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Abstract

Temporal appearance misalignment is a crucial problem in
video person re-identification. The same part of person (e.g.
head or hand) appearing on different locations in video se-
quence weakens its discriminative ability, especially when we
apply standard temporal aggregation such as 3D convolution
or LSTM. To address this issue, we propose Self-Separated
network (SSN) to seek out the same parts in different images.
As the name implies, SSN, if trained in an unsupervised strat-
egy, guarantees the selected parts distinct. With a few samples
of labeled parts to guide SSN training, this semi-supervised
trained SSN seeks out the parts that are human-understandable
within a frame and stable across a video snippet. Given the
distinct and stable person parts, rather than performing ag-
gregation on features, we then apply 3D convolution across
different frames for person re-identification. This SSN + 3D
pipeline, dubbed SSN3D, is proved to be efficient through
extensive experiments on both synthetic and real data.

Introduction
Video person re-identification (ReID) (Wang et al. 2014;
Zheng et al. 2016; Hou et al. 2019) is of great interests as
it provides the temporal variant appearance of a person to
achieve more accurate ReID. In this task, a query video clip
is given to find the clips belonging to the same person from
a large video gallery. In order to aggregate useful informa-
tion, LSTM (Hochreiter and Schmidhuber 1997; Yue-Hei Ng
et al. 2015) and 3D convolutional networks (Tran et al. 2015;
Carreira and Zisserman 2017; Qiu, Yao, and Mei 2017) are
widely employed. And 3D convolution is believed to out-
perform LSTM on video person classification (Carreira and
Zisserman 2017). However, 3D convolution suffers from tem-
poral misalignment issue. It processes the features at the same
spatial position in adjacent frames into one value, which ex-
pects the human pose and camera viewpoints to be aligned
before being fed into the network. When we observe many
video person ReID datasets, it is manifest that due to the
imperfect person detection algorithm, the locations where a
person appears in the bounding boxes are inconsistent, not to
mention the pose variation of person.
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Figure 1: Overall Workflow of SSN3D. It takes a video snip-
pet as input, and outputs a feature embedding vector

In this paper, we address the appearance misalignment for
3D convolution. The whole network includes two modules as
shown in figure 1. One named self-separated network (SSN),
leveraging attention mechanism, seeks out distinct person
parts while preserving the original spatial information within
a single image. SSN is then applied to a video snippet, and
same parts appeared in multiple frames are aligned forming
4D-tensors. The other is a 3D convolution based aggregator.
It takes the 4D-tensors of each part as input, summarizes the
feature of distinct parts through the temporal dimension, and
transforms the resulted feature maps into a single feature vec-
tor. To indicate the combination of SSN and 3D convolution,
we name our method SSN3D.

SSN is different from conventional attention mechanism.
A sophisticated two-round classification is designed to take
advantage of the consistency between the pixel-wise feature
and the aggregated feature. The consistency provides sig-
nals for unsupervised training, and allows SSN to separate
those distinct parts of person with cross-entropy loss. That’s
why we call it self-separated network. However, unsuper-
vised training, without human’s guidance, would find some
parts that are distinct, but cannot guarantee those parts to be
human-understandable or stable due to its blind searching.
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Alternatively, we enable supervised training, which relies
on person’s key points as anchor, making the selected parts
more human-understandable. However, employing an exist-
ing pose detection model (He et al. 2017; Cao et al. 2018) is
time-consuming and lacks robustness due to the imperfection
of the model. To combine the advantages of the above two
strategies, we use some high-quality labeled data to guide
SSN training, and also feed the network with unlabeled data.
The selected parts in this semi-supervised strategy are not
only distinct and human-understandable within a frame, but
also stable across different frames. The combined strategy
outperforms both the unsupervised strategy and the super-
vised strategy(labeled via OpenPose (Cao et al. 2018)) on
ReID task.

SSN+3D is also a novel combination for temporal aggre-
gation. Instead of performing separating and summarizing
within one image, SSN+3D essentially involves the 3D convo-
lution into each attention channel. Unlike the popular design
of fusing different parts within a frame via pooling (Liu et al.
2017; Zheng et al. 2016), we align different parts, and con-
struct 4D-tensors for each part across multiple frames. For
each 4D-tensor, a corresponding learnable 3D convolutional
block is used to aggregate the feature of the part it represents.
Feature fusion is conducted after the features of all distinct
parts are extracted. Compared to existing methods, SSN+3D
implements finer-grained part alignment and feature aggrega-
tion, allowing to detect variation of parts in both spatial and
temporal dimensions.

To sum up, the contributions of this paper are three-fold:
(1) We propose SSN+3D pipeline to address the appearance
misalignment problem in video person ReID. SSN+3D pro-
vides extraordinary ability to handle the both spatial and
temporal variation of person parts. Our final solution can
achieve superior performance to state-of-the-art methods on
iLIDS-VID and DukeMTMC, and comparable performance
on MARS. (2) SSN together with two-round classification
mechanism, seeks the consistency between the pixel-wise fea-
ture and the aggregated feature in different training strategies.
This design can be generalized to train different attention
networks. (3) Compared to existing pooling-based aggregator
and 3D convolution on fused feature, our 3D convolution
based feature aggregator is finer-grained, and adapts to the
variation of person parts better.

Related Work
Video Person ReID: The samples of a Video ReID task
contain more frames and additional temporal information
compared with image ReID. Usually, for each individual,
there are multiple video clips, and we compare each piece of
video against each other to determine whether they belong to
the same person. Multiple models have been proposed to con-
sider the temporal information. (Wang et al. 2014) chooses
the frames with maximum and minimum flow energy, while
(McLaughlin, Martinez del Rincon, and Miller 2016) and
(Yan et al. 2016) use RNN to make use of such information.
Additionally, (Li, Zhang, and Huang 2019) proposes a two-
stream convolution network to extract spatial and temporal
cues for video person ReID, and (Chung, Tahboub, and Delp
2017) propose a two-stream Siamese CNN which processes

spatial and temporal information separately. Besides, images
ReID models (Liu, Yan, and Ouyang 2017; Li et al. 2018; Si
et al. 2018; Chen et al. 2018), when integrated with multi-
frame features, can still be very successful on video task. In
this paper, we leverage attention mechanism to align each
parts of person, which, when working with a 3D convolu-
tional networks, can deeply benefit the quality of the feature
extracted from the video clips.
Recent Progress: MG-RAFA(Zhang et al. 2020) trains pixel-
wise weights to extract attention map from the original feature
map via supervised learning strategy. Average pooling is used
to build the original reference of feature to construct attention
map. Both MGH(Yan et al. 2020) and ST-GCN(Yang et al.
2020) leverage graph convolution approach to model the re-
lationship between the parts of intra-/inter- frames in a video
snippet. Both leverage PCB-like mechanism to split feature
map to multiple parts, which then play the role of nodes of
GCN. ST-GCN models the relationship directly via build-
ing multiple graphs. MGH creates PCB-like feature parts in
different granularity, e.g. global feature, local feature with
two/four partitions, and then builds hyper-graph to explore
the spatial and temporal relationships.

AP3D(Gu et al. 2020) and SSN3D both have body align-
ment module and feature aggregation module, respectively.
But they are very different. For the body alignment mod-
ule, AP3D provides a person feature by cross-pixel semantic
similarity, while SSN3D align different person parts with
cross-entropy loss and two-round classification.

For the feature aggregation module, AP3D only has one
branch to capture the temporal variation of the global features
from different frames. While SSN3D adopts different 3D
CNN to aggregate temporal feature.

Both SSN3D and SpaAtn(Li et al. 2018) have an attention
mechanism but in different ways. i.e. the cross-entropy loss
and two-round classification, instead of KL-divergence as
SpaAtn. Furthermore, our performance is better than SpaAtn
by a large margin on MARS and iLIDS-VID. (SpaAtn does
not provides results on DukeMTMC-VideoReID). The essen-
tial reason is that KL-divergence cannot tell the differences
between similar parts, while the two-round classification un-
der semi-supervised training strategy can.

SSN aims to align person parts wherein key points of
the pose are used as anchors, and the probability of each
pixel belonging to different anchors is inferred though atten-
tion classifier (unsupervised/semi-supervised trained). Even
though attention mechanism, pose detection and 3D CNN are
not firstly utilized in the Video ReID field, using the combina-
tion of cross-entropy and two-round classification to realize
attention map is new to this field. We combine the existing
ideas to present a simple yet effective method and experiment
results demonstrate the competing performance.

The Proposed Approach
Overall framework of our feature extraction model is pre-
sented in figure 1, which is composed of two modules, SSN
and 3D convolutional feature aggregator. SSN seeks out N
distinct parts of person from each image. The same category
of parts (e.g. head) from a video snippet are aligned forming
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Figure 2: Structure of SSN. It takes an image as an input,
and outputs N spatial features. Each pixel of X is estimated
twice by the attention classifier

a 4D-tensor. The N 4D-tensors are then fed to N 3D con-
volutional blocks for feature aggregation. The entire system
generates the video embedding in an end-to-end fashion.

Self-Separated Network
SSN, shown in figure 2, takes an image as an input and
outputs N spatial features of size 3 × 3 × C (in our case,
N = 9, C = 1024). We use ResNet50(He et al. 2016) as the
backbone of the convolutional layers, whose output is feature
of size H ×W × C. The features from the sliding window
is fed into an attention classifier (1st round classification),
which is composed of a convolutional layer followed by a
fully connected layer that can map the features to a lower
dimension. After a softmax operation on the attention maps,
the sum of all elements in each attention map will be 1. Each
component of this attention map describes the weight of
its corresponding sliding window in the feature map. After
calculating the weighted sum of the sliding window features
based on, we can output N spatial features.

For SSN training, the produced spatial features will be fed
into the same attention classifier with a softmax layer (2nd
round classification). The result of 2nd round classification,
which creates labels for unsupervised training, should be
consistent with the 1st round classification. We then use cross-
entropy loss to guarantee that each label describes different
and distinct part, even if we do not know what these parts
represent. Our experiments show that the loss will converge
on a small value, indicating that the model does learn the
distinct parts. Moreover, we can also use an semi-supervised
learning method to instruct the targets to be the parts we
desire. In the following subsections, we will explain the figure
2 in detail.

Network Architecture. We introduce the components of
SSN as follows.
Attention Classifier. The attention classifier demonstrated
in figure 2 maps the convolution features to a N dimen-
sional vector. Our attention classifier has a convolutional

layer, which uses 3× 3 kernel with K output channels. This
convolutional layer maps the features to a vector with K ele-
ments (in our case, K = 512). After a relu layer, the vector
is then fed into a K ×N forward function. We define

ah,w = AttentionClassifier(Xh,w), (1)

where ah,w ∈ RN is the output, and Xh,w ∈ R3×3×C is the
feature of sliding sample from the feature map at the position
(h,w).

In the 1st round classification, we apply the attention clas-
sifier to the pixel of input feature. Softmax is not applied to
this result, which implies the original possibilities of pixel
belonging to different labels are kept this turn.
Attention Map. We have N attention maps generated from
the feature map, where the i-th is computed byAi ∈ RH×W .
Each attention map is computed by the previous attention
classifier, i.e. Ai

h,w = ai
h,w, where ai

h,w is the i-th element
of ah,w.

In the previous section, we have explained that the atten-
tion classifier has not been applied with a softmax layer in the
1st round classification, and we do it when attention map is
used to calculate the corresponding weights with the sliding
window features. A element of final output from the attention
map Âi is calculated as

Âi
h,w =

exp(Ai
h,w)∑H

h=1

∑W
w=1 exp(A

i
h,w)

. (2)

Space-wise Weighted Sum. We now have N attention maps
for N output features. As is mentioned before, each attention
map provides a set of weights for the sliding window features.
We use

Y i =

H∑
h=1

W∑
w=1

Âi
h,w ·Xh,w (3)

to produce the i-th of the final N tensor features for unsuper-
vised learning.

Training with 2nd Round Classification. Now that we
have N spatial features, and then the next concern is how
to train our model. Here we apply the identical attention
classifier to the N spatial feature, and result of 2nd round
classification should be consistent with the 1st. For example,
the spatial feature generated via the attention map of label
1, after another attention classifier, should still belong to the
label 1. Cross-entropy loss is used to train the model. The
nature of the cross-entropy loss guarantees that each label
describes different information, because when training, it will
maximize one and suppress the rest. As a result, the spatial
features across the frames belonging to the same label express
homogeneous information, which, in fact, is the alignment
operation we demonstrated before. Generally, we will set the
target of the first feature output to be label 1, the target of the
second to be 2, and so on. If the loss converges to a small
value, it means the model has indeed learned something. So
we define the loss as

LSSN = −
N∑
i=1

log(
exp(pi,i)∑N
j=1 exp(pi,j)

), (4)
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where pi,j is the predicted probability of part i is of category
j. Note that the 2nd round classification is used for training
only.

With two-round classification and cross-entropy loss SSN
can be trained in the unsupervised strategy. But this unsuper-
vised training is more or less “blind”. The attention classifier
is instructed by a consistent signal without knowing what it
is, be it a head or hand. Essentially, it is to leverage the simi-
larity of pixel values (RGB feature or high-dimension deep
feature). However, without giving a specified part to select,
parts with similar pixel values may interfere with each other.
As a consequence, unsupervised learning seeks out the parts
that are distinct but may locate in different positions if they
are similar with each other. Using pixel similarity is widely
accepted in the context of ReID(Shen et al. 2018; He et al.
2019), since pixel value is one of the most discriminative
feature. This two-round classification unsupervised training
scheme has been proved by our later experiment to be so
powerful that it could even select distinct pattern from the
samples generated by Gaussian distribution, but not good at
handling similar person parts. So we revise our method to
enable semi-supervised training for better performance.

Semi-supervised Training. In the above text, by two-
round classification, we are able to train SSN in an unsuper-
vised strategy. However, we do not know what each spatial
feature represents, whether label 1 or label 2 is the person’s
hand or head. Here we proposal semi-supervised strategy
to instruct the targets to be the parts we desire. The idea is
very simple, we feed the network with labeled and unlabeled
data at the same time. labeled data plays the role of “anchor”,
which is a strong signal to instructs attention classifier to
select those N parts that we want. In details, we mix some
features bypassing our SSN into those features produced by
SSN. That is to replace Y i in equation 3 with Y i = Xhi,wi ,
where (hi, wi) is our manually labeled key point of the i-th
target. Therefore, labeled data and unlabeled data can be fed
to the network together.

In this way, semi-supervised SSN seeks out person parts
which is distinct within a frame and stable across multiple
frames.

3D Convolutional Network Block
As we have aligned the spatial features by our SSN, the 3D
convolutional blocks can now effectively extract temporal
information. Figure 1 has demonstrated that after each frame
has been fed into a SSN, N spatial features in the size of
3× 3× C have been produced. We then concatenate those
spatial features belonging to the same label in the temporal
dimension to produce a feature (4D-tensor) in the shape of
T × 3 × 3 × C (T is the number of pictures in the snippet.
In our case, T = 4). Those features would be fed into a
3D convolutional block for feature extracting. Note that the
3D convolutional blocks do not share weights since they are
distinct parts. After all N sets of spatial features have been
mapped to a one-dimensional vector by the 3D convolutional
networks, we concatenate all of them and apply a fusion
forward network to produce the final embedding feature for
the video.

Training with Hard Samples Mining. Unlike the com-
mon practice used by (Wang et al. 2018), who combines
classification loss and triplet loss for spatial-temporal repre-
sentation learning. We discard the classification loss which
considering person identities as category labels and replace
it with the cross-entropy loss from our SSN.

Triplet loss with hard samples mining (Hermans, Beyer,
and Leibe 2017) is a common practice for person ReID task,
and it is described as

Ltri =
B∑
i=1

[m+ max
fp∈S+

i

||fi − fp||2√
d

− min
fn∈S−

i

||fi − fn||2√
d

]+,

(5)
where m is a pre-defined margin, d is the dimension of the
output features, fi is the video feature of the i-th sample, and
[·]+ = max(0, ·). S+

i and S−i are the positive and negative
sample sets of the i-th sample respectively.

Loss Function
The final objective function L is formulated as the weighted
sum of the SSN loss and the triplet loss, i.e.

L = Ltri + λ · LSSN . (6)

The reason why we give our SSN loss a coefficient λ is that
it converges very fast, which may impede our learning.

Experiment
In this section, we will first evaluate SSN+3D on video person
ReID tasks, then evaluate our core module, SSN, on both
synthetic and real data.

Experimental Setting
Datasets. We evaluate our method in three video person
ReID datasets. In particular, iLIDS-VID consists of 600 video
sequences, with 300 different individuals captured by two
cameras. The length of the video sequence varies from 23 to
192 frames. MARS has 1,261 identities with more than 20,000
video sequences captured from 6 cameras. Bounding boxes
are produced by DPM detector (Felzenszwalb et al. 2009)
and GMMCP tracker (Dehghan, Modiri Assari, and Shah
2015). DukeMTMC-VideoReID is a subset of the tracking
DukeMTMC (Ristani et al. 2016) benchmark, and we use
DukeMTMC as its name for short. The pedestrian images
are cropped from the video for 12 frames every second to
generate a tracklet.

Evaluation Protocols. We employ the Mean Average Pre-
cision (mAP) (Zheng et al. 2015) and Cumulative Matching
Characteristics (Bolle et al. 2005) for evaluation.

Implementation Details. CNN Backbones: We use the pre-
trained ResNet50 for the convolution layers. Note that each
ResNet model has a total of 5 layers, we only use the first
four of them, which produce feature maps of 1024 channels.
Supervised Labels: For the supervised labels in each dataset,
we use OpenPose(Cao et al. 2018) to mark the position of
their head, body, crotch, left and right elbows, knees and
feet. When being trained, if a snippet is selected, their corre-
sponding labeled images, along with their labels, will also be
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Learning
Strategy

iLIDS MARS DukeMTMC
top-1 mAP top-1 mAP top-1 mAP

Supervise 73.4 75.8 69.8 61.1 86.3 79.6
UnSuperv. 83.1 84.2 82.4 67.5 89.9 86.2
Semi-Sup. 88.9 89.2 90.1 86.2 96.8 96.3

Table 1: Different learning strategy employed by SSN. It is
clear to see that semi-supervised learning is superior to others
in all the person ReID tasks

Attention
Classifiers

iLIDS MARS DukeMTMC
top-1 mAP top-1 mAP top-1 mAP

NonSha. 69.4 73.2 72.3 70.9 84.9 71.2
Sharing 88.9 89.2 90.1 86.2 96.8 96.3

Table 2: Comparison of with and without weight sharing

selected. Final feature representation: The architecture of the
3D CNN is demonstrated in figure 1. The fusion layer casts
the nine concatenated features to a 1024-dimension vector.
Training and testing protocols: In the training stage, for each
video tracklet, we randomly sample 4 frames with a stride of
8 frames to form a video clip. Each batch contains eight indi-
viduals, and each individual has four video snippets. All the
input images are resized to 256× 128 pixels. Adam (Kingma
and Ba 2014) with a weight decay of 0.0005 is adopted to
update parameters. The network is trained for 150 epochs in
total, with an initial learning rate of 3× 10−4. Learning rate
is reduced with a decay rate of 0.1 after 50 epochs. In the test-
ing stage, each video tracklet is split into multiple 32-frame
video clips. Then we extract the feature representation for
each video snippet and use their average to represent them.

Ablation Study on SSN+3D Pipeline
Different Learning Strategy. The supervised learning is
that, instead of using attention maps to calculate the spa-
tial features of each frame, we directly feed labeled data
into following 3D Convolutional Networks for feature ex-
tracting. The unsupervised training, however, is to let the
model find the distinct parts itself without any labels. The
semi-supervised learning is that we select two images with
high-quality labels from each video tracklet. And the training
method is described in the previous section.

As is demonstrated in table 1, the best way of training
our model is to provide some high-quality labels and let the
model learn the rest. This way of semi-supervise learning in-
structs our attention classifiers to pay attention to our desired
body parts. Because of the nature of the corrupted data, the
OpenPose model may fail on some of the images, which we
suppose is the reason why the supervised learning does not
work as good as the others. The performance of unsupervised
learning is not bad, but it still lags behind semi-supervised
learning due to lack of guidance. We set λ = 0.1 on iLIDS
and MARS, and λ = 0.05 on DukeMTMC.

If without explicit declaration, the following experiments
use the semi-supervised strategy.

Weight Sharing. In our design, the spatial attention classi-
fiers for a single frame and the temporal attention classifiers
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Figure 3: The top-1 and mAP on (a)iLIDS-VID, (b)MARS(b),
and (c)DukeMTMC

Methods top-1 top-5 top-10
LFDA 32.9 68.5 82.2
KISSME 36.5 67.8 78.8
LADF 39.0 76.8 89.0
STF3D 44.3 71.7 83.7
TDL 56.3 87.6 95.6
MARS 53.0 81.4 -
SeeForest 55.2 86.5 91.0
CNN+RNN 58.0 84.0 91.0
Seq-Decision 60.2 84.7 91.7
ASTPN 62.0 86.0 94.0
QAN 68.0 86.8 95.4
RQEN 77.1 93.2 97.7
STAN 80.2 - -
Snippet 79.8 91.8 -
Snippet+OF 85.4 96.7 98.8
VRSTC 83.4 95.5 97.7
AP3D 86.7 - -
SSN3D 88.9 97.3 98.8

Table 3: Comparison with related methods on iLIDS-VID

across multiple frames share the same weight. However, we
can loose this constraint and explore what outcomes it will
bring to us. When not sharing attention weights, each spatial
feature is a certain combination of different parts of the im-
age in a way we cannot control, neither do we know what
each spatial feature really represents. Table 2 has proved to
us the benefit of this weight sharing between the spatial and
temporal classifier. When not sharing weights, T independent
SSN losses are used during training. λ is set to 0.1 on iLIDS
and MARS, and to 0.05 on DukeMTMC when running exper-
iments. The large margin between with and without weight
sharing implies the impact of SSN.

Influence of the Parameters λ. λ is the parameter to bal-
ance the relative effects of the SSN loss. We analyze the
impact of the λ on iLIDS-VID, MARS, and DukeMTMC
datasets respectively. We observe that our method achieves
the best performance when we set λ to be relatively small,
e.g. 0.1 or 0.05. This is because the SSN’s strong learning
ability may lead to a fast convergence, which is harmful when
not enough data has been represented. We demonstrate our
results in figure 3.
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Figure 4: Finding Specified Parts in Semi-supervised Strategy.
The above image demonstrates the result of attention maps on
the Pedestrian 128 dataset. The first pedestrian is labeled, and
the rest is unlabeled. It is clear to see that each attention map
has successfully learned where to focus on each individual

Comparison with State-of-the-arts
Table 3, 4, and 5 report the performance of our approach and
other state-of-the-art methods on iLIDS-VID, MARS, and
DukeMTMC benchmark respectively. The methods in these
tables differ in many aspects, from deep models to traditional
models. On iLIDS-VID, SSN3D outperforms others in terms
of top-1, top-5, and top-10 CMC. On DukeMTMC, SSN3D
outperforms others in top-1, top-10 and mAP. And on MARS,
SSN3D also achieves comparable scores with state-of-the-art
methods. We believe this improvement comes mainly from
our SSN+3D pipeline. Impressive they are, we do not regard
these scores as the only judgement to the model we propose.
And SSN and two-round classification is what we value most.
Therefore, we are expecting to more practical applications of
our SSN to other tasks besides video person ReID.

Study on SSN
In this subsection, we study our core design, SSN. To prove
the convergence ability, and demonstrate the results of our
model trained by unsupervised, and semi-supervised learning,
we prepare the following three datasets for each task. Con-
sidering the different nature of the datasets, we use different
model settings to secure visualized results. We use the same

Methods top-1 top-5 top-10 mAP
Mars 68.3 82.6 89.4 49.3
SeeForest 70.6 90.0 97.6 50.7
Seq-Decision 71.2 85.7 91.8 -
Latent Parts 71.8 86.6 93.0 56.1
QAN 73.7 84.9 91.6 51.7
K-reciprocal 73.9 - - 68.5
RQEN 77.8 88.8 94.3 71.7
TriNet 79.8 91.3 - 67.7
EUG 80.8 92.1 96.1 67.4
STAN 82.3 - - 65.8
Snippet 81.2 92.1 - 69.4
Snippet+OF 86.3 94.7 98.2 76.1
VRSTC 88.5 96.5 97.4 82.3
AP3D 90.1 - - 85.1
SSN3D 90.1 96.6 98.0 86.2

Table 4: Comparison with related methods on MARS

Methods top-1 top-5 top-10 mAP
EUG 83.6 94.6 97.6 78.3
VRSTC 95.0 99.1 99.4 93.5
AP3D 96.3 - - 95.6
SSN3D 96.8 98.6 99.4 96.3

Table 5: Comparison with related methods on DukeMTMC

Adam optimizer (Kingma and Ba 2014) with weight decay
5 × 10−4 to update the parameters. Note that we evaluate
SSN only without 3D part.

Random Generation. To prove the strong learning ability
of our models, we use data generated by different random
distribution, including Gaussian, and Uniform distribution.
The random distribution generates a random sample in the
size of 128 × 16 × 16, and our sliding window size is set
to be 3× 3. We do not use any convolutional backbones for
feature extraction, and we feed the sample directly into the
attention classifier. We train the model with the batch size of
128.

As is demonstrated in figure 5, we run a total number of 9
experiments for this dataset. It is crystal clear that the learning
curve of our model running on random data has convinced us
of the substantial learning ability of our model. The loss can
converge to a small value very fast even the data is randomly
generated, especially when the number of labels N is small
and the data is more dynamic (data generated from a normal
distribution is much dynamic than that generated from a
0-1 uniform distribution). It is reasonable that the learning
curves of the all-one feature maps do not converge because
it is impossible to spot different patterns from homogeneous
information. Another thing worth noticing is that it seems
harder for our model to learn when the number of labels
increases. We suppose that this is because it is harder to
spot more different parts in a feature map with a fixed size.
All in all, this experiment on random data has revealed the
extraordinary learning ability of our model.
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Figure 5: Strong Learning Ability. The x-axis is the training iterations, and the y-axis is a total loss
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Figure 6: Performance of Unsupervised Learning. Our SSN model is able to spot similar parts between different paintings when
appreciating our Amber Abstract dataset. Type 1 captures the pattern with a light blue protuberance on the left; type 2 spots the
feature of an orange diamond above a blue stripe; and each type 3 contains a small deep blue block

Amber Abstract. To explore the performance of our model
trained by unsupervised learning, we use this dataset for
the part alignment task. We produce this dataset in digital
abstract expressionism since there are not many ready-made
datasets available for such a challenge. Inspired by the shapes
and colors of amber, we paint 128 different paintings in
the same style. While creating these works, we do not have
any intentions to draw similar parts among different pieces,
therefore there is no “right answer” for the shared areas.
We use this dataset to give readers a visualized and direct
sense of the effectiveness of our SSN trained by unsupervised
learning. We call this dataset Amber Abstract. We resize
the original painting in the size of 480 × 640 to the size
of 120 × 160, we did not use any convolutional backbones
for feature extraction. We feed the painting directly into the
attention classifier, which maps each 3 × 19 × 19 sliding
window to a 1× 9 vector. The batch size is 4.

Some of our results on Amber Abstract dataset are shown
in figure 6. To provide readers with a more direct sense of
what our model produces, we let our model find aligned
parts, which are similar parts from different random creations.
There is no labeled data in the training process, and our model
can spot these parts, as is demonstrated in bounding boxes of
different colours, without efforts. This whole learning process
is unsupervised, and we will display more of the results in
the appendix.

Pedestrian 128. The semi-supervised learning results are
demonstrated through the 128 pedestrian bounding boxes in
the shape of 60 × 120 we collected from the Internet. We
manually labeled 16 of them (not all of them) with their body
key points including head, hands, knees and feet. We use 3
blocks of ResNet34 to extract a 128 × 8 × 15 feature map
for each image. The sliding window is in the size of 3× 3.

During training, we use the labeled images to guide SSN

training. After that, we continue training SSN with unlabeled
data. We demonstrate some of the attention maps of different
labels, along with their original images, in figure 4.

We also train SSN in unsupervised strategy. As we have
expected, the unsupervised SSN selects distinct parts, but
some parts are not human-understandable. Also, the selected
parts is not as stable or accurate as in the semi-supervised
strategy.

SSN Study Summary In this part, we take SSN out from
the pipeline and verify its robustness through three datasets.
We show its strong learning ability of seeking out distinct
parts, its flaws when trained in unsupervised strategy, and a
better result in semi-supervised strategy.

Conclusion
In this paper, we propose a novel design, called SSN3D. SSN
and two-round classification provide a general way of train-
ing attention networks in different strategies (and of course
with different performances). The main advantage of SSN
is to guarantee the distinction and stableness of spatial and
temporal information. The 3D convolution based aggrega-
tor shows an extraordinary capacity to handle the temporal
variation of different parts.

In practical applications, this whole system achieves im-
pressive results on video person ReID tasks. As future work,
we are expecting to see more forms of such an alignment
model on other tasks. Also, we plan to explore more flexible
semi-supervised learning strategy, e.g. with less or partial
labeled data.
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