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Abstract

Motion segmentation aims at separating motions of different
moving objects in a video sequence. Facing the complicated
real-world scenes, recent studies reveal that combining mul-
tiple geometric models would be a more effective way than
just employing a single one. This motivates a new wave of
model-fusion based motion segmentation methods. However,
the vast majority of models of this kind merely seek consen-
sus in spectral embeddings. We argue that a simple consen-
sus might be insufficient to filter out the harmful informa-
tion which is either unreliable or semantically unrelated to
the segmentation task. Therefore, how to automatically se-
lect valuable patterns across multiple models should be re-
garded as a key challenge here. In this paper, we present
a novel geometric-model-fusion framework for motion seg-
mentation, which targets at constructing a consistent affinity
matrix across all the geometric models. Specifically, it incor-
porates the structural information shared by affinity matrices
to select those semantically consistent entries. Meanwhile,
a multiplicative decomposition scheme is adopted to ensure
structural consistency among multiple affinities. To solve this
problem, an alternative optimization scheme is proposed, to-
gether with a proof of its global convergence. Experiments
on four real-world benchmarks show the superiority of the
proposed method.

Introduction
Motion segmentation has served as a crucial upstream task
in a broad spectrum of computer vision applications, such
as visual SLAM (Huang et al. 2019), video object detection
(Kamranian et al. 2020), video object tracking and segmen-
tation (Zhuo et al. 2020), and visual surveillance (Sengar and
Mukhopadhyay 2020). The goal of motion segmentation is
to group multiple moving objects into different clusters. The
objects herein are usually represented by a set of trajectories
of feature points tracked in a video sequence. This problem’s
challenges mainly lie in the complexity of real-world scenes,
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which might be caused by the perspective effect, scattered
feature points of moving objects, small objects.

According to how many frames involved in the segmen-
tation at each time, studies on motion segmentation could
be divided into two camps: (a) two-frame-based methods
(Zhuo et al. 2020; Muthu et al. 2020; Ranjan et al. 2019)
and (b) multi-frame-based methods. Compared with two-
framed-based methods, the multi-frame-based methods uti-
lize all frames in a video clip to capture the motion informa-
tion, which often owns higher performance. Existing multi-
frame based frameworks mainly fall into three directions.
The first direction is the subspace-based methods. Meth-
ods of this kind aim at exploring the subspace structure of
the trajectories, which is assumed to lie in the union of
several subspaces under the affine geometric model. Typ-
ical examples include algebraic (Vidal, Tron, and Hartley
2008), information-theoretic (Rao et al. 2010) and spec-
tral clustering-based models (Elhamifar and Vidal 2013; Liu
et al. 2013; Lu et al. 2019). The second direction is tar-
geted at exploring multi-model fitting methods that estimate
the model parameters using multiple model hypotheses in
the presence of data corruption and outliers. In the existing
literatures, such an idea is often implemented by consen-
sus learning (Magri and Fusiello 2016; Kluger et al. 2020)
, preference fusion (Magri and Fusiello 2014; Tepper and
Sapiro 2017; Magri and Fusiello 2019), hyper-graph learn-
ing (Lin et al. 2019) and energy minimization (Barath and
Matas 2018; Baráth and Matas 2019). Last but not least, the
third direction studies fusion-based methods that aggregate
multiple geometric models (Lai et al. 2017; Xu, Cheong, and
Li 2018, 2021; Jung, Ju, and Kim 2019) into a single result.

Among these approaches, (Xu, Cheong, and Li 2018)
achieves a promising performance by aggregating the well-
known affine, homography, and fundamental geometric
models to overcome the disadvantage of each and seek out
a consistent result. The affine model could hardly deal with
the perspective effect in real-world scenes. For homography
models, the obtained affinities between different planes of
the same rigid motion are weak; thus, it is insufficient to
group dispersed objects. The fundamental model could dis-
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cover much richer information between trajectories, while
false positive affinity might also be detected, resulting in
overlapped subspace structures for the affinity matrix. To
equip the motion segmentation model with the ability to
tackle various real-world scenes, it is necessary to integrate
these basic models to produce a consistent segmentation re-
sult.

However, the aggregation method proposed in (Xu,
Cheong, and Li 2018) is still insufficient to leverage a con-
sistent result, which finds spectral embeddings with pair-
wise consensus under subset constraints, while ignoring the
affinity-level consensus. As we mentioned above, the three
basic models suffer from different affinity issues. Merely
learning model-specific spectral embeddings with a sim-
ple fusion operation might not eliminate the influence of
those incorrect affinities, e.g., large fundamental affinities
for unrelated trajectories, or nonzero affinities caused by
outliers. Therefore, how to automatically select valuable pat-
terns across the basic models becomes a key challenge here.
Moreover, inspired by the fact that ideal affinity matrices
must be block-diagonal (Lu et al. 2019), we turn to learn
a consensus affinity matrix for the basic ones by exploring
their structural consistency.

In this paper, we propose a new geometric-model-fusion
based framework for motion segmentation, which pursues
the affinity-level segmentation consistency across all the ge-
ometric models via constructing a consensus affinity matrix.
The proposed framework resorts to exploit the structural in-
formation with block-diagonality shared among the basic
affinity matrices to select those valuable patterns lying in
affinities, i.e., semantically consistent entries. More specifi-
cally, a multiplicative decomposition is utilized with a struc-
tural regularizer enforced on the shared shape mask, which
ensures the structural consistency of multiple affinity matri-
ces. We then propose an alternative optimization scheme to
solve this problem and prove that it enjoys global conver-
gence.

In summary, the contributions of this paper are three-fold:

• A novel model-fusion based motion segmentation frame-
work is proposed to pursue the affinity-level segmenta-
tion consistency all the geometric models. In the core of
this framework lies in the consensus affinity construction
that captures the shared structural information with block-
diagonal pursuit.

• To solve the problem, we present an algorithm to alter-
natively update the variables, together with a theoretical
analysis for its promising global convergence property.

• Extensive experiments are conducted on four real-world
benchmark datasets. The quantitative and qualitative re-
sults both validate the superiority of the proposed method.

Methodology
In this section, we first introduce how to generate affin-
ity matrix from basic geometric models. Then the proposed
method to integrate these affinities to seek consistent motion
segmentation is detailed.

Affinity Construction from Geometric Models
Given the trajectories ofN tracked points within F consecu-
tive frames X = {xf1 , · · · ,x

f
N}Ff=1, we first use them to fit

plenty of hypotheses of V types of geometric models. For a
geometric model, M minimal subsets of data points in each
two consecutive frames are randomly sampled to estimate
the model, then generate M model hypotheses. Therefore,
there are M × F model hypotheses sampled for each geo-
metric model.

With these model hypotheses, we then calculate the resid-
ual between each xfi and each model hypothesis by their
Sampson distance (Hartley and Zisserman 2003). This re-
sults in the following residual vector for i-th point at f -th
consecutive pair of frames under v-th geometric model:

r
f(v)
i =

[
r
f(v)
i,1 , r

f(v)
i,2 , · · · , rf(v)i,M

]
After that, we adopt the Ordered Residual Kernel (ORK)

(Chin, Wang, and Suter 2009) to capture the affinities be-
tween two data points and divide them by correspond-
ing co-occurrence times throughout the frames for normal-
ization. Then the affinity matrix is sparsified within a ε-
neighborhood way as a customary step (Lai et al. 2017).

Consistent Segmentation with Structural Pursuit
Denote the affinity matrix set obtained by multiple geomet-
ric models as A = {A(v)}Vv=1, where A(v) ∈ RN×N . Now
we need to find the partition for k motions. Unlike (Xu,
Cheong, and Li 2018) which tries to seek common spectral
embeddings for all the views, we turn to construct a consen-
sus affinity matrix by discovering reliable information lying
in the shared structure of these affinity matrices, then per-
form the spectral clustering on the consensus matrix to ob-
tain the final partition.

Ideally, the affinity between points belonging to different
motions should be 0. Therefore, each A(v) has at least k
connected components, i.e., each A(v) is k-block diagonal.
When the data points are ordered according to their motion
membership, A(v) could be represented as:

A(v) =


A

(v)
1 0 · · · 0

0 A
(v)
2 · · · 0

...
. . .

...
0 0 · · · A

(v)
k

 ,
where A

(v)
k ∈ Rni×ni is not an identity matrix, ni denotes

the number of points in i-th motion, and
∑
i ni = N . Note

that here the block diagonality only requires the number
of connected components, rather than an explicit block di-
agonal structure, thus it is permutation invariant – if A(v)

is k-block diagonal, then for any permutation matrix P ,
PA(v)P> is also k-block diagonal (Lu et al. 2019).

Apparently, A(v)s share the same block-diagonal struc-
ture since nis keep unchanged in all the views. Such a struc-
ture reveals the true membership of data points, which is ex-
actly what we pursue in this task. Borrowing the wisdom of
(Yang et al. 2019), we decompose the model-specific A(v)
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using a multiplication of a shared block-diagonal mask S
and the magnitude G(v), i.e., A(v) = S � G(v). In this
scheme, S is encouraged to concentrate on capturing the
consistent structure shared by all the A(v)s, while G(v) are
expected to maintain the magnitude for elements lying in
this structure. Accordingly, a consensus among all the views
could be reached with agreements as much as possible.

To meet our expectation, we constrain the magnitude of
each element in S with a predefined upper bound Smax to
prevent it from dominating the multiplication and force it to
focus on discover the structure. Meanwhile, a nonnegative
lower bound Gmin is applied on G(v) to avoid zero entries
in G(v), since the zero entry will cause a zero element in
corresponding position for S � G(v) thus might break the
structure. Moreover, note that the values in diagonal entries
of A(v)s have no effect on the following spectral clustering,
thus we manually set these diagonal elements to be zero be-
fore the segmentation. This also leads to a constraint for S
and G(v) that their diagonal entries should be zero. To sum
up, we have the constraint set for S and G(v)s respectively,
S = {S : S ∈ RN×N ,S = S>,

0 ≤ Sij ≤ Smax, diag(S) = 0},
G = {G : G ∈ RN×N ,Gij ≥ Gmin, diag(G) = 0}.

(1)

With the decomposition modeling, now we need to real-
ize the block-diagonality for S. From spectral graph the-
ory, we know that the number of connected components
in S equals to the multiplicity k of the eigenvalue 0 of
the corresponding Laplacian matrix LS = diag(S1) − S
(Von Luxburg 2007). Therefore, a straight-forward choice
to obtain a k-block-diagonal S is to apply the hard rank
constraint rank(LS) = n − k. However, directly solving
this constrained problem is NP-hard. Fortunately, (Lu et al.
2019) proposes the following soft block diagonal regularizer
based on this fact to reach this goal.
Definition 1 (k-block diagonal regularizer, (Lu et al.
2019)) Let the eigenvalues λi of a N × N matrix A be ar-
ranged in a non-increasing order λ1(A) ≥ λ2(A) ≥ . . . ≥
λN (A). For any N × N affinity matrix S that S ≥ 0 and
S = S>, the k-block diagonal regularizer is defined as the
sum of the k smallest eigenvalues of its Laplacian LS:

‖S‖
k

=
N∑

i=N−k+1

λi(LS).

By adopting the Frobenius norm to regularize the magni-
tude G(v) and implementing the above structural regularizer,
our objective function could be formulated as:

min
S,G(v),U

1

2

∑
v

‖A(v) − S �G(v)‖
2

F

+
α1

2

∑
v

‖G(v)‖
2

F + α2‖S‖ k

s.t. S ∈ S, G(v) ∈ G.

(2)

According to Ky Fan’s Theorem (Fan 1949), we could re-
formulate the k-block diagonal regularizer in a convex form:

‖S‖
k

= min
U
〈LS ,U〉, s.t. U ∈ U (3)

where

U = {U : U ∈ RN×N ,0 � U � I, tr(U) = k}. (4)

Using Eq. (3), we reach our final optimization problem:

min
S,G(v),U

1

2

∑
v

‖A(v) − S �G(v)‖
2

F

+
α1

2

∑
v

‖G(v)‖
2

F + α2〈LS ,U〉

s.t. S ∈ S, G(v) ∈ G, U ∈ U

(5)

Optimization
Following the idea of (Yang et al. 2020), we present an op-
timization method to solve the following surrogate problem
rather than directly solving Eq. (5):

min
S,G(v),U

1

2

∑
v

‖A(v) − S �G(v)‖
2

F +
α1

2

∑
v

‖G(v)‖
2

F

+ α2〈LS ,U〉+
α3

2
‖U‖2F

s.t. S ∈ S, G(v) ∈ G, U ∈ U
(6)

The introduction of the term α3

2 ‖U‖
2
F induces a promising

property that the proposed algorithm could produce a param-
eter sequence simultaneously converging to a critical point
of both Eq. (5) and Eq. (6) under certain conditions, which
will be proved latter.

We propose an alternative optimization scheme to solve
this non-convex and non-smooth problem (Eq. (6)). For vari-
ables S,U and G(v), we iteratively update each of them
while fixing others.

Fix S,U , update G(v)

The subproblem for each G(v) is:

min
G(v)

1

2
‖A(v) − S �G(v)‖

2

F +
α1

2
‖G(v)‖

2

F

s.t. G(v) ∈ G
(7)

The solution could be easily obtained by setting the deriva-
tive to be 0. Thus we have:

G(v)∗ = G̃(v) − diag(diag(G̃(v))),

G̃(v) = max
(
(S �A(v))� (S � S + α1), Gmin

)
.

(8)

Here max(·) is element-wise maximum, and � denotes the
element-wise division, i.e., S = A � B means Sij =
Aij/Bij .

Fix G(v),U , update S

The subproblem for S is:

min
S

1

2

∑
v

‖A(v) − S �G(v)‖
2

F + α2〈LS ,U〉

s.t. S ∈ S
(9)

Obviously, when i = j, Sij = 0 is the only feasible solution.
For i 6= j, since 〈LS ,U〉 = 〈S, diag(U)1> − U〉, denote
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Ū = diag(U)1> −U , the subproblem for each pair of Sij
and Sji could be reformulated as

min
Sij=Sji

1

2

∑
v

(
A

(v)
ij − SijG

(v)
ij

)2
+
(
A

(v)
ji − SjiG

(v)
ji

)2
+ α2

(
SijŪij + SjiŪji

)
s.t. 0 ≤ Sij ≤ Smax, 0 ≤ Sji ≤ Smax

(10)
This problem also enjoys a closed-form solution:

S∗ij =

{
min

(
Smax,max(S̃ij , 0)

)
, i 6= j

0, i = j
, (11)

where

S̃ij =

∑
v

(
G

(v)
ij A

(v)
ij + G

(v)
ji A

(v)
ji

)
− α2

(
Ūij + Ūji

)∑
vG

(v)2
ij

.

(12)

Fix S,G(v), update U

The subproblem for U could be written as:

min
U
〈LS ,U〉+

α3

2α2
‖U‖2F , s.t. U ∈ U . (13)

The problem without the term α3

2α2
‖U‖2F is well-studied

with a solution of U = V1:kV
>
1:k, where V is the eigenvec-

tor matrix with the i-th column vi corresponding to λi(LS).
On the other hand, the solution when α3 ≥ 0 could be given
by Theorem 3 in (Yang et al. 2020), which is as follows.

Theorem 1 (Optimal solution of Eq. (13)) Let V =
[v1,v2, · · · ,vN ] be the eigenvector matrix associated for
λ1(LS), · · · , λN (LS). Let λ0(LS) = −∞, λN+1(LS) =
+∞. Furthermore, set

l = max{i : λi(LS) < λi+1(LS), 0 ≤ i < k}
h = min{i : λi(LS) < λi+1(LS), i ≥ k}

∆l = λl+1(LS)− λl(LS)

∆h = λh+1(LS)− λh(LS)

δ̆(LS) =

{
min{∆l,∆h}, l 6= 0, h 6= N,

max{∆l,∆h}, otherwise.

Then for all LS 6= 0 and 0 ≤ α3

2α2
< δ̆(LS), the optimal

solution of Eq. (13) is:

U? = V1:lV
>
1:l + k−l

h−lVl+1:hV
>
l+1:h (14)

Compared with the corresponding subproblem of the orig-
inal problem (i.e., Eq. (13) with α3 = 0), Eq. (13) with
a positive α3 is strongly convex, thus enables the global
convergence property of the proposed optimization scheme.
Moreover, according to Eq. (14), since the inclusion of
Vl+1:h enables U? to have the whole subspace spanned by
eigenvectors associated with λk(LS) even if λk+1(LS) =
λk(LS), it ensures that U? is well-defined and identifiable
when the eigengap λk+1(LS)− λk(LS) vanishes.

Algorithm 1 Model-fusion-based Consistent Motion Seg-
mentation
Input: Trajectories of N tracked points over F frames,

hyper-parameter α1, α2, Smax, Gmin
Output: Motion labels y = [y1, · · · , yn]

1: Construct affinity matrices A = {A(v)}Vv=1 from V ge-
ometric models using the trajectories

2: Initialize G(v) ← 0, S ← 1N1>N − I , U ← IN
3: while not converged do
4: Update G(v) with Eq. (8)
5: Update S with Eq. (11)
6: Update U with Eq. (14)
7: end while
8: Get consensus affinity matrix A with Eq. (15)
9: y ← SpectralClustering(A)

Clustering
After obtaining the optimal S and G(v)s, we could calculate
the final consensus affinity matrix by:

A =
V∑
v

S �G(v) + (S �G(v))>

2
(15)

Then spectral clustering is applied on A for final results.
We summarize our algorithm in Algorithm 1. For our

model, the time complexities of updating S and {G(v)}s
are both O(V N2). Updating U costs O(N3) operations to
perform eigenvalue decomposition. Hence the overall com-
putational complexity is O(N3 + 2V N2) per iteration.

Convergence Analysis
First, we prove the global convergence property of our algo-
rithm with respect to the surrogate problem Eq. (6).
Theorem 2 (Global Convergence of Algorithm 1 with
respect to Eq. (6)) Let {St,G(v)

t ,Ut} be the parameter
sequence generated by Algorithm 1. Let L(S,G(v)) =
1
2

∑
v ‖A(v) − S �G(v)‖2F + α1

2

∑
v ‖G(v)‖2F + IS(S) +∑

v IG(G(v)), then the surrogate objective could be written
asF(S,G(v),U) = L(S,G(v))+α2〈LS ,U〉+α3

2 ‖U‖
2
F+

IU (U), where IU (·) is the indicator function for the set U .
Then for any 0 < α3 < 2α2 mint δ̆(LSt), for all finite and
feasible initialization, the following facts hold:

(1) The parameter sequence {St,G(v)
t ,Ut}t converges to a

critical point {S∗,G(v)∗,U∗} of Eq. (6).

(2) The loss sequence {F(St,G
(v)
t ,Ut)}t converges to the

loss of critical point F(S∗,G(v)∗,U∗) of Eq. (6).
(3) Algorithm 1 has a convergence rate of O( 1

T ) with re-
spect to Eq. (6).

We could then prove that the global convergence property
also holds for the original problem.
Theorem 3 (Global Convergence of Algorithm 1 with re-
spect to Eq. (5)) Under the same condition as Thm. 2, the
sequence {St,G(v)

t ,Ut} generated by Algorithm 1 also sat-
isfies (1)-(3) with respect to the original problem Eq. (5).
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Type Method

Hopkins155 Hopkins12 MTPV62 KT3DMoSeg

2 Motion 3 Motion All Mean Median
Missing Data

12 clips
Hopkins
50 clips

All
62 clips Mean Median

Single-
model

LSA 4.23 7.02 4.86 - - - - - 38.30 38.58
GPCA 4.59 28.66 10.02 - - 28.77 16.20 16.58 34.60 33.95
ALC 2.40 6.69 3.56 0.89 0.44 0.43 18.28 14.88 24.31 19.04
TPV 1.57 4.98 2.34 - - 0.91 2.78 2.37 - -
T-Linkage 0.86 5.78 1.97 - - - - - - -
SSC 1.52 4.40 2.18 - - 17.22 2.01 5.17 33.88 33.54
LRR 1.33 4.98 1.59 - - 29.46 5.26 5.95 33.67 36.01
BDR 0.95 0.85 0.93 - - 26.63 7.81 5.09 32.88 33.01

Multi-
model

MSSC 0.54 1.84 0.83 - - 0.65 0.65 0.65 - -
RV 0.31 0.66 0.39 - - - - - - -
KerAdd 0.27 0.66 0.36 0.11 0.00 1.41 0.76 0.88 8.31 1.02
CoReg 0.37 0.75 0.46 0.06 0.00 0.30 0.83 0.73 7.92 0.75
Subset 0.23 0.58 0.31 0.06 0.00 0.30 0.77 0.65 8.08 0.71
Ours 0.19 0.57 0.28 0.02 0.00 0.44 0.57 0.55 4.58 1.10

Table 1: Clustering Error Rates (%) on four benchmarks. The best results are highlighted with underline. The lower, the better.
Part of results are cited from (Xu, Cheong, and Li 2018; Jung, Ju, and Kim 2019; Lu et al. 2019).

Such a property ensures that our algorithm is insensitive
to initialization, i.e., for any initial values, both the loss and
parameter sequences can converge to a stationary point and
won’t fluctuate around an optimum. Hence our algorithm
is more stable than those without this property. Due to the
space limit, the proofs of both Theorem 2 and 3 are provided
in the supplementary materials1.

Experiment
Experimental Setup
Dataset Hopkins155 dataset (Tron and Vidal 2007) con-
sists of 155 video clips of indoor or outdoor scenes, where
120 of them are with two motions and 35 are with three mo-
tions. Hopkins12 dataset (Rao et al. 2010) is with 12 incom-
plete trajectories. Since Hopkins155 lacks of perspective ef-
fects and has a very imbalance number of two-motion and
three-motion clips, (Lai et al. 2017) build a more complex
dataset, MTPV62, by combining 50 clips in Hopkins155
and other 12 clips with object occlusions, of which 4 clips
are from (Schindler, U, and Wang 2006) and 8 clips are
collected by (Lai et al. 2017). The resulting dataset has
26 two-motion and 36 three-motion video clips. Moreover,
(Xu, Cheong, and Li 2018) propose the KITTI 3D Motion
Segmentation Benchmark (KT3DMoSeg) based on KITTI
dataset (Geiger et al. 2013), which exhibits more significant
camera translation, more complicated backgrounds, and in-
terplays of multiple motions. This dataset has 22 short video
clips with a maximum number of motions of 5.

Competitors We adopt the following 12 approaches as
our competitors: (1) Subspace based: ALC (Rao et al. 2010),
GPCA (Vidal, Tron, and Hartley 2008), SSC (Elhamifar
and Vidal 2013), LRR (Liu et al. 2013), BDR (Lu et al.

1https://github.com/jiangyangby/AAAI21-ConsistentMoSeg

Figure 1: Histograms of error rates achieved by Ours (top
half) and Subset (bottom half) on Hopkins155. For better
visualization, the scale of y-axis is adjusted. The height of
the first bin is 129 and 125 for Ours and Subset, respectively.

2019); (2) Multimodel fitting based: T-Linkage (Magri and
Fusiello 2014); (3) Fusion-based: MSSC (Lai et al. 2017),
KernelAdd, CoReg and Subset (Xu, Cheong, and Li 2018),
RV (Jung, Ju, and Kim 2019) (4) Two-frame based: Two-
Perspective-View (TPV) (Li et al. 2013).

Metric Following previous studies, we use the clustering
error rate as the evaluation metric for segmentation accuracy.

ErrorRate =
# misclustered points

# total points
× 100%

Implementation details We carry out our experiments
on a Ubuntu 16.04 desktop with an Intel Core i7-8700K
CPU and 64GB memory in MATLAB R2018a 64-bit. For
those baselines which cannot deal with missing data, Chen’s
method (Chen 2008) is implemented to estimate the miss-
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Figure 2: Error rate on each video clip of KT3DMoSeg dataset.

Figure 3: Examples of segmentation results on KT3DMoSeg. The left, middle, right column show the results of ground-truth
(GT), Ours, and Subset, respectively. We show frames from Seq028 Clip02, Seq038 Clip01, Seq059 Clip01 in rows.

ing entries following (Xu, Cheong, and Li 2018). For the
proposed methods, the model hypotheses are fitted with lin-
ear algorithms (Hartley and Zisserman 2003). The mini-
mal subset size for A, H, F is 8, 4 and 3. We adopt a grid
search scheme for hyperparameter tuning. Specifically, α1

is tuned within {0.0001, 0.0005, 0.001, 0.005, 0.01}, α2 is
within {0.001, 0.005, 0.01, 0.015, 0.03, 0.05}, and ε within
{0, 1, 2, 3, 4, 5}. Meanwhile, we fix Smax = 5, Gmin =
0.0001. Since we only require α3

α2
to have moderate value,

α3 is set to 0.001α2.

Performance Comparison
Results All the results are recorded in Table 1. It shows
that on all the datasets, our framework (denoted by Ours)
consistently outperforms the best competitors with respect
to the average error rate, where the performance is improved
by 0.03%, 0.1% and 3.34%, respectively. On Hopkins155,
Ours also achieves the best performance over the 2 motion
and 3 motion subset. Meanwhile, on MTPV62, the error rate
of Missing Data subset obtained by Ours is a little larger than
Subset and CoReg. A reason might be that the performance
of our proposed method largely depends on the quality of
calculated affinity matrices, and the affinities for this subset
might be not very good. Besides, the median error rate on
KT3DMoSeg is not very promising. This may be caused by

that each video clip needs individual choice of hyperparam-
eters to achieve its best performance, while we set the same
hyperparameters for all the video clips in a dataset. We will
discuss the sensitivity of our model latter.

Other observations could be made that: (1) Model-fusion
based methods are more competitive than single-model
based ones, in particular when there is much data occlu-
sion, which verifies the necessity of involving multiple mod-
els. (2) Among the model-fusion based approaches, inte-
grating various types of geometric models (i.e., Subset and
Ours) is more effective than only utilizing homography one
(i.e., MSSC and RV). Namely, combining multiple geomet-
ric models brings better improvements.

Visualization In order to make a finer-grained compari-
son, we first plot the histograms of our proposed method
and the most competitive baseline, Subset, over all the 155
video clips on Hopkins155 dataset. This is shown in Fig-
ure 1 with the bin size of 21. Though the performance of
the two models is similar when the error rate ranges from 0
to 3, our proposed model obtains much less number of clips
with large error rates (say those lying in (11, 21]), thus could
achieve lower error rates on average. Besides, we also plot
the error rate on each clip of KT3DMoSeg dataset for the
two methods in Figure 2. We could also observe that the er-
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Figure 4: Visualization of A(v)s, obtained S and G(v)s, con-
sistent affinity A, and the indicator matrix for the segmenta-
tion results on the Van clip in MTPV62 dataset. The points
are reordered according to their ground-truth labels for bet-
ter illustration for the block-diagonal structure.

rors of our model are significantly lower than Subset’s over
many clips, e.g., Seq009 Clip02, Seq028 Clip02 and
Seq059 Clip01, which is consistent with Hopkins155.

To better show that in what scenario our framework ap-
plies to, we present some segmentation results in Figure 3.
It could be observed that:

• 1st row: Subset mixes up the very small object with a
large portion of background points. However, our pro-
posed model correctly discriminates the object’s motion
from the background motion in a higher probability.

• 2nd row: This clip contains more small objects thus is
more challenging than the previous one. Compared with
Ours, Subset again regards two small objects as one, and
mis-clusters some points around an object. It also over-
segments the entire background motion.

• 3rd row: A motion in this clip only has one tracked point
(plotted in a yellow diamond), causing a significant clus-
ter imbalance. Our method obtain most correct results,
while Subset over-segments the background again.

We then move to analyze how the multiplicative decom-
position work for the consensus affinity construction. Fig-
ure 4 visualize the values of basic affinity A(v)s, variables
S,G(v), the final consensus affinity A, and the indica-
tor matrix for our segmentation results on the Van clip in
MTPV62 dataset. First, the sparsity of A(v) decreases w.r.t
the increasing of v, which accords with the characteristic
of geometric models. Comparing them with the indicator

Figure 5: Sensitivity against α1 and α2 on Hopkins155
dataset. The error rate ranges from 0.28% to 0.89%.

matrix, we see that some unrelated trajectories are assigned
with positive affinities in A(3), which causes totally differ-
ent subspace structure with ground-truth. Nevertheless, in
the obtained G(3), these inconsistent affinities are filtered
out. Meanwhile, the shape mask S and consensus affinity
A both exhibit almost correct block-diagonal structure, re-
sulting a nearly perfect segmentation result. Therefore, the
strength of the proposed method is again verified.

Sensitivity analysis Next, we study the influence of two
main hyperparameters on the proposed model, α1 and α2.
α1 constrains the magnitude of G(v)s to avoid overfitting,
while α2 helps control the block-diagonality of S. To this
end, a 3D-barplot is illustrated in Figure 5 based on the re-
sults of grid search on Hopkins155, where the x- and y-axis
stand for the value of α1 and α2 respectively, and the z-axis
shows the average error rate (%) on the dataset. On one hand,
when α1 is fixed, a too large α2 (say 0.05) might rapidly in-
crease the error rate since such values lead to structures that
are either far from block-diagonal or exactly block-diagonal
but with blocks involving wrong data points. On the other
hand, when α2 is not greater than 0.03, the performance
change toward α1 is moderate. Yet for α2 = 0.05 the per-
formance becomes much unstable. The reason might be that
a large α2 means strict pursuit on the structure, causing the
structure to be more easily broken by encouraging different
magnitudes. Overall, our model is relatively sensitive toward
α2, while not much sensitive toward α1. This is consistent
with the intuition that the influence of structure should be
much larger than that of magnitude.

Conclusion
In this paper, we propose a novel framework to boost the
multi-model fusion for motion segmentation. Our main idea
is based on seeking the consensus affinity matrix across mul-
tiple geometric models by guaranteeing their structural con-
sistency. Specifically, the affinity matrix is decomposed into
a multiplication of a model-sharing shape mask and a model-
specific magnitude, with a block-diagonal structure regular-
ization applied on the mask. Moreover, we provide a solver
for this problem with a global convergence property. Finally,
we evaluate our approach on four benchmarks. Experimen-
tal results show the superiority of our method.
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