split
the captured 500 image pairs into 450 training samples and
50 testing samples. Then, the hidden contents Ĵ recovered
by different methods are compared with the ground truth J
using PSNR, RMSE and SSIM (Wang et al. 2004).

Since our method is the first to model privacy attacks on
physical mail, there is no previous work to compare with.
Instead, we compare with PSDNet (Guo et al. 2020), an im-
age through scattering media method. The mapping from
the camera-captured image to the hidden content radiance is
directly learned without an explicit image formation model
like us. While the original PSDNet is designed to only work
for grayscale images, we extend it to RGB by increasing the
input and output channels. As shown in Fig. 3, PSDNet is
unable to recover the hidden contents on the hardest setup
(the blue box). Please see the supplementary material for
comparisons on grayscale images.

We then compare with a GAN-based general image-to-
image translation network Pix2pix (Isola et al. 2017) and its
improved version Pix2pixHD (Wang et al. 2018). We train
them for 23,000 iterations with a batch size of one. Note
that Pix2pix and Pix2pixHD have more parameters than our
model, yet they cannot generate satisfactory results as shown
in Fig. 3 and Table 1, because they are designed for general
image-to-image translation with a relatively large training
dataset (both number and diversity), and they may not work
well for the privacy attacks on physical mail setting when
the training data is limited.
Ablation study. To show the effectiveness of our formu-
lation and network architecture, we compare the proposed
Neural-STE with its degraded versions, each with a certain
module or constraint removed. For example, Ours “black
box” is a naive UNet-like (Ronneberger, Fischer, and Brox
2015) model without WarpingNet T , DehazingNet2 Ft,FA
or RefineNet φ and the camera-captured image is resized
to 256×256 then input to the backbone network G. More-
over, rather than explicitly computing the dehazed and re-
fined image using Eq. 4, the output image is predicted by a
three-channel convolutional layer concatenated to the back-
bone network. Ours w/o warp is Neural-STE without Warp-
ingNet T , and the camera-captured image is also resized to
256×256 before fed to the backbone network G. Ours w/o
refine is the same as Neural-STE but with RefineNet φ re-

2Note that Ft and FA are concurrently used to dehaze the im-
age, thus we disable them together for this degraded version.
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Figure 3: Qualitative comparison. We show results from three different setups, with the easiest in red and the hardest in blue.
We show two examples for each setup and the results of different methods are shown in the 2nd to 9th columns. The 1st column
are the camera-captured envelope front face I . The 2nd to 4th columns are PSDNet (Guo et al. 2020), Pix2pix (Isola et al. 2017)
and Pix2pixHD (Wang et al. 2018), respectively. The 5th to 9th columns are degraded versions of the proposed Neural-STE, as
described in Ablation study. Please see supplementary for larger versions of the images and more results.

moved. Ours w/o A con. and Ours w/o J con. are Neural-
STE without the constraints on A (i.e., 0.1 ‖A− T (I)‖22 in
Eq. 6), and J (i.e., ‖J − Jcoarse‖22 in Eq. 6), respectively.

The experimental comparisons in Table 1 and Fig. 3
clearly show that the proposed Neural-STE outperforms de-
graded versions that only model part of our image formation
process. For example, comparing the 2nd to the 6th columns
with the 7th to the 9th columns in Fig. 3, it is clear that ex-
plicitly modeling the perspective transformation is important
for this problem, because when the inferred image is aligned
to the ground truth (especially in the early training stages),
the model may focus on refining only the color and texture
details, which reduces the probability of falling into local
minima early on and improves convergence. Note that Ours
w/o refine has yellowish output because it cannot fully re-
move the envelope surface color. Ours w/o A con. and Ours
w/o J con. work well for the easiest envelope, but Ours w/o
J con. fails to recover hidden scene colors from the other two
harder envelopes, and Ours w/o A con. generates unwanted
bluish pattern for the hardest envelope.

We then show the intermediate results of Neural-STE in
Fig. 4. The red and the blue boxes are the easiest and the
hardest setups, respectively. The columns are, from left to

𝐼 𝒯(𝐼) 𝐴 𝑡 JJcoarse
^
J

Figure 4: Intermediate results of Neural-STE. See supple-
mentary for more images of the three setups.

right, the camera-captured image I , the WarpingNet warped
image T (I), the predicted reflected light A, the predicted
transmittance t, the coarse dehazed hidden content radi-
ance Jcoarse = (T (I) − A)/t, the final refined results (i.e.,
Ĵ = φ(Jcoarse)), and the ground truth hidden content J .
These empirical properties can then be used to design safer
envelopes that counters deep learning-based attacks below.
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Figure 5: Visualization of the simulated camera-captured
image when we tune the controllable parameters, i.e., the
size of the blur kernel hx, the surface reflected light A, the
environment lightL and the envelope’s transmittance t. Here
we show an easy setup so that the hidden content is recog-
nizable: as we tune each optical parameter from left to right,
the hidden content becomes harder to recognize.

Countering Privacy Attacks on Physical Mail
In this section, we show how to leverage our empirical image
formation model and our Neural-STE to design envelopes
that can defend mail privacy against deep learning-based at-
tacks. We conducted both simulated and real experiments.
Simulated experiments. We simulated camera-captured
images using our empirical image formation model in Eq. 3
and intermediate results of our attack method. The environ-
ment light L, the perspective transformationH , the blur ker-
nel size |hx|, the transmittance coefficient3 kt, the surface
reflected light coefficient kA were varied in simulation. In
addition, we added Gaussian white noise to the blurred im-
age and Poisson noise to the final camera-captured image.

Then, we simulated nine synthetic setups, i.e., for each
of the controllable parameters, we generated three varia-
tions. In Fig. 5, we show how each controllable parameter
affects appearances of the final simulated camera-captured
images. Afterwards, we applied our Neural-STE to the sim-
ulated dataset; an example result is shown in Fig. 6. See sup-
plementary for quantitative comparisons. We first applied
our Neural-STE to examine envelope security. For example,
if the envelope can be successfully attacked (as shown in
Fig. 6, Unsafe envelope), we redesign the envelope using
our empirical image formation model, until our Neural-STE
fails. In our experiment, we find that, safer envelopes can
be manufactured by using a material that has a more reflec-
tive surface (i.e., largerA); by increasing the envelope thick-
ness or using a material that absorbs more light (i.e., smaller
transmittance t); and by increasing the distance between the
hidden contents and the envelope (i.e., a larger blur kernel
hx). For example, in Fig. 6, Safe envelope has the following
properties: |hx| = 17, kA = 1.0, kt = 0.1.
Real experiments. We prepared a new real envelope and at-
tacked it with the proposed Neural-STE, as shown in Fig. 7,
Unsafe envelope. Then, according to the findings in simu-
lation results, we placed an additional paper layer in the en-
velope to reduce the transmittance t and to increase the blur

3Note that t and A are maps, here we use coefficients (scalars)
to control their strengths, e.g., kt ∗ t and kA ∗A.

Hidden sceneUnsafe envelope Safe envelope
Cam-captured Recovered Cam-captured Recovered

Figure 6: Countering hypothetical deep learning-based pri-
vacy attacks on simulated physical mail.

Hidden sceneUnsafe envelope Safe envelope
Cam-captured Recovered Cam-captured Recovered

Figure 7: Countering hypothetical deep learning-based pri-
vacy attacks on real physical mail.

kernel hx, and we named it Safe envelope. Afterwards, we
attacked it using Neural-STE, and clearly our method failed
to reveal the hidden contents within it.

Conclusion and Limitations
In this paper, we proposed the first deep learning-based
method, named Neural-STE for privacy attacks on physical
mail. Our method explicitly decomposes an empirical image
formation model into a combination of perspective trans-
formation, blurring, transmission and surface reflected light,
and then we non-trivially designed respective CNN modules
to learn these intermediate results. We proposed the first pri-
vacy attacks on physical mail benchmark and we expect it to
facilitate future work in this direction. Our experimental re-
sults on this benchmark clearly show that normal envelopes
are not as safe as we think. Finally, we leverage the empirical
image formation model and Neural-STE to design envelopes
that can counter such attacks.
Limitations. We have only tested our Neural-STE on kraft
envelopes and it may not work well on other materials with
much stronger scattering properties. Moreover, we have not
tested the method for privacy attacks on folded text, which is
much more challenging. Extending this method to (counter)
such attacks is definitely an interesting direction to explore.
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