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Abstract

Data mixing augmentation has proved effective in training
deep models. Recent methods mix labels mainly based on the
mixture proportion of image pixels. As the main discrimi-
native information of a fine-grained image usually resides in
subtle regions, methods along this line are prone to heavy la-
bel noise in fine-grained recognition. We propose in this paper
a novel scheme, termed as Semantically Proportional Mixing
(SnapMix), which exploits class activation map (CAM) to
lessen the label noise in augmenting fine-grained data. Snap-
Mix generates the target label for a mixed image by estimat-
ing its intrinsic semantic composition, and allows for asym-
metric mixing operations and ensures semantic correspon-
dence between synthetic images and target labels. Experi-
ments show that our method consistently outperforms exist-
ing mixed-based approaches on various datasets and under
different network depths. Furthermore, by incorporating the
mid-level features, the proposed SnapMix achieves top-level
performance, demonstrating its potential to serve as a solid
baseline for fine-grained recognition.

Introduction
Despite the remarkable success of deep neural networks (He
et al. 2016; Huang et al. 2017; Wang et al. 2019; Ma
et al. 2020; Wang et al. 2020), its overfitting problem per-
sists, particularly in encountering limited training data. Data
Augmentation methods can alleviate this by effectively ex-
ploiting existing data. Among them, mixing-based meth-
ods (Tokozume, Ushiku, and Harada 2018; Inoue 2018;
Zhang et al. 2018; Yun et al. 2019) have recently gained
increasing attention. These approaches generate new data
by blending images and fusing their labels according to
the statistics of mixed pixels. For instance, Mixup (Zhang
et al. 2018) combines images linearly and mix their tar-
gets using the same combination coefficients. CutMix (Yun
et al. 2019), on the other hand, cuts out one image area,
pastes it on another image, and mix their labels according
to the area proportion. By extending the training distribu-
tion, mixing-based techniques reduce memorizing data and
improve model generalization.

However, their superiority decreases with the increas-
ing risk of label noise in augmenting fine-grained data. In
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fine-grained object recognition, discriminative information
mainly lies in some small regions of images. Mixing labels
based on mixture pixel-based statistics such as area size,
therefore, tends to introduce severe label noise in this task.
In the example of Fig. 1, CutMix cuts out a small region
covering critical information about the label, in this case a
red shoulder and yellow wing bar of the red-winged black-
bird. The remaining part of the image, as a result, are left
with only much less informative image evidences, yet still
take up a high coefficient due to its large area size. This in-
dicates that mixing labels based on area proportion is not
able to effectively reflect intrinsic semantic composition of
the combined image, thereby deteriorating the data augmen-
tation effectiveness and confusing the model training.

In this paper, we propose a novel Semantically Pro-
portional Mixing (SnapMix) strategy to address this is-
sue. SnapMix exploits a class activation map (CAM) (Zhou
et al. 2016) to estimate the label composition of the mixed-
images. Specifically, by normalizing the CAM of each im-
age to sum to 1, we first obtain its Semantic Percent Map
(SPM) to quantify the relatedness percentage between each
pixel and the label, and then compute the semantic ratio of
any image region by summing values in the corresponding
area of the SPM. For an image composed of multiple areas
from multiple images, we can estimate its semantic com-
position through the semantic ratios corresponding to these
regions. Compared to methods based on statistics of mix-
ture pixels, our label mixing strategy incorporates neural ac-
tivations as prior knowledge to ensure the semantic corre-
spondence between the synthetic images and the generated
supervision signals.

Moreover, existing techniques rely on symmetrically
blending image regions, meaning that the selected areas to
be mixed are restricted to be complementary, and hence
limit the diversity of augmented data. By contrast, the pro-
posed approach enables asymmetric cut-and-paste opera-
tions, allowing us to incorporate various factors such as de-
formation and scale into the data augmentation to boost the
data diversity. The current label-mixing strategies are de-
signed based on the complementary principle. Thus they are
not suitable for the asymmetric operation that selects non-
complementary regions to mix.

To validate the proposed approach, we adopt various net-
work architectures (Resnet-18,34,50,101 (He et al. 2016)) as
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Figure 1: Comparison of Mixup, CutMix, and SnapMix. The figure gives an example where SnapMix’s generated label is
visually more consistent with the mixed image’s semantic structure comparing to CutMix and Mixup.

baseline models and compare our method with existing data
augmentation approaches on three fine-grained datasets. Re-
sults indicate that prior methods lead to unstable perfor-
mances, sometimes even harmful, when using shallow net-
work architecture. This can be in part explained by the fact
shallow neural networks are not able to well tackle label
noises, which significantly degrade data augmentation effec-
tiveness. The proposed method, on the other hand, consis-
tently outperforms compared methods on various datasets
and with different network depths. Furthermore, we show
that even a simple model can achieve comparable state-of-
the-art performance when applying our proposed data aug-
mentation. This indicates that our method can well serve as
a solid baseline for advancing fine-grained recognition.

Related Works
Fine-Grained Classification
Fine-grained recognition has been an active research area
in recent years. This task is more challenging than general
image classification (Liu and Tao 2016; Wang, Li, and Tao
2011; Yang et al. 2018; Yang et al. 2020b,a), as the criti-
cal information to distinguish categories usually lies in sub-
tle object parts. Part-based methods thereby, are extensively
explored to address the problem. Early works (Huang et al.
2016; Zhang et al. 2014; Xiao et al. 2015; Lin et al. 2015; Xu
et al. 2015, 2016) mainly rely on strongly supervised learn-
ing to localize object part for subsequent feature learning.
Due to part annotations are expensive to acquire, the later
methods (Zhang et al. 2016; Zheng et al. 2017; Sun et al.
2018; Zheng et al. 2019) attempts to find discriminative part
regions in a weakly supervised manner. For example, Zhang
et al. (Zhang et al. 2016) first picks distinctive filters and
then use them to learn part detectors through an iteratively
alternating strategy. MA-CNN (Zheng et al. 2017) obtains
part regions by clustering feature maps of intermediate con-
volutional layers, MAMC (Sun et al. 2018). In recent years,

fine-grained approaches have developed in the direction of
enforcing the neural networks to acquire rich information
(Yang et al. 2018; Ding et al. 2019; Chen et al. 2019; Zhang
et al. 2019). For instance, Zhang et al.,(Zhang et al. 2019)
progressively crop out discriminative regions to generate di-
versified data sets for training network experts. Chen et al.,
(Chen et al. 2019) destruct the images and then learn a re-
gion alignment network to restore the original spatial layout
of local regions. These works implicitly integrate data aug-
mentation practices into their methodologies, which relate
to our proposed method mostly.

However, our proposed method SnapMix differs from
them in two aspects. First, SnapMix is a pure data augmen-
tation based technique that does not require an extra compu-
tational process in the testing stage. Besides, our approach
builds on recent advances from the data mixing strategy. In
contrast, those methods are mainly based on conventional
data augmentation strategy, which typically processes a sin-
gle image and retains the original label.

Data Augmentation
Recent advances (Takahashi, Matsubara, and Uehara 2019;
Zhong et al. 2017; DeVries and Taylor 2017; Tokozume,
Ushiku, and Harada 2018; Inoue 2018; Zhang et al. 2018;
Yun et al. 2019) in data augmentation can be divided into
two groups: region-erasing based and data mixing. The for-
mer (Zhong et al. 2017; DeVries and Taylor 2017) erases
partial region of images in training, aiming to encourage the
neural networks to find more discriminative regions. The
typical method is CutOut that augments data by cutting a
rectangle region out of an image. The other line of meth-
ods is data mixing based (Tokozume, Ushiku, and Harada
2018; Inoue 2018; Zhang et al. 2018) that have recently
gained increasing attention in the field of image classifi-
cation. Compared with region-erasing augmentation, these
methods generate new data by combing multiple images and
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fusing their labels accordingly. Among those works, Zhang
et al., (Zhang et al. 2018) first proposed mixing data to ex-
tend the training distribution. Their proposed method termed
as MixUp, generated images by linearly combining images
and fusing their labels using the same coefficients. MixUp
showed its superiorities in handling corrupted targets and
improving model performance. Summers and Dineen (Sum-
mers and Dinneen 2019) further improved Mixup by intro-
ducing a more generalized form of data mixing that consid-
ered non-linear mixing operations. In very recent work, Yun
et al. proposed CutMix (Yun et al. 2019) that produces a new
image by cutting out one image patch and pasting to another
image. Similar to Mixup, the labels are also mixed but pro-
portionally to the area of the patches. By taking advantage
of both types of methods, CutMix showed impressive per-
formance in classification tasks and weakly-supervised lo-
calization tasks.

Our proposed method falls into the second category. How-
ever, it differs significantly from the previous techniques in
the way of mixing labels. Current mixing-data based ap-
proaches combine labels mainly depending on the statistic
of mixture pixels, such as the ratio of pixel number or inten-
sity values. In comparison, our method estimates the seman-
tic structure of a synthetic image by exploiting class activa-
tion maps. This new characteristic allows our approach to
augment fine-grained data without introducing severe label
noise. Another slight difference is that SnapMix blends im-
ages using asymmetric patches, resulting in better data ran-
domness and diversity than those using symmetric regions.

Semantically Proportional Mixing

Data augmentation has become an indispensable step for
training deep neural networks. The standard augmentation
methods mainly apply a composition of image preprocess-
ing techniques on an input image, such as flipping, rotations,
color jittering, and random cropping. Recent works demon-
strated the great potential of mixing-based techniques for
training deep models. Unlike standard practice, these meth-
ods generate new data by combining images and also mixing
the corresponding labels. In the following, we first provide
some notations used in this paper. We then briefly introduce
two representative mix-based approaches Mixup and Cut-
Mix. Next, we describe in detail our proposed method Snap-
Mix.

Notations

We use the following notations throughout this paper. The
original training data set {(Ii, yi)|i ∈ [0, 1, ..., N − 1]},
where Ii ∈ R3×W×H and yi refer to an input image and
the label respectively. Given a data pair ((Ia, ya), (Ib, yb))
and hyperpatemer α, mixing-based methods first draw a ran-
dom value λ from a beta distribution Beta(α, α). Then they
generate a new image Ĩ and two label weights ρa and ρb ac-
cording to λ. Here, ρa and ρb are corresponding to the label
ya and yb respectively.

MixUp and CutMix
Recent mixing-based methods essentially stem from two
representative techniques MixUp and CutMix.

MixUp mixes images and combines labels using linear
combination, which is expressed as

Ĩ = λ× Ia + (1− λ)× Ib,
ρa = λ, ρb = 1− λ,

(1)

CutMix adopts cut-and-paste operation for mixing images
and mixes the labels according to the area ratio. That is

Ĩ = (1−Mλ)� Ia +Mλ � Ib,
ρa = 1− λ, ρb = λ,

(2)

where � denotes element-wise multiplication and Mλ ∈
RW×H is a binary mask of a random box region whose area
ratio to the image is λ.

On one hand, these two methods mainly differ in the way
they mix images. MixUp mixes image by linear combina-
tion and therefore improves the neural networks’ robustness
to adversarial examples. By integrating MixUp and regional
dropout strategy, the cut-and-paste regime of CutMix natu-
rally inherits this advantage but also enhances models’ capa-
bilities of object localization. On the other hand, they share
two similarities: 1) mixing labels by using the statistic of
mixture pixels, and 2) performing image mixing in symmet-
ric locations.

SnapMix for Fine-grained Recognition
In fine-grained recognition, the category difference usually
resides in subtle object parts, making part localization ability
plays an important role. Therefore, the cut-and-paste mech-
anism is more favorable in augmenting fine-grained data.
However, mixing labels by the region area ratio is unreli-
able and will increase the risk of label noise, particularly
in combining image at asymmetric locations. Motivated by
work that used class activation maps (CAMs) to describe the
class-specific discriminative regions, we propose to exploit
CAMs to estimate the semantic composition of a mixed im-
age. Fig. 2 shows an overview of our proposed method Snap-
Mix. Our proposed method differs existing methods in two
folds: 1) fusing labels based on semantic composition esti-
mation, 2) mixing images asymmetrically. Given an input
pair of data, we first extract their semantic percentage maps
used to compute the semantic percentage of any image area.
We then mix the images by cut-and-paste at asymmetrical
locations. Finally, we calculate each mixture component’s
semantic proportion as guidance to fuse the one-hot labels.
In the following, we further describe in detail our method in
terms of image mixing and label generation.

Mixing images. As discussed previously, current exist-
ing methods blend images at symmetric locations, limiting
the diversity of synthetic images. Our approach removes this
constrain to increase the randomness of data augmentation
further. Specifically, instead of using a single random loca-
tion, we crop an area at a random location in one image and
transform and paste it to another random place in another
image. Such mixing operation is expressed as
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Figure 2: An overview of proposed method.

Ĩ = (1−Mλa)� Ia + Tθ(Mλb � Ib), (3)
where Mλa and Mλb are two binary masks containing ran-
dom box regions with the area ratios λa and λb, and Tθ is a
function that transforms the cutout region of Ib to match the
box region of Ia.

Label generation. To estimate the semantic composition
of a mixed image, we need to measure each original im-
age pixel’s semantic relatedness to the corresponding label.
One alternative to do this can resort to class activation map,
as it is proved useful to interpret how a region correlates
with a semantic class. Thus, we first employ the attention
method(Zhou et al. 2016) to compute the class activation
maps of input images. For a given image Ii, we denote
F (Ii) ∈ Rd×h×w the output of the last convolutional layer,
Fl(Ii) the lth feature map of F (Ii), and wyi ∈ Rd the clas-
sifier weight corresponding to class yi. Then we can obtain
Ii’s class activation map CAM(Ii) by

CAM(Ii) = Φ(

d∑
l=0

wlyiFl(Ii)), (4)

where Φ(·) denotes a operation that upsamples a feature map
to match dimensions with input image size. Here, we ignore
the bias term for simplicity. We can now obtain a Seman-
tic Percent Map (SPM) by normalizing the CAM to sum to
one. Here, we define SPM as a semantic information mea-
sure map to quantify the relatedness percentage between a
pixel and the label. We compute the SPM of an image S(Ii)
by

S(Ii) =
CAM(Ii)

sum(CAM(Ii))
, (5)

Finally, for an image produced using Eq.3, we compute
the corresponding label weights ρa and ρb as

ρa = 1− sum(Mλa � S(Ia)),

ρb = sum(Mλb � S(Ib)).
(6)

By doing so, the generated supervision information for a
mixed image can better reflect its intrinsic semantic com-
position. Therefore, in fine-grained recognition, despite the
image’s discriminative information is extremely uneven in
spatial distribution, our method prevent introducing heavy
noise in the augmented data.

It is also worth noting that the two components of a mixed
image generally do not complement each other in terms of
semantic proportion. A case of this would be when a cutout
is a background patch and pasted over the object area of an-
other image, and then the synthesized image would not con-
tain any foreground object. Therefore, unlike CutMix, our
method does not restrict the label coefficients (ρa and ρb) to
sum up to 1.

Experiments
In this section, we extensively evaluated the performance
of SnapMix on three fine-grained datasets. We evaluated
our method using multiple network structures (Resnet-
18,34,50,101) as baselines. We compared the performance
of our approach and related data augmentation methods on
each network architecture. Further, we tested our method us-
ing a strong baseline that integrated mid-level features and
compared the results with those of the current state-of-the-
art methods of fine-grained recognition.

Datasets
We conduct experiments on three standard fine-grained
datasets, which are CUB-200-2011 (Wah et al. 2011),
Stanford-Cars (Krause et al. 2013), and FGVC-Aircraft
(Maji et al. 2013). For each dataset, We first resized images
to 512× 512 and cropped them with size 448× 448. In the
rest of the paper, we used the short names CUB, Cars, and
Aircraft to simplify the notation.

Experiment Setup
Backbone networks and baselines. To extensively com-
pare our method with other approaches, we used four net-
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CUB Cars Aircraft

Res18 Res34 Res18 Res34 Res18 Res34
Baseline 82.35 84.98 91.15 92.02 87.80 89.92
CutOut 80.54 (-1.81) 83.36 (-1.62) 91.83(+0.68) 92.84 (+0.82) 88.58 (+0.78) 89.90 (-0.02)
MixUp 83.17 (+0.82) 85.22 (+0.24) 91.57 (+0.42) 93.28 (+1.26) 89.82 (+2.02) 91.02 (+1.1)
CutMix 80.16 (-2.19) 85.69 (+0.71) 92.65 (+1.50) 93.61 (+1.59) 89.44 (+1.64) 91.26 (+1.34)
SnapMix 84.29 (+1.94) 87.06 (+2.08) 93.12(+1.97) 93.95 (+1.93) 90.17 (+2.37) 92.36 (+2.44)

Table 1: Performance comparison(Mean Acc.%) of methods using backbone networks Resnet-18 and Resnet-34 on fine-grained
datasets. Each method’s improvement over the baseline is shown in the brackets.

CUB Cars Aircraft

Res50 Res101 Res50 Res101 Res50 Res101
Baseline 85.49 85.62 93.04 93.09 91.07 91.59
CutOut 83.55 (-1.94) 84.70 (-0.92) 93.76 (+0.72) 94.16 (+1.07) 91.23 (+0.16) 91.79 (+0.2)
MixUp 86.23 (+0.74) 87.72 (+2.1) 93.96 (+0.92) 94.22 (+1.13) 92.24 (+1.17) 92.89 (+1.3)
CutMix 86.15 (+0.66) 87.92 (+2.3) 94.18 (+1.14) 94.27 (+1.18) 92.23 (+1.16) 92.29 (+0.7)
SnapMix 87.75 (+2.26) 88.45 (+2.83) 94.30 (+1.21) 94.44 (+1.35) 92.80 (+1.73) 93.74 (+2.15)

Table 2: Performance comparison(Mean Acc.%) of methods using backbone networks Resnet-50 and Resnet-101 on fine-
grained datasets. Each method’s improvement over the baseline is shown in the brackets.

work backbones as baselines in performance comparison.
Here, if not specified, we refer baseline as a neural network
model that was pre-trained on Imagenet dataset and fine-
tuned on a target dataset. The used network structures in-
clude Resnet-18,34,50 and 101. Here, we adapted their im-
plementation from the TorchVision package to our experi-
ments.

We also used a strong baseline that incorporates mid-
level features in performance evaluation. Here, we termed
it baseline†. This baseline was used in recent works(Wang,
Morariu, and Davis 2018; Zhang et al. 2019) to push the
performance limits of fine-grained recognition. Compared
with the standard baseline that contains a single classifica-
tion branch, Baseline† adds another mid-level classification
branch on top of the intermediate layers. In our experiments,
we followed the implementation from (Zhang et al. 2019).
Specifically, the mid-level branch included a Conv1×1, Max
Pooling, and a Linear Classifier layer and was placed af-
ter 4th block of ResNet. We blocked the gradients pass-
ing the mid-level branch to backbone networks in training.
In testing, we fused the predictions from two classification
branches.
Data augmentation methods. We compared our method
with three representative data augmentation methods namely
CutOut (DeVries and Taylor 2017), MixUp (Zhang et al.
2018), and CutMix (Yun et al. 2019). Since these works did
not officially report results on fine-grained datasets, we im-
plemented these methods based on the released codes and
run experiments on fine-grained datasets. We first tested
different hyperparameters for each method and then se-
lected the optimal one for all network structures. We set the
probability of performing augmentation 0.5 for CutOut and
MixUp and 1.0 for CutMix. We used the α values of 1.0 and

3.0 for MixUp and CutMix, respectively.
Training details. We used stochastic gradient descent
(SGD) with momentum 0.9, base learning rate 0.001 for
the pre-trained weights, and 0.01 for new parameters. We
trained our model for 200 epochs and decayed the learning
rate by factor 0.1 every 80 epochs. The source code is avail-
able at: https://github.com/Shaoli-Huang/SnapMix.git.

Performance Evaluation
In this section, we presented the results of our method and
performance comparisons with existing approaches. We first
made comparisons between SnapMix and other data aug-
mentation methods. Further, we tested our approach using
the two baselines and compared the results with those of the
current state-of-the-art methods. We used top-1 accuracy as
the performance measure and provided both the best accu-
racy and average accuracy (the mean result of the final 10
epochs) of our proposed method.
Comparison with data augmentation methods. We listed
the results of performance comparisons in Table. 1-2. Here,
Table 1-2 shows each method’s average accuracy and im-
provement over the baseline. First, we can observe that
our proposed method SnapMix consistently outperforms its
counterparts on three datasets. We can further find that ex-
isting methods mostly yield limited, even negative improve-
ment on the CUB dataset. This might mainly because the
CUB dataset exhibits more subtle category differences, mak-
ing those methods increase the risk of noise labels. Besides,
the effectiveness of these methods is relatively sensitive to
the network depth. For example, both Mixup and CutMix
achieve significant improvements on the CUB dataset only
using the deeper networks Resnet-101, and CutMix even
suffers a performance drop when using Resnet-18. We hy-
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Method Backbone Accuracy(%)

CUB Cars Aircraft

RA-CNN (Fu, Zheng, and Mei 2017) 3× VGG-19 85.3 92.5 88.2
RAM (Li et al. 2017) 3× Res-50 86.0 -
Kernel-Pooling (Cui et al. 2017) 1× VGG-16 86.2 92.4 86.9
NTS-Net (Yang et al. 2018) 5× Res-50 87.5 93.9 91.4
DFL-CNN (Wang, Morariu, and Davis 2018) 1× VGG-16 86.7 93.8 92.0
MAMC (Sun et al. 2018) 1× Res-101 86.5 93.0 -
DFL-CNN (Wang, Morariu, and Davis 2018) 1× Res-50 87.4 93.1 91.7
DCL (Chen et al. 2019) 1× Res-50 87.8 94.5 93.0
TASN (Zheng et al. 2019) 1× Res-50 87.9 93.8 -
S3N (Ding et al. 2019) 3× Res-50 88.5 94.7 92.8
MGN-CNN (Zhang et al. 2019) 3× Res-50 88.5 93.9 -
MGN-CNN (Zhang et al. 2019) 3× Res-101 89.4 93.6 -

baseline 1× Res-50 85.49 (85.85) 93.04 (93.17) 91.07 (91.30)
baseline† 1× Res-50 87.13 93.80 91.68
baseline 1× Res-101 85.62 (86.02) 93.09 (93.28) 91.59 (92.11)
baseline† 1× Res-101 87.81 93.94 91.85

baseline + SnapMix 1× Res-50 87.75 (88.01) 94.30 (94.59) 92.80 (93.16)
baseline† + SnapMix 1× Res-50 88.70 (88.97) 95.00(95.16) 93.24(93.49)
baseline + SnapMix 1× Res-101 88.45 (88.73) 94.44 (94.60) 93.74 (94.03)
baseline† + SnapMix 1× Res-101 89.32 (89.58) 94.84 (94.96) 94.05 (94.24)

Table 3: The accuracy (%) comparison with state-of-the-art methods on CUB, Cars, and Aircraft. For the baselines and our
approach, we reported their average accuracy of the final ten epochs and showed their best accuracy in the brackets.

pothesis the reason is that the deeper models have better ca-
pacities in handling label noise. In comparison, SnapMix
significantly improves the baseline regardless of network
depth.
Comparison with state-of-the-art methods. In this sec-
tion, we compared the performance of SnapMix and other
state-of-the-art techniques of fine-grained recognition. In
Table. 3, first, we can observe that the baseline† achieved
higher accuracy than the baseline on three datasets, and the
performance gain on the CUB dataset is the most signifi-
cant. This result indicates mid-level features can effectively
complement the capacity of the global-level features in fine-
grained recognition. It is also worth mentioning that some
top-performing works, such as DFL-CNN (Wang, Morariu,
and Davis 2018) and MGN-CNN (Zhang et al. 2019) also
embedded the baseline+ into their methods.

Secondly, SnapMix enhances both baselines to obtain
comparable performance even to some latest approaches
with intricate designs and high inference time. S3N (Ding
et al. 2019) and MGN-CNN (Zhang et al. 2019) are two of
the state-of-the-art methods. S3N adopted a selective sparse
sampling strategy to construct multiple features. MGN-CNN
exploit attention mechanisms to construct different inputs
for multiple expert networks. Both methods require a sim-
ilar data processing pipeline with the training stage and the
need for multiple feed-forward passes of the backbone net-
work in the testing stage.

In contrast, using a standard baseline with a single Resnet-
101 backbone, SnapMix, without bells and whistles in the

testing stage, achieves the accuracy of 88.45%, 94.44%, and
93.74% on CUB, Cars, and Aircraft respectively, which out-
performs most of the existing techniques. Even using the
baseline† (a more powerful baseline), SnapMix still demon-
strates its promise and effectiveness in performance im-
provement, pushing the accuracy to the next level. For ex-
ample, SnapMix achieves 89.32% accuracy (close to the re-
sult of MGN-CNN 89.4%) on the CUB dataset and exhibits
superior performance than all the comparing techniques on
both Cars and Aircraft dataset.

Analysis
Training from scratch. Tab. 4 shows that our approach is
also effective without using ImageNet pre-trained weights.
In this experiment, we used the ’switch’ probability (the
probability of applying the mixing augmentation) of 0.5
for each mixing method. This allows the networks to learn
from both clean and mixed data, preventing the mixed data
from excessively affecting the model’s initial learning stage.
Therefore, despite SnapMix may introduce noise labels in
the early training stage, it would not hinder the network
from learning a good CAM in the subsequent stage. This
is because the network tends to first learn from easy samples
(clean data ) other than difficult samples (mixed data with
label noise) (Arpit et al. 2017). With the continuous learning
of the network and the improvement of CAM quality, the
more reasonable the label estimated by SnapMix will be to
enhance subsequent model learning.
Effectiveness of using other network backbones. We eval-
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Baseline CutMix MixUp SnapMix

Res-18 64.98 60.03 67.63 70.31
Res-50 66.92 65.28 72.39 72.17

Table 4: Performance comparison of training from scratch
on the CUB dataset (Acc.%).

Baseline Cutmix Mixup Snapmix

InceptionV3 82.22 84.31 83.83 85.54
DenseNet121 84.23 86.11 86.65 87.42

Table 5: Performance comparison of using other network
backbones on the CUB dataset (Acc.%).

uated the performance of our method with two other network
backbones including IceptionV3 (Szegedy et al. 2016) and
DenseNet121 (Huang et al. 2017). As shown in Tab 5, our
method surpasses both CutMix and MixUp approaches and
improves the baseline by a large margin. This result demon-
strates SnapMix’s consistent effectiveness when applied to
various CNN architecture.
Influence of hyperparameters. The hyperparameter α of
snapMix decides a beta distribution that is used to generate
a random patch in mixing. To investigate its impact on the
performance, we tested seven values of α. Table.6 showed
that the accuracy increased slightly with the increase of α
value and peaked at the number of 5, which suggests the
importance of using the medium-size boxes to mix images
on this dataset. Besides, the accuracy of setting different α
values inconsiderably fluctuates around the mean value of
87.37%, indicating that snapMix is not very sensitive to the
α value.
Effectiveness of each component of SnapMix. We per-
formed experiments using combinations of different image
mixing operations and label mixing strategies. As shown in
Fig. 3, the asymmetric mixing provides a slight improve-
ment over the symmetric mixing, and the label mixing strat-
egy of SnapMix is the primary contributor to the perfor-
mance gain. More importantly, the Semantic-Ratio consis-
tently shows improvement in using three image mixing op-
erations.
Visualization. Fig. 4 shows CAMs of some examples cor-
rectly predicted by SnapMix but misclassified by MixUp
and CutMix. We can observe the attention of MixUp and
CutMix are distracted by some background patterns, which
might be a reason for the misprediction. By comparison, the
network attention of SnapMix tends to lie in object regions.

α= 0.2 0.5 1.0 3.0 5.0 7 8

87.22 87.23 87.25 87.30 87.75 87.30 87.54

Table 6: Influence of hyperparameters Acc.(%)

81 82 83 84 85 86 87 88

AS-Mix + SR-Label (SnapMix)

S-Mix + SR-Label

AS-Mix + AR-Label

S-Mix + AR-Label (CutMix)

Drop Region + SR-Label

Drop Region (CutOut)

Figure 3: Accuracy comparison of six different combination
techniques (%). Here, S-Mixing, AS-Mix, AR-label, and
SR-label are short for symmetric mixing, asymmetric mix-
ing, area ratio label, and semantic ratio label respectively.

MixUp CutMix SnapMix

Figure 4: CAM visualization of different augmentation
methods.

These results imply mixing labels by pixel statistics may
cause the neural networks more sensitive to background vi-
sual patterns, while our proposed method avoids this issue.

Conclusions
In this paper, we present a new method SnapMix for aug-
menting fine-grained data. SnapMix generates new training
data with more reasonable supervision signals by consider-
ing the semantic correspondence. Our experiments showed
the importance of estimating semantic composition for a
synthetic image. Our proposed method might also bene-
fit other tasks (e.g., indoor scene recognition or person re-
identification), where a small image region contains signifi-
cant discriminative information. The proposed label mixing
strategy is mainly applicable to cut-and-paste mixing. Fur-
ther work might explore how better to estimate the semantic
structure of a linearly combined image.
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