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Abstract
Transformer-based architectures have shown great success
in image captioning, where object regions are encoded and
then attended into the vectorial representations to guide the
caption decoding. However, such vectorial representations
only contain region-level information without considering the
global information reflecting the entire image, which fails to
expand the capability of complex multi-modal reasoning in
image captioning. In this paper, we introduce a Global En-
hanced Transformer (termed GET) to enable the extraction of
a more comprehensive global representation, and then adap-
tively guide the decoder to generate high-quality captions. In
GET, a Global Enhanced Encoder is designed for the embed-
ding of the global feature, and a Global Adaptive Decoder
are designed for the guidance of the caption generation. The
former models intra- and inter-layer global representation by
taking advantage of the proposed Global Enhanced Attention
and a layer-wise fusion module. The latter contains a Global
Adaptive Controller that can adaptively fuse the global infor-
mation into the decoder to guide the caption generation. Ex-
tensive experiments on MS COCO dataset demonstrate the
superiority of our GET over many state-of-the-arts.

Introduction
Image captioning aims to describe the semantic content of
an image via neural language, which has recently attracted
extensive research attention. Inspired by the sequence-to-
sequence model for machine translation, most captioning
models (Vinyals et al. 2016; Xu et al. 2015; Anderson et al.
2018; Huang et al. 2019) mainly adopt a encoder-decoder
framework, where an encoder network encodes the input im-
age into a vectorial feature, and a decoder network takes the
vectorial feature as input and generates the output caption.
Such an encoder-decoder framework is recently well pro-
moted with the development of the Transformer (Vaswani
et al. 2017), where the self-attention is efficiently utilized to
capture the correlations among the regions and words (Liu
et al. 2019; Huang et al. 2019; Li et al. 2019a; Herdade et al.
2019; Cornia et al. 2020).
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Figure 1: (a) The self-attention mechanism in the l-th layer
of a standard Transformer. The vectorial representation vli
is region-biased, which only focuses on the region-level in-
formation (Devlin et al. 2018; Song et al. 2020; Weng et al.
2020). (b) Two key issues of the traditional Transformer-
based captioning model that we try to address: object miss-
ing (top: missing “snow”) and false prediction (bottom: pre-
dicting “playing with a boy” as “waking down”).

In the Transformer architecture, a set of image regions
are encoded and attended into vectorial representations, as
shown in Fig. 1 (a). These representations are then fused into
the decoder to generate the corresponding captions. How-
ever, as demonstrated by earlier works (Devlin et al. 2018;
Song et al. 2020; Weng et al. 2020), even though the vecto-
rial representations of these regions are hierarchically calcu-
lated by being attended to all regions in the image, they still
ignore the image-level characteristics and are thereby less
effective for the decoder (Weng et al. 2020; Anderson et al.
2018). It causes the problem of object missing when gener-
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ating descriptions, which is attributed to the limit number of
categories in object detectors. As shown in the top of Fig. 1
(b), an important concept, i.e. “snow”, is not presented. Be-
sides, it is more error-prone by focusing on local information
while ignoring global guidance, as shown in the bottom of
Fig. 1 (b), which is attributed to treating each object in iso-
lation, to lead to a relationship bias.

To improve the caption quality, a natural way is to capture
and leverage global representation to guide the selection of
attractive objects and their relationships, which is however
nontrivial due to two challenges. First, directly extracting a
global representation from an image by techniques like pool-
ing might introduce strong contextual noises, which severely
cause semantic ambiguity and damage the representation ac-
curacy. Such damage can be even accumulated for multi-step
self-attention in Transformers. Second, the extracted global
representation can not be directly used by the Transformer
decoder since the need for global guidance varies during the
generation of captions.

To solve the above problems, we propose a new Trans-
former architecture, i.e., Global Enhanced Transformer
(termed GET) as shown in Fig. 2. GET captures the global
feature via Global Enhanced Attention and utilizes the
global feature to guide the caption generation via Gated
Adaptive Controller. In GET, we first design a Global En-
hanced Encoder to extract intra- and inter-layer global rep-
resentations. Specifically, we adopt Global Enhanced Atten-
tion to aggregate local information from each layer to form
intra-layer global representation. After that, the global fea-
tures are sequentially aggregated among layers via recurrent
neural networks, which discard useless information from the
previous layers. Then we adaptively fuse the distilled global
representation into the decoder via a Global Adaptive Con-
troller module, which can be implemented by two alterna-
tive gating modules to control the fusion, i.e., Gate Adaptive
Controller and Multi-Head Adaptive Controller. As the lo-
cal vectorial representations may be insufficiently compre-
hensive in detail, GET explores the global parts of images to
supplement the local vectorial representation, which could
be more comprehensive and instructive for caption genera-
tion.

To sum up, our major contributions are itemized below:

• We address the issue of object missing and relationship
bias by leveraging global representation to provide more
comprehensive visual information and play the role of
connecting various local parts, which is fundamental in
image captioning task.

• We devise a unique encoder, termed Global Enhanced
Encoder, which enables the Transformer framework to
model intra- and inter-layer global information simulta-
neously, and propose a novel gating mechanism named
Gated Adaptive Controller to provide an adaptive and so-
phisticated control for the fusion of global information.

• Through extensive experiments, we demonstrate that our
Global Enhanced Transformer (GET) model can achieve
new state-of-the-art performance on MS COCO dataset.

Related Work
Image Captioning. Inspired by the encoder-decoder archi-
tectures in machine translation (Bahdanau, Cho, and Bengio
2014; Sutskever, Vinyals, and Le 2014), most existing im-
age captioning approaches typically adopt the CNN-RNN
framework (Vinyals et al. 2016; Karpathy and Fei-Fei 2015),
where a convolution neural network (CNN) (He et al. 2016;
Lin et al. 2020) is used to encode a given image, which is
followed by a recurrent neural network (RNN) (Hochreiter
and Schmidhuber 1997) to decode the CNN output into a
sentence. Recently, a variety of advanced models (Yao et al.
2018; Yang et al. 2019; Anderson et al. 2018; Lu et al. 2017)
have been proposed with attention (Xu et al. 2015) and RL-
based training objectives (Rennie et al. 2017).
Transformer-based Image Captioning. Some recent ap-
proaches have explored the use of the Transformer model
(Vaswani et al. 2017) in Vision-Language tasks. (Huang
et al. 2019) introduced a Transformer-like encoder to en-
code the regions into the hidden states, which was paired
with an LSTM decoder. Recently, (Zhu et al. 2018; Herdade
et al. 2019; Pan et al. 2020; Guo et al. 2020; Li et al. 2019b;
Cornia et al. 2020) proposed to replace conventional RNN
with the Transformer architecture, achieving new state-of-
the-art performance. On the same line, (Li et al. 2019a; Liu
et al. 2019, 2020) used the Transformer to integrates both vi-
sual information and additional semantic concepts given by
an external tagger. However, leveraging global information
in the Transformer for the image captioning task has never
been explicitly explored, which motivates our work in this
paper.

Preliminaries
The Transformer-based models formulate the calculation of
the t-th hidden state of decoder as

ht = Decoder(Encoder(I), w1, · · · , wt−1), (1)

where wi represents the feature embedding of the i-th word.
The Transformer contains an encoder which consists of a
stack of self-attention and feed-forward layers, and a de-
coder which uses self-attention on textual words and cross-
attention over the vectorial representations from the encoder
to generate the caption word by word.

We first present a basic form of attention, called “Scaled
Dot-Product Attention” , which is first proposed as a core
component in Transformer (Vaswani et al. 2017). All intra-
modality and cross-modality interactions between word and
image-level features are modeled via this basic form of at-
tention. The attention module operates on some queries Q,
keys K and values V and generates weighted average vec-
tors V̂ , which can be formulated as:

V̂ = Attention (Q,K, V ) = softmax

(
QKT

√
d

)
V, (2)

where Q is a matrix of nq query vectors, K and V both con-
tain nk keys and values, all with the same dimensionality,
and d is a scaling factor.
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Figure 2: Overview of our Global Enhanced Transformer Networks (GET) for image captioning. A set of regions are first fed
into a global enhanced encoder to extract intra- and inter-layer global information and region-level representation, which are
then adaptively fused into the decoder to generate captions. Notice that the Residual Connections, Layer Normalizations, and
Embedding Layers are omitted.

To extend the capacity of exploring subspaces, Trans-
former employs an effective module called multi-head at-
tention, which is defined as

MultiHead(Q,K, V ) = Concat (H1, . . . ,Hh)W
O, (3)

Hi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

)
, (4)

where WQ
i ,W

K
i ,W

V
i ∈ R d

h×d are the independent head
projection matrices, i = 1, 2, · · · , h, and WO denotes the
linear transformation.

Our Method
In this section, we devise our Global Enhanced Trans-
former (GET) for image captioning. As shown in Fig. 2, the
overall architecture follows the encoder-decoder paradigm.
First, a global-enhanced encoder maps the original inputs
into highly abstract local representations and extracts the
intra- and inter-layer global representation. Then the de-
coder adaptively incorporates the multimodal information
simultaneously through the proposed global adaptive con-
troller to generate the caption word by word.

Global-enhanced Encoder
The image is represented as a group of visual features V =
{v1, v2, · · · , vN} extracted from a pre-trained object detec-
tor as (Ren et al. 2015), where N is the number of visual
regions. Specifically, the detector is a Faster-RCNN model
pre-trained on the Visual Genome dataset (Krishna et al.
2017). We can represent the images as:

g =
1

N

N∑
i=1

vi. (5)

Each encoder is a stack of L identical layers, of which
each one contains a novel structure, i.e., the global-enhanced

self-attention (GEA). To adapt the feature dimensionality
to the encoder, the visual features V is first fed into a
fully-connected layer, then we get projected features V 0 =
{v01 , v02 , · · · , v0N} and g0.

Global-enhanced attention. The early methods only
feed regions to the encoder to extract the vectorial repre-
sentation. As shown in (Devlin et al. 2018; Song et al. 2020;
Weng et al. 2020), even though the vectorial representation
of each region is hierarchically calculated by attending to
all regions in the image, these vectorial representations only
contain local features which focus on the region-level in-
formation. To capture a comprehensive global representa-
tion, both region features V and global feature g are fed
into the multi-head self-attention module in each layer. By
this way, the local information can be aggregated to form
the global representation, through which we can capture
the intra-layer global information. Specifically, the output
of the l-th (0 ≤ l<L) layer Ol ∈ Rd×(n+1) is fed into
the multi-head self-attention module in the (l + 1)-th layer,
which is then followed by a residual connection and a layer-
normalization:

V
l+1

=GEA(Ol)

=MultiHead(Ol, Ol, Ol),
(6)

V l+1 = LayerNorm(Ol + V
l+1

), (7)

where O0 = (V 0; g0), and the residual connections help
avoid the vanishing gradient problem the training phase.
Then a final feed-forward neural network is adopted for ad-
ditional processing of the outputs, which is also followed by
a residual connection and a layer normalization step:

Ol+1 = LayerNorm(V l+1 + FFN(V l+1)), (8)

As illustrated in (Dou et al. 2018; Wang et al. 2020c), the
representations in different layers have different meanings.
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Thus we integrate the global representation from different
layers to fuse all the low- and high-level information. Note
that such a fusion can also help ease the information flow in
the stack (Wang et al. 2020c). A straightforward way is pool-
ing (e.g., average pooling), which however loses layer infor-
mation. In contrast, we adopt LSTM network (Hochreiter
and Schmidhuber 1997) for layer-wise fusion and achieve
the final global representation gF :

hi = LSTM(gi, hi−1), gF = hL, (9)

where the LSTM control the model to forget useless infor-
mation from previous layers via the forgetting gate, which
aggregates the global representation from the first layer to
L-th layer to obtain inter-layer information.

Global Adaptive Decoder
In the decoding phase, the global representation was adap-
tively fused into the decoder to guide caption generation.
Similar to the encoder, the decoder consists of N identi-
cal layers. We start with the basic layer of the global adap-
tive decoder, which contains a global adaptive controller
(GAC) to decide how much the global contextual informa-
tion should be considered.

Based on the local representation V L and global repre-
sentation gF , the decoder generates captions for the image
word-by-word. Suppose the decoder is generating the t-th
word in the target sentence. We denote wt ∈ Rd×1as the
vector representation of the t-th word, which is the sum of
word embedding and positional encoding. Therefore, the in-
put matrix representation for time step t is:

Wt−1 = (w0, w1, · · · , wt−1), (10)

where w0 represents the start of sentence.
For the (l + 1)-th layer, the inputs H l

t =
{hl1, hl2, · · · , hlt} ∈ Rd×t are fed into a multi-head
self-attention module:

al+1
t =MutiHead(hlt, H

l
t , H

l
t). (11)

Note that Wt−1 are the inputs of the first layer and h0t =
wt−1. Then there is a residual connection around them,
which is followed by a layer-normalization step:

al+1
t = LayerNorm(hlt + al+1

t ). (12)

Subsequently, the output al+1
t is passed into the other multi-

head cross-attention, e.g., GAC to incorporate with features
V and gF , which is followed by a residual connection and a
layer-normalization:

el+1
t = GAC(al+1

t , V L, gF ) (13)

el+1
t = LayerNorm(al+1

t + el+1
t ), (14)

where el+1
t contains multi-model information, which is

adaptively refined by the global representation to model a
more comprehensive and suitable representation. The detail
of GAC is described in the next subsection. Then we feed
it into a feed-forward neural network (FFN), which is fol-
lowed by a residual connection and a layer-normalization to
obtain the output:

hl+1
t = LayerNorm(el+1

t + FFN(el+1
t )). (15)

Finally, the output of layer N is fed into the classifier over
vocabulary to predict the next word. Let the predicted cap-
tion be Yt = {y0, y1, · · · , yt}, where yi ∈ V , and V is the
vocabulary of the captions. Then the conditional probability
distribution of words at time t is p(yt|Yt−1), which can be
calculated by:

p(yt|Yt−1) = softmax(Wyh
L
t ), (16)

where Wy ∈ R|V |×d, and |V | is the number of words in the
vocabulary.

Global Adaptive Controller Cross-attention
In the generation process, we design two alternative func-
tions for the global adaptive controller to fuse the global in-
formation into decoder according to the contextual signals,
i.e., Gate Adaptive Controller (GAC) and Multi-Head Adap-
tive Controller (MAC).

Gate Adaptive Controller Self-Attention. The demand
for global information for each target word is different. Mo-
tivated by (Lu et al. 2017), we propose a context gating
mechanism to control the importance of global information.
The context gate is determined by the query al+1

t and the
global representation gL:

α = sigmoid
(
(al+1
t )TgL

)
. (17)

We then adaptively fuse the global representation to refine
the output from multi-head self-attention as below:

êl+1
t =MultiHead(al+1

t , V L, V L), (18)

el+1
t = êl+1

t + α ∗ gL. (19)

Multi-Head Adaptive Controller Self-Attention. A
more sophisticated method is to use the multi-head attention
for fusion, which naturally fuses the local represention and
the global representation by taking a weighted sum of region
vectors V L and global vector gL. We set Vg = (V L; gF ) ∈
R(N+1)×d

el+1
t =MultiHead(al+1

t , Vg, Vg) (20)

Noticeably, attentive weights depend solely on the pairwise
similarities between visual vectors (e.g., region vectors and
global vectors) and the query vector. In such a way, the
output can capture suitable global information to refine the
original local representation. Besides, the multi-head mech-
anism allows the model to jointly attend to information from
different representation subspaces.

Training
For a given caption YT = {y0, · · · , yT }, the distribution is
calculated as the product of the conditional distributions at
all time steps:

pl(Y ) =
T∏
t=0

p(yt|Yt−1). (21)

The training process consists of two phases: pre-training
by supervised learning and fine-tuning by reinforcement
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B-1 B-4 M R C S
SCST - 34.2 26.7 55.7 114.0 -
Up-Down 79.8 36.3 27.7 56.9 120.1 21.4
RFNet 79.1 36.5 27.7 57.3 121.9 21.2
GCN-LSTM 80.5 38.2 28.5 58.3 127.6 22.0
Up-Down+HIP - 38.2 28.4 58.3 127.6 22.0
SGAE 80.8 38.4 28.4 58.6 127.8 22.1
ETA 81.5 39.3 28.8 58.9 126.6 22.7
SRT 80.3 38.5 28.7 58.4 129.1 22.4
AoANet 80.2 38.9 29.2 58.8 129.8 22.4
ORT 80.5 38.6 28.7 58.4 128.3 22.6
MMT 80.8 39.1 29.2 58.6 131.2 22.6
POS-SCAN 80.2 38.0 28.5 - 125.9 22.2
CBT - 39.0 29.1 59.2 128.1 22.9
Ours(w/ GAC) 80.8 38.8 29.0 58.6 130.5 22.4
Ours(w/ MAC) 81.5 39.5 29.3 58.9 131.6 22.8

Table 1: Comparison with the state of the art on the “Karpa-
thy” test split, in single-model setting. All values are re-
ported as percentage (%).

learning. Let θ be the parameters of the model. In pre-
training, given a target ground truth sequence Y ∗ =
{y∗0 , · · · , y∗T }, the objective is to minimize the cross-entropy
loss (XE):

L(θ) = −
T∑
t=0

log
(
p(y∗t |Y ∗t−1)

)
. (22)

At the fine-tuning stage, we employ a variant of the self-
critical sequence training approach (Rennie et al. 2017) on
sequences sampled using beam search to directly optimize
the metric, following previous works (Rennie et al. 2017;
Anderson et al. 2018). The final gradient for one sample is
calculated as:

∇θL(θ) = −
1

k

k∑
i=1

((
r
(
Y i
)
− b
)
∇θ log p

(
Y i
))

(23)

where r(·) can be any evaluation score metric, and we use
the CIDEr-D score as a reward. Y i = {yi0, · · · , yiT } is the

i-th sentence in the beam, and b =
(∑

i r
(
Y i
))
/k is the

baseline, computed as the mean of the rewards obtained by
the sampled sequences.

Experiments
Dataset and Implementation Details
All the experiments are conducted on the most popular
benchmark dataset of image captioning, i.e., MS COCO (Lin
et al. 2014). The whole MSCOCO dataset contains 123,287
images, which includes 82,783 training images, 40,504 val-
idation images, and 40,775 testing images. Each image is
equipped with five ground-truth sentences. The online eval-
uation is done on the MS COCO test split, for which ground-
truth annotations are not publicly available. In offline test-
ing, we use the Karpathy splits (Karpathy and Fei-Fei 2015)
that have been used extensively for reporting results in previ-
ous works. This split contains 113,287 training images, and
5K images respectively for validation and testing.

Model B-1 B-4 M R C S
Ensemble/Fusion of 2 models

GCN-LSTM 80.9 38.3 28.6 58.5 128.7 22.1
SGAE 81.0 39.0 28.4 58.9 129.1 22.2
ETA 81.5 39.9 28.9 59.0 127.6 22.6
GCN-LSTM+HIP - 39.1 28.9 59.2 130.6 22.3
MMT 81.6 39.8 29.5 59.2 133.2 23.1
Ours 81.9 40.3 29.6 59.4 133.5 23.3

Ensemble/Fusion of 4 models
SCST - 35.4 27.1 56.6 117.5 -
RFNet 80.4 37.9 28.3 58.3 125.7 21.7
AoANet 81.6 40.2 29.3 59.4 132.0 22.8
MMT 82.0 40.5 29.7 59.5 134.5 23.5
Ours 82.1 40.6 29.8 59.6 135.1 23.8

Table 2: Comparison with the state of the art on the “Karpa-
thy” test split, using ensemble technique, where B-N, M,
R, C and S are short for BLEU-N, METEOR, ROUGE-L,
CIDEr and SPICE scores. All values are reported as per-
centage (%).

We use Faster R-CNN (Ren et al. 2015) with ResNet-101
(He et al. 2016) finetuned on the Visual Genome dataset (Kr-
ishna et al. 2017) to represent image regions. In our model,
we set the dimensionality d of each layer to 512, and the
number of heads to 8. We employ dropout with a keep prob-
ability of 0.9 after each attention and feed-forward layer.
Pre-training with XE is done following the learning rate
scheduling strategy with a warmup equal to 10, 000 itera-
tions. Then, during CIDEr-D optimization, we use a fixed
learning rate of 5 × 10−6. We train all models using the
Adam optimizer (Kingma and Ba 2014), a batch size of 50,
and a beam size equal to 5. At the inference stage, we adopt
the beam search strategy and set the beam size as 3. Five
evaluation metrics, i.e., BLEU (Papineni et al. 2002), ME-
TEOR (Banerjee and Lavie 2005), ROUGE-L (Lin 2004),
CIDEr (Vedantam, Lawrence Zitnick, and Parikh 2015), and
SPICE (Anderson et al. 2016), are simultaneously utilized
to evaluate our model.

Performance Comparison
Offline Evaluation. Tab. 1 and Tab. 2 show the perfor-
mance comparisons between the state-of-the-art models and
our proposed approach on the offline COCO Karpathy test
split. We show the performances for both the single model
version and the ensemble version. The baseline models we
compared include SCST (Rennie et al. 2017), LSTM-A (Yao
et al. 2017), Up-Down (Anderson et al. 2018), RFNet (Ke
et al. 2019), GCN-LSTM (Yao et al. 2018), SGAE (Yang
et al. 2019), AoANet (Huang et al. 2019) ORT (Herdade
et al. 2019), ETA (Li et al. 2019a), MMT (Cornia et al.
2020), SRT (Wang et al. 2020b), POS-SCAN (Zhou et al.
2020) and CBT (Wang et al. 2020a). We present the results
of the proposed GET with two different global adaptive con-
trollers (e.g., GAC and MAC). For clarity, the symbol “ours”
only represents the latter one in the following section.

Single model. In Tab. 1, we report the performance of
our method in comparison with the aforementioned state-
of-the-art methods, using captions predicted from a single
model and optimization on the CIDEr score. Our method
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Transformer: a woman holding a 
basketball in a room.

GEA: a young man in a green 
uniform is holding a basketball.

Transformer: an airplane parked on 
the runway at an airport.
GEA: a large airplane parked at the 
airport with a man.

Transformer: a group of traffic lights 
on a pole.
GEA: a traffic light with a blue sky in 
the background.

Transformer: a small plane sitting 
on top of a field.
GEA: a small plane is painted with 
blue and white stripes.

Transformer: two birds sitting on 
top of a wooden post.

GEA: a bird perched on a telephone 
pole with power lines.

GEA: a woman is cooking in a 
kitchen with a stove.

Transformer: a woman standing in 
a kitchen standing next to a stove.

Transformer: a woman sitting in 
front of a box.
GEA: a woman is holding a cake with 
a picture on it.

Transformer: a piece of cake on a 
plate with a fork.
GEA: a piece of cake on a plate with 
a spoon.

Figure 3: Examples of captions generated by our approach and the standard Transformer model. Some detailed and accurate
words are marked in green, the wrong words are marked in red, and the inaccurate words are marked in yellow. Our method
yields more detailed and accurate descriptions.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L CIDEr-D
Metric c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40
SCST 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.0
LSTM-A 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2 27.0 35.4 56.4 70.5 116.0 118.0
Up-Down 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
RF-Net 80.4 95.0 64.9 89.3 50.1 80.1 38.0 69.2 28.2 37.2 58.2 73.1 122.9 125.1
GCN-LSTM - - 65.5 89.3 50.8 80.3 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
SGAE 81.0 95.3 65.6 89.5 50.7 80.4 38.5 69.7 28.2 37.2 58.6 73.6 123.8 126.5
AoANet 81.0 95.0 65.8 89.6 51.4 81.3 39.4 71.2 29.1 38.5 58.9 74.5 126.9 129.6
ETA 81.2 95.0 65.5 89.0 50.9 80.4 38.9 70.2 28.6 38.0 58.6 73.9 122.1 124.4
MMT 81.6 96.0 66.4 90.8 51.8 82.7 39.7 72.8 29.4 39.0 59.2 74.8 129.3 132.1
Ours 81.6 96.1 66.5 90.9 51.9 82.8 39.7 72.9 29.4 38.8 59.1 74.4 130.3 132.5

Table 3: MS COCO Online Evaluation. All values are reported as percentage (%), with the highest value of each entry high-
lighted in boldface.

surpasses all other approaches in terms of BLEU-4, ME-
TEOR and CIDEr, and achieves competitive performance on
SPICE and ROUGE-L compared to the SOTA. In particular,
it advances the current state of the art on CIDEr by 0.4%.

Ensemble model. Following the common practice (Ren-
nie et al. 2017; Huang et al. 2019) of building an ensemble
of models, we also report the performances of our approach
when averaging the output probability distributions of mul-
tiple and independently trained instances of our model. In
Tab. 2, we use ensembles of two and four models, trained
from different random seeds. Noticeably, when using four
models, our approach achieves the best performance accord-
ing to all metrics, with an increase of 0.6 CIDEr points with
respect to the current state of the art (Cornia et al. 2020).

Online Evaluation. Finally, we also report the perfor-
mance of our method on the online COCO test server. In
this case, we use the ensemble of four models previously de-
scribed, trained on the “Karpathy” training split. Results are

reported in Tab. 3, in comparison with the top-performing
approaches on the leaderboard. For fairness of comparison,
they also used an ensemble configuration. As can be seen,
our method surpasses the current state of the art on most of
the metrics, achieving an improvement of 1.0 CIDEr points
with respect to the best performer.

Qualitative Analysis. Fig. 2 shows several image cap-
tioning results of the plain Transformer and our GET. Gen-
erally, compared with the captions of the plain Transformer
which are somewhat relevant to image content and logically
correct, our GET produces more accurate and descriptive
sentences by exploiting intra- and inter-modal interactions.
For example, our GET generates the phrase of “a green
uniform” and “a man”, while they are missing from the
plain Transformer. Besides, our GET generates more pre-
cise phrases, such as “holding a cake with a picture on it”
and “cooking”. These also confirm the advantage of captur-
ing and leveraging the intra- and inter-layer global represen-
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Figure 4: The visualization of attended image regions along with the caption generation process for plain Transformer and the
proposed GET. At the decoding step for each word, we outline the image region with the maximum output attribution in red.

Layer BLUE-4 METEOR ROUGE-L CIDEr
2 38.2 28.9 58.3 129.7
3 39.5 29.2 58.9 131.6
4 39.2 29.2 58.6 130.7
5 39.0 28.9 58.5 130.3
6 39.0 29.0 58.5 130.3

Table 4: Ablation on the number of encoding and decoding
layers. All values are reported as percentage (%).

tation in the Transformer architectures.

Experimental Analysis
Ablation Study. To validate the effectiveness of our pro-
posed modules, we conduct ablation studies by comparing
different variants of the GET.

Firstly, we investigate the impact of the number of the en-
coding and decoding layers on captioning performance for
the GET. As shown in Tab. 4, varying the number of layers,
we observe a slight decrease in performance when increas-
ing the number of layers. Following this finding, all subse-
quent experiments uses three layers.

Then, we investigate the impact of all the proposed mod-
ules in both encoder and decoder. We choose the plain Trans-
former as the baseline, which is shown in the third line
in Tab. 5. Then we extend the baseline model by adopting
the GEA module, which slightly improves the performance.
The results indicate that the GEA module can also improve
the region level presentation via aggregate information from
global representation. Then we investigate the impact of dif-
ferent global representations. As shown in the 5-th line and
6-th line, the performance improvements validate the effec-
tiveness of GEA to obtain better presentation than the orig-
inal presentation g0 via aggregating the intra-layer informa-
tion. Then we exploit different strategies to fuse the inter-
layer information, and the LSTM network obtains the best
performance, which basically validates the effectiveness of
such layer-wise global representation. Both the GAC and
MAC gain expected performance, which further indicates
the effectiveness of our intra- and inter-layer global repre-
sentation. And MAC is the better one, which shows that the
Multi-Head mechanism works better at feature fusion for its

encoder decoder B-4 M R Cintra-layer inter-layer
- - - 37.9 28.0 57.9 128.1

GEA - - 38.1 28.1 58.2 128.3
g0 - MAC 38.2 28.3 58.0 128.6

GEA - MAC 38.4 28.3 58.2 128.9
GEA average MAC 38.5 28.7 58.1 129.4
GEA attention MAC 38.7 29.0 58.2 129.8
GEA LSTM MAC 39.5 29.2 58.9 131.6
GEA LSTM GAC 38.8 29.0 58.6 130.5

Table 5: Ablation on different variants of the Transformer.
All values are reported as percentage (%).

ability of complex relationship modeling.
Attention Visualization. In order to better qualitatively

evaluate the generated results with GET, we visualize the
evolutions of the contribution of detected regions to the
model output along with the caption generation processes
for plain Transformer and the proposed GET in Fig. 4. The
contribution of one region with respect to the output is given
by complex non-linear dependencies, which cannot be ex-
tracted easily. Therefore, we employ the Integrated Gradi-
ents approach (Sundararajan, Taly, and Yan 2017), which ap-
proximates the integral of gradients with respect to the given
input via a summation. Results presented in Fig. 4 show that
our approach can help to ground the correct image regions
to words by exploring the proposed global representation.

Conclusion
In this paper, we present Global Enhanced Transformer
(GET) for image captioning. GET addresses the problem of
traditional Transformer-based architectures on the ignorance
of global contextual information that limits the capability of
reasoning in image captioning. Our model incorporates the
Global Enhanced Encoder which captures both intra- and
inter-layer global representation to provide more compre-
hensive visual information and play the role of connecting
various local parts, and the Global Adaptive Decoder which
adaptively fuses the global information into the decoder to
guide caption generation. We show the superior performance
of the proposed GET both quantitatively and qualitatively on
the MS COCO datasets.
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