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Abstract

Few-shot detection and classification have advanced signif-
icantly in recent years. Yet, detection approaches require
strong annotation (bounding boxes) both for pre-training and
for adaptation to novel classes, and classification approaches
rarely provide localization of objects in the scene. In this pa-
per, we introduce StarNet - a few-shot model featuring an
end-to-end differentiable non-parametric star-model detec-
tion and classification head. Through this head, the backbone
is meta-trained using only image-level labels to produce good
features for jointly localizing and classifying previously un-
seen categories of few-shot test tasks using a star-model that
geometrically matches between the query and support images
(to find corresponding object instances). Being a few-shot de-
tector, StarNet does not require any bounding box annota-
tions, neither during pre-training, nor for novel classes adap-
tation. It can thus be applied to the previously unexplored
and challenging task of Weakly Supervised Few-Shot Object
Detection (WS-FSOD), where it attains significant improve-
ments over the baselines. In addition, StarNet shows signifi-
cant gains on few-shot classification benchmarks that are less
cropped around the objects (where object localization is key).

Introduction
Recently, great advances have been made in the field of
few-shot learning using deep convolutional neural networks
(CNNs). This learning regime targets situations where only
a handful of examples for the target classes (typically 1 or
5) are available at test time, while the target classes them-
selves are novel and unseen during pre-training. Commonly,
models are pre-trained on a large labeled dataset of ‘base’
classes, e.g. (Lee et al. 2019; Snell, Swersky, and Zemel
2017; Li et al. 2017). There, depending on the application,
label complexity varies from image-level class labels (clas-
sification), to labeled boxes (detection), to labeled pixel-
masks (segmentation). As shown in (Chen et al. 2019), few-
shot methods are highly sensitive to ’domain shift’. For
these methods to be effective, the base classes used for pre-
training need to be in the same ‘visual domain’ as the target
(test) classes. That said, for applications which require richer
annotation, such as detection, entering new visual domains is
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Figure 1: StarNet provides evidence for its predictions by
finding (semantically) matching regions between query and
support images of a few-shot task, thus effectively detect-
ing object instances. Top: Matching regions are drawn as
heatmaps for each query and support pair. Clearly, in this sit-
uation there is no single correct class label for these queries.
Yet, StarNet successfully highlights the matched objects on
both the query and the support images, thus effectively ex-
plaining the different possible labels. Bottom: StarNet paves
the way towards previously unexplored Weakly-Supervised
Few-Shot Object Detection (WS-FSOD) task.

still prohibitively expensive due to thousands of base classes
images that need to be annotated in order to pre-train a Few-
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Figure 2: StarNet overview. Query image Q is matched to a candidate support image S jointly localizing instances of a shared
category (if exist). NMS iteratively suppresses the max hypothesis allowing matching non-rigid object parts or multiple objects.
Back-projection generates decision evidence heatmaps for additional refinement stage. StarNet is end-to-end differentiable.

Shot Object Detector (FSOD), e.g. (Chen et al. 2018; Kar-
linsky et al. 2019; Kang et al. 2019; Wang, Ramanan, and
Hebert 2019; Liu et al. 2019), for the new domain.

Few-shot classifiers require much less annotation efforts
for pre-training, but can only produce image-level class pre-
dictions. Of course, general purpose methods such as the
popular GradCAM (Selvaraju et al. 2017), are able (to some
extent) to highlight the pixels supporting the prediction of
any classifier. But, as illustrated in Figure 3, and evaluated in
Table 1, these are less effective for few-shot classifiers that
need to predict novel classes based on only a few labeled
support examples available for a few-shot task.

In this paper, we introduce a new few-shot learning task:
Weakly-Supervised Few-Shot Object Detection (WS-FSOD)
- pre-training a few-shot detector and adapting it (with few
examples) to novel classes without bounding boxes and us-
ing only image level class label annotations. We also in-
troduce StarNet - a first weakly-supervised few-shot detec-
tor that geometrically matches query and support images,
classifying queries by localizing objects contained within
(Fig. 1 bottom). StarNet features an end-to-end differen-
tiable head performing non-parametric star-model match-
ing. During training, gradients flowing through the StarNet
head teach its underlying CNN backbone to produce features
best supporting correct geometric matching. StarNet handles
multiple matching hypotheses (e.g. corresponding to multi-

ple objects or object parts), each analyzed by a differentiable
back-projection module producing heatmaps of the discov-
ered matching regions (on both query and support images).
After training, these heatmaps usually highlight object in-
stances, thus detecting the objects and providing explana-
tions for the model’s predictions (Fig. 1 top).

To summarize, our contributions are as follows: (1) we
propose WS-FSOD - a new challenging few-shot learning
task of pre-training a few-shot detector and adapting it to
novel classes without bounding boxes and using only image
class labels; (2) as a solution to WS-FSOD, we propose Star-
Net - a first end-to-end differentiable non-parametric star-
model posed as a neural network, demonstrating promising
results for WS-FSOD by significantly outperforming a di-
verse set of baselines for this new task; (3) as a bonus, not
requiring bounding boxes allows StarNet to be directly ap-
plied to few-shot classification, where we demonstrate it to
be especially useful on benchmarks in which images are less
cropped around the objects (e.g. CUB and ImageNetLOC-
FS), and for which object localization is key.

Related Work
In this section we briefly review the modern few-shot learn-
ing focusing on meta-learning, discuss weakly-supervised
detection, cover star-model related methods, and review
methods for few-shot localization and detection.
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Meta-learning methods, e.g. (Vinyals et al. 2016; Snell,
Swersky, and Zemel 2017; Li et al. 2019a, 2017; Zhou, Wu,
and Li 2018; Ravi and Larochelle 2017; Rusu et al. 2018;
Oreshkin, Rodriguez, and Lacoste 2018; Zhang et al. 2019;
Zhang, Zhang, and Koniusz 2019; Gidaris and Komodakis
2019; Alfassy et al. 2019) learn from few-shot tasks (or
episodes) rather then from individual labeled samples. Such
tasks are small datasets, with few labeled training (support)
examples, and a few test (query) examples. The goal is to
learn a model that can adapt to new tasks with novel cat-
egories, unseen during training. In (Dvornik, Schmid, and
Mairal 2019) ensemble methods for few-shot learning are
evaluated. MetaOptNet (Lee et al. 2019) utilizes an end-
to-end differentiable SVM solver on top of a CNN back-
bone. (Gidaris et al. 2019) combines few-shot supervision
with self-supervision, in order to boost the few-shot perfor-
mance. In (Qiao et al. 2019; Li et al. 2019b; Kim et al. 2019;
Gidaris et al. 2019) additional unlabeled data is used, while
(Xing et al. 2019) leverages additional semantic information
available for the classes.

Star Models (SM) and Generalized Hough Transform
(GHT) techniques were popular classification and detec-
tion methods before the advent of CNNs. In these tech-
niques, objects were modeled as a collection of parts, inde-
pendently linked to the object variables via Gaussian priors
to allow local deformations. Classically, parts were repre-
sented using patch descriptors (Sali and Ullman 1999; Leibe,
Leonardis, and Schiele 2006; Maji and Malik 2009; Karlin-
sky et al. 2017), or SVM part detectors in DPM (Felzen-
szwalb et al. 2010). DPM was later extended to CNN based
DPM in (Girshick et al. 2015). Recently, in (Qi et al. 2019)
GHT was used to detect objects in 3D point clouds, in
the fully supervised and non-few-shot setting. Unlike DPM
(Felzenszwalb et al. 2010; Girshick et al. 2015), StarNet
is non-parametric, in a sense that parts are not explicitly
learned and are not fixed during inference, and unlike all of
the aforementioned methods (Sali and Ullman 1999; Leibe,
Leonardis, and Schiele 2006; Maji and Malik 2009; Felzen-
szwalb et al. 2010; Girshick et al. 2015; Karlinsky et al.
2017; Qi et al. 2019), it is trained using only class labels (no
bounding boxes) and targets the few-shot setting. In (Lin,
Roychowdhury, and Maji 2017) a non few-shot classifica-
tion network is trained through pairwise local feature match-
ing, but unlike in StarNet, no geometrical constraints on the
matches are used. Finally, unlike the classical approaches
(Sali and Ullman 1999; Leibe, Leonardis, and Schiele 2006;
Maji and Malik 2009; Felzenszwalb et al. 2010), StarNet
features (used for local matching) are not handcrafted, but
are rather end-to-end optimized by propagating gradients
through StarNet head to a CNN backbone.

Weakly-supervised object detection refers to techniques
that learn to detect objects despite being trained with only
image-level class labels. In a number of works, an external
region proposal mechanism (e.g., Selective Search (Uijlings
et al. 2013)) is employed to endow a pre-trained CNN clas-
sifier with a detection head (Bilen and Vedaldi 2016), or
to provide initial proposals for RPN (Zeng et al. 2019). In
(Tang et al. 2018a), the proposals are clustered into groups
to facilitate iterative training of instance classifiers. More re-

cently, in (Tang et al. 2018b), a region proposal sub-network
is trained jointly with the backbone, by refining initial (slid-
ing window) proposals. To the best of our knowledge, no
prior works have considered the weakly-supervised detec-
tion in the few-shot setting.

Few-shot with localization and attention is a rela-
tively recent research direction. Unlike StarNet, most of
these methods rely on bounding box supervision during pre-
training. Using bounding boxes, several works (Chen et al.
2018; Karlinsky et al. 2019; Kang et al. 2019; Wang, Ra-
manan, and Hebert 2019; Liu et al. 2019; Wang et al. 2020)
have extended object detection techniques (Ren et al. 2015;
Liu et al. 2016) to few-shot setting. (Wertheimer and Hariha-
ran 2019) uses an attention module trained using bounding
boxes. SILCO (Hu et al. 2019) trains using bounding boxes
to localizes objects in 1-way / 5-shot mode only. (Shaban
et al. 2019) uses Multiple Instance Learning and an RPN
pre-trained using bounding boxes on MS-COCO (Lin et al.
2014). SAML (Hao et al. 2019) and DeepEMD (Zhang et al.
2020) compute a dense feature matching applying MLP or
EMD metric as a classifier, but unlike StarNet geometric
matching is not employed. In CAN (Hou et al. 2019) at-
tention maps for query and support images are generated by
1×1 convolution applied to a pairwise local feature compar-
ison map. These attention maps are not intended for object
localization, so unlike StarNet, geometry of the matches in
(Hou et al. 2019) is not modeled. In DC (Lifchitz et al. 2019)
a classifier is applied densely on each of the local features in
the feature map, their decisions are globally averaged, unlike
StarNet, without employing geometry.

Recently, (Choe et al. 2020) proposed a few-shot protocol
for Weakly Supervised Object Localization (WSOL) - given
(a single) true class label of the test image, localizing an ob-
ject of that class in it. In their protocol ImageNet pre-trained
models are fine-tuned using 5-shots with bounding boxes su-
pervision. In contrast, in this paper we propose Weakly Su-
pervised Few-Shot Object Detection (WS-FSOD) protocol,
where: test images (potentially multiple) class labels are not
given; models are pre-trained from scratch on the train por-
tions of the benchmarks and adapted to novel classes using 1
or 5 shots; and no bounding boxes are used for training. We
believe our WS-FSOD protocol to be more fitting situations
of entering a new visual domain, where ImageNet-scale pre-
training and box annotations are not available.

Method
Here we provide the details of the StarNet method. First
we describe the approach for calculating the StarNet pos-
terior for each query-support pair and using it to predict the
class scores for every query image in a single-stage Star-
Net. Next we explain how to revert StarNet posterior com-
putation using back-projection, obtaining evidence maps (on
both query and support) for any hypothesis. Then we show
how to enhance StarNet performance by adding a second-
stage hypothesis classifier utilizing the evidence maps to
pool features from the (query and support) matched regions,
effectively suppressing background clutter. Finally, we pro-
vide implementation details and running times. Figure 2 and
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Figure 3: Comparison with GradCAM: StarNet back-projection maps (top row) and GradCAM (Selvaraju et al. 2017) attention
maps (bottom row) computed for MetaOptNet+SVM (Lee et al. 2019) on miniImageNet test images. GradCAM failures are
likely due to the few-shot setting, or presence of multiple objects.

Algorithm 1 provide an overview of our approach 1.

Single-Stage StarNet
StarNet is trained in a meta-learning fashion, where k-shot,
n-way training episodes are randomly sampled from the
train data. Each episode (a.k.a few-shot task)E consists of k
random support samples (k-shot) and q random query sam-
ples for each of n random classes (n-way). Denote byQ and
S a pair of query and support images belonging to E. Let
φ be a fully convolutional CNN feature extractor, taking a
square RGB image input and producing a feature grid tensor
of dimensions r × r × f (here r is the spatial dimension,
and f is the number of channels). Applying φ on Q and S
computes the query and support grids of feature vectors:

{φ(Q)i,j ∈ Rf | 1 ≤ i, j ≤ r}
{φ(S)l,m ∈ Rf | 1 ≤ l,m ≤ r}

(1)

For brevity we will drop φ in further notation and write Qi,j
and Sl,m instead of φ(Q)i,j and φ(S)l,m. We first L2 nor-
malize Qi,j and Sl,m for all grid cells, and then compute
a tensor D of size r × r × r × r of all pairwise distances
between Q and S feature grids cells:

Di,j,l,m = ||Qi,j − Sl,m||2 (2)

D is efficiently computed for all support-query pairs simul-
taneously via matrix multiplication with broadcasting. We
then convert D into a (same size) tensor of unnormalized
probabilities P , where:

Pi,j,l,m = e−0.5·Di,j,l,m/σ
2
f (3)

is the probability that Qi,j matches Sl,m in a sense of rep-
resenting the same part of the same category. Some object
part appearances are more rare than others; to accommo-
date for that, P is normalized to obtain the tensor R of the
same size, where Ri,j,l,m = Pi,j,l,m/Ni,j is the likelihood
ratio between ‘foreground’ match probability Pi,j,l,m, and
the ‘background’ probability Ni,j of ’observing’ Qi,j in a
random image, approximated as:

Ni,j =
∑
S

∑
l,m

Pi,j,l,m (4)

where
∑
S is computed by matching the same queryQ to all

of the supports in the episode. Note that in Ri,j,l,m, the nor-
malization factor of unnormalized probabilities P cancels

1Our code is avaialble at: https://github.com/leokarlin/StarNet

out. Let w = (r/2, r/2) be a reference point in the cen-
ter of S feature grid. We compute voting offsets as ol,m =
w − (l,m) and the voting target as ti,j,l,m = (i, j) + ol,m
being the corresponding location to the reference point w on
the query image Q assuming that indeed Qi,j matches Sl,m.
By construction, ti,j,l,m can be negative, with values rang-
ing between (−r/2,−r/2) and (3r/2, 3r/2), thus forming
a 2r × 2r hypothesis grid of points in coordinates of Q po-
tentially corresponding to point w on S.

Next, for every point (x, y) on the hypothesis grid of Q,
StarNet accumulates the overall belief A(x, y) that (x, y)
corresponds to w (on S) considering independently the ev-
idence Ri,j,l,m from all potential matches between support
and query features. In probabilistic sense, A(x, y) relates to
Naive-Bayes (Bishop 2006), and hence should accumulate
log-likelihood ratios log(Ri,j,l,m). However, as in (Karlin-
sky et al. 2017), to be more robust to background clutter, in
StarNet, likelihood ratios are directly accumulated:

A(x, y) =
∑

{i,j,l,m} s.t.
ti,j,l,m=(x,y)

Ri,j,l,m (5)

For each hypothesis (x, y), the final StarNet posterior
VQ,S(x, y) is computed by convolving A with G(σg) - a
symmetric Gaussian kernel: VQ,S = G(σg) ~ A. This effi-
ciently accounts for any random relative location shift (local
object part deformation) allowed to occur with the G(σg)
Gaussian prior for any matched pair of Qi,j and Sl,m.

We compute the score (logit) of predicting the category
label c for Q as:

SC1(c;Q) =
1

k
·

∑
S∈E s.t.
C(S)=c

max
x,y

VQ,S(x, y) (6)

where C(S) is the class label of S, and k is the number
of shots (support samples per class) in the episode E. Dur-
ing meta-training the CNN backbone φ is end-to-end trained
using Cross Entropy (CE) loss between SC1(c;Q) (after
softmax) and the known category label of Q in the train-
ing episode. The need to only match images with the same
class label, drives the optimization to maximally match the
regions that correspond to the only thing that is in fact shared
between such images - the instances of the shared category
(please see Appendix for examples and video illustrations).
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Back-Projection Maps
For any pair of query Q and support S, and any hy-
pothesis location (x̂, ŷ) on the 2r × 2r grid, and in
particular one with the maximal StarNet posterior value
(x̂, ŷ) = arg maxx,y VQ,S(x, y), we can compute two back-
projection heatmaps (one for Q and one for S). These are
r× r matrices in the feature grid coordinates of Q and S re-
spectively, whose entries contain the amount of contribution
that the corresponding feature grid cell on Q or S gave to
the posterior probability VQ,S(x̂, ŷ):

BPQ|S(i, j) =
∑
l,m

Ri,j,l,m · e−0.5·||ti,j,l,m−(x̂,ŷ)||
2/σ2

g

(7)
the BPS|Q(l,m) is computed in completely symmetrical
fashion by replacing summation by l,m with summation by
i, j. After training, the back-projection heatmaps are high-
lighting the matching regions on Q and S that correspond to
the hypothesis (x̂, ŷ), which for query-support pairs sharing
the same category label are in most cases the instances of
that category (examples provided in Appendix).

The back-projection is iteratively repeated by suppressing
(x̂, ŷ) (and its 3 × 3 neighborhood) in VQ,S(x, y) as part of
the Non-Maximal Suppression (NMS) process implemented
as part of the neural network. NMS allows for better cover-
age of non-rigid objects detected as sum of parts and for dis-
covering additional objects of the same category. Please see
Fig. 1, Fig. 3 (image 4, top row), and the Appendix, for ex-
amples of images with multiple objects detected by StarNet.
In our implementation, NMS repeats until the next maximal
point is less then an η = 0.5 from the global maximum.

Two-Stage StarNet
Having computed the BPQ|S and BPS|Q back-projection
heatmaps, we take inspiration from the 2-stage CNN de-
tectors (e.g. FasterRCNN (Ren et al. 2015)) to enhance the
StarNet performance with a second stage classifier benefit-
ing from category instances localization produced by Star-
Net (in BPQ|S and BPS|Q). We first normalize each of the
BPQ|S and BPS|Q to sum to 1, and then generate the fol-
lowing pooled feature vectors by weighted global average
pooling with BPQ|S and BPS|Q weights:

FQ|S =
∑
i,j

BPQ|S(i, j) ·Qi,j

FS|Q =
∑
l,m

BPS|Q(l,m) · Sl,m
(8)

here the feature grids Qi,j and Sl,m can be computed us-
ing φ or using a separate CNN backbone trained jointly with
the first stage network (we evaluate both in experiments sec-
tion). Our second stage is a variant of the Prototypical Net-
work (PN) classifier (Snell, Swersky, and Zemel 2017). We
compute the prototypes for class c and the query Q as:

FPc|Q =
1

k
·

∑
S∈E s.t. C(S)=c

FS|Q

FPQ|c =
1

k
·

∑
S∈E s.t. C(S)=c

FQ|S

(9)

Algorithm 1: StarNet training
IQ = query, IS = support, LS , LQ = 1-hot, φ =
backbone;
S,Q = φ(IS), φ(IQ) # eq. 1;
SC1, V, R, T = Matching(S,Q,LS) #eq. 2-6 +
inline;
L1 = CE(SC1, LQ) #Stage 1 loss;
foreach support/query pair of indices (s, q) do

m0 = max(V s,q), BP s,qS|Q, BP
s,q
Q|S = 0 #

·s,q = slice;
while max(V s,q) >= η ∗m0 do

mxy = argmax(V );
BP s,qS|Q, BP

s,q
Q|S += BP(Rs,q, T s,q,mxy) #eq.

7;
V s,q = NMS(V s,q,mxy) #suppress near
mxy;

end
end
SC2 = Stage2(S,Q,BPS|Q, BPQ|S) #eq. 8-11;
L2 = CE(SC2, LQ) #Stage 2 loss;
L = L1 + L2 #final loss;

Note that as opposed to PN, our query (FPQ|c) and class
(FPc|Q) prototypes are different for each query + class pair.
Finally, the score of the second stage classifier for assigning
label c to the query Q is:

SC2(c;Q) = −||FPQ|c − F
P
c|Q||2 (10)

The predictions of the classifiers of the two stages of StarNet
are fused using geometric mean to compute the joint predic-
tion as (sm = softmax):

SC(c;Q) =
√
sm(SC1(c;Q)) · sm(SC2(c;Q)) (11)

Implementation Details
Our implementation is in PyTorch 1.1.0 (Paszke et al. 2017),
and is based on the public code of (Lee et al. 2019). In all
experiments the CNN backbone is ResNet-12 with 4 con-
volutional blocks (in 2-stage StarNet we evaluated both sin-
gle shared ResNet-12 backbone and a separate ResNet-12
backbone per stage). To increase the output resolution of
the backbone we reduce the strides of some of its blocks.
Thus, for benchmarks with 84 × 84 input image resolution,
the block strides were [2, 2, 2, 1] resulting in 10 × 10 fea-
ture grids, and for 32 × 32 input resolution (in Appendix),
we used [2, 2, 1, 1] strides resulting in 8 × 8 feature grids.
This establishes naturally the value for r, we intend to ex-
plore other values in future work. We use four 1-shot, 5-way
episodes per training batch, each episodes with 20 queries.
The hyper-parameters σf = 0.2, σg = 2, and η = 0.5
were determined using validation. As in (Lee et al. 2019),
we use 1000 batches per training epoch, 2000 episodes for
validation, and 1000 episodes for testing. We train for 60
epochs, changing our base LR = 1 to 0.06, 0.012, 0.0024
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at epochs 20, 40, 50 respectively. The best model for testing
is determined by validation. On a single NVidia K40 GPU,
our running times are: 1.15s/batch in 1-stage StarNet train-
ing; 2.2 s/batch in 2-stage StarNet training (in same settings
(Lee et al. 2019) trains in 2.1s/batch); and 0.01s per query
in inference. GPU peak memory was ∼ 30MB per image.

Experiments
In all of experiments, only the class labels were used for
training, validation, and for the support images of the test
few-shot tasks. The bounding boxes were used only for per-
formance evaluation. For each dataset we used the standard
train / validation / test splits, which are completely disjoint
in terms of contained classes. Only episodes generated from
the training split were used for meta-training; the hyper-
parameters and the best model were chosen using the valida-
tion split; and test split was used for measuring performance.
Results on additional datasets are provided in Appendix.

The CUB fine-grained dataset (Wah et al. 2011) consists
of 11, 788 images of birds of 200 species. We use the stan-
dard train, validation, and test splits, created by randomly
splitting the 200 species into 100 for training, 50 for valida-
tion, and 50 for testing and used in all few-shot works. All
images are downsampled to 84×84. Images are not cropped
around the birds, which appear on cluttered backgrounds.

The ImageNetLOC-FS dataset (Karlinsky et al. 2019)
contains 331 animal categories from ImageNetLOC (Rus-
sakovsky et al. 2015) split into: 101 for train, 214 for test,
and 16 for validation. Since animals are typically pho-
tographed from afar, and as the images in this dataset are
pre-processed to 84 × 84 square size with aspect ratio pre-
serving padding (thus adding random padding boundaries),
commonly images in this dataset are not cropped around the
objects (some examples are in figure 1 bottom).

Weakly-Supervised Few-Shot Object Detection
We used ImageNetLOC-FS and CUB few-shot datasets, as
well as PASCAL VOC (Everingham et al. 2010) experiment
from (Wang et al. 2020), to evaluate StarNet performance
on the proposed WS-FSOD task. All datasets have bounding
box annotations, that in our case were used only for evalu-
ating the detection quality. The ImageNetLOC-FS and the
PASCAL VOC experiments allow comparing StarNet’s per-
formance directly to Fully-Supervised FSOD SOTA: Rep-
Met (Karlinsky et al. 2019) and TFA (Wang et al. 2020)
respectively, both serving as a natural performance upper
bound for the Weakly-Supervised StarNet. Since, to the best
of our knowledge, StarNet is the first method proposed for
WS-FSOD, we also compare its performance to a wide
range of weakly-supervised baselines.

Two baselines are based on a popular few-shot classifier
MetaOpt (Lee et al. 2019) combined with GradCAM or Se-
lectiveSearch (Uijlings et al. 2013) for localizing the clas-
sified categories. Third baseline is PCL (Tang et al. 2018a)
- recent (non few-shot) WSOD method. Using official PCL
code, we pre-trained it on the same training split as used
for training StarNet, and adapted it by finetuning on support
set of each of the test few-shot tasks. Fourth is the SOTA

attention based few-shot method of CAN (Hou et al. 2019),
that also has some ability to localize the objects. Finally, as a
form of ablation, we offer two baselines evaluating the (non-
parametric) StarNet head on top of ResNet-12 backbone that
is: (i) randomly initialized, or (ii) pre-trained using a lin-
ear classifier. These baselines underline the importance of
training the backbone end-to-end through StarNet head for
the WS-FSOD higher gains. The results for WS-FSOD ex-
periments and comparisons (averaged over 500 5-way test
episodes) are summarized in Table 1, and qualitative exam-
ples of StarNet detections are shown in Figure 1(bottom).

For all methods and FS-WSOD experiments, we use the
standard detection metric where detected bounding box is
considered correct if its Intersection-over-Union (IoU) with
a ground truth box is above threshold and its top-scoring
class prediction is correct. We report Average Precision (AP)
under this metric using 0.3 and 0.5 IoU thresholds. For all
methods producing heatmaps, the bounding boxes were ob-
tained using the CAM algorithm from (Zhou et al. 2016;
Zhang et al. 2018) (as in most WSOD works).

StarNet results are higher by a large margin than results
obtained by all the compared baselines. This is likely due to
StarNet being directly end-to-end optimized for classifying
images by detecting the objects within (using the proposed
star-model geometric matching), while the other methods
are either: not intended for few-shot (PCL), or optimized
attention for classification and not for detection (CAN), or
intended for classification and not detection (MetaOpt) -
which cannot be easily bridged using the standard tech-
niques for localization in classifiers (GradCAM, Selec-
tiveSearch). As can be seen from Table 1, for IoU ≥ 0.3
the StarNet is close to the fully supervised few-shot RepMet
detector with about 10 AP points gap in 1-shot and about
7 points gap in 5-shot. However, the gap increases substan-
tially for IoU ≥ 0.5. We suggest that this gap is mainly due
to partial detections (bounding box covering only part of an
object) - a common issue with most WSOD methods. Anal-
ysis corroborating this claim is provided in the Appendix.

Finally, we performed (Wang et al. 2020)’s few-shot PAS-
CAL VOC evaluation (three 5-way novel category sets),
comparing to the fully-supervised (with boxes) SOTA FSOD
method TFA proposed in that paper (Table 1 bottom). As
TFA uses a (ResNet-101) backbone pre-trained on Ima-
geNet (as common in FSOD works), in this experiment we
used StarNet pre-trained on ImageNetLOC-FS (weakly su-
pervised, without boxes) excluding PASCAL overlapping
classes. Consistently with comparison to RepMet upper
bound, under a more relaxed boxes tightness requirement
of IoU ≥ 0.3 (as discussed, used mostly due to partial de-
tections), the AP of the weakly-supervised StarNet is close
to the fully supervised TFA upper bound. Qualitative results
from PASCAL experiment are provided in the Appendix.

Limitations StarNet detects multiple objects of different
classes on the same query image via matching to differ-
ent support images. It can also detect multiple instances of
the same class via its (differentiable) NMS if their back-
projection heatmap blobs are non-overlapping or if they are
matched to different support images for that class. Yet in
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1-shot 5-shot
dataset method IoU ≥ 0.3 IoU ≥ 0.5 IoU ≥ 0.3 IoU ≥ 0.5

Imagenet LOC-FS RepMet (fully supervised upper bound) 59.5(1) 56.9 70.7(1) 68.8
MetaOpt(1)+GC 32.4 13.8 51.9 22.1
MetaOpt(1)+SS 16.1 4.9 27.4 10.2
PCL(1) (Tang et al. 2018a) 25.4 9.2 37.5 11.3
CAN(1) (Hou et al. 2019) 23.2 10.3 38.2 12.7
random+StarHead 2.1 0.6 3.6 0.8
pretrained+StarHead 22.9 10.2 31.0 21.3
StarNet (ours) 50.0 26.4 63.6 34.9

CUB MetaOpt(1)+GC 53.3 12.0 72.8 14.4
MetaOpt(1)+SS 19.4 6.0 26.2 6.4
PCL(1) (Tang et al. 2018a) 29.1 11.4 41.1 14.7
CAN(1) (Hou et al. 2019) 60.7 19.3 74.8 26.0
random+StarHead 3.5 0.6 6.0 0.9
pretrained+StarHead 47.6 13.2 62.2 17.3
StarNet (ours) 77.1 27.2 86.1 32.7

Pascal VOC TFA (fully-supervised upper bound) - 31.4 - 46.8
(average over 5-way sets) StarNet (ours) 34.1 16.0 52.9 23.0

Table 1: WS-FSOD performance: comparing to baselines, performance measured in Average Precision (AP%). GC = Grad-
CAM, SS = SelectiveSearch. RepMet (Karlinsky et al. 2019) and TFA (Wang et al. 2020) are fully-supervised upper bounds.
(1)using official code and best hyper-parameters between defaults and those found by tuning on val. set for each benchmark.

some situations, if same class instances are overlapping on
the query image and are matched to the same support im-
age (as is bound to happen in 1-shot tests) - they would be
detected as a single box by StarNet. Enhancing StarNet to
detect overlapping instances of the same class is beyond the
scope of this paper and an interesting future work direction.

Few-Shot Classification
StarNet is a WS-FSOD, trainable just from image class la-
bels, and hence is readily applicable to standard few-shot
classification testing. We used the standard few-shot classi-
fication evaluation protocol, exactly as in (Lee et al. 2019),
using 1000 random 5-way episodes, with 1 or 5 shots. Star-
Net is optimized to classify the images by finding the objects,
and hence has an advantage for benchmarks where objects
appear at random locations and over cluttered backgrounds.
Hence, as expected, StarNet attains large performance gains
(of 4% and 5% above SOTA baselines in 1-shot setting) on
CUB and ImageNetLOC-FS few-shot benchmarks, where
images are less cropped around the objects. Notably, on
these benchmarks we observe these gains also above the
SOTA attention based and dense-matching based methods.
The results of the evaluation, together with comparison to
previous methods, are given in Table 2. Additional few-
shot classification experiments showing StarNet’s compara-
ble performance on (cropped) miniImageNet and CIFAR-FS
few-shot benchmarks are provided in Appendix.

Ablation Study
We perform an ablation study to verify the contribution of
the different components of StarNet and some of the design
choices. We ablate using the 1-shot, 5-way CUB few-shot
classification experiment, results are summarized in Table 3.

To test the contribution of object detection performed by the
StarNet (stage-1), we use the same global average pooling
for the prototype features as in StarNet stage-2, only with-
out weighting by BPQ|S and BPS|Q (’unattended stage-2’
in the table). We separately evaluate the performance of Star-
Net stage-1 and StarNet stage-2, this time stage-2 does use
weighted pooling with BPQ|S and BPS|Q. We then evalu-
ate the full StarNet method (’full StarNet’). As expected we
get a performance boost as this combines the structured (ge-
ometric) evidence from stage-1 with unstructured evidence
pooled from the object regions in stage-2. Finally, using the
NMS process to iteratively extend the back-projected query
region matched to the support attains the best performance.

Conclusions

We have proposed a new Weakly-Supervised Few-Shot Ob-
ject Detection (WS-FSOD) few-shot task, intended to signif-
icantly expedite building few-shot detectors for new visual
domains, alleviating the need to obtain expensive bounding
box annotations for a large number of base classes images
in the new domain. We have introduced StarNet, a first WS-
FSOD method. StarNet can also be used for few-shot classi-
fication, being especially beneficial for less-cropped objects
in cluttered scenes and providing plausible explanations for
its predictions by highlighting image regions corresponding
to objects shared between the query and the matched support
images. We hope that our work would inspire lots of future
research on the important and challenging WS-FSOD task,
further advancing its performance.
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ImageNetLOC-FS CUB
method backbone architecture 1-shot 5-shot 1-shot 5-shot
SAML (Hao et al. 2019) conv4 - - 69.35 81.56
Baseline(1) (Chen et al. 2019) resnet-34 - - 67.96 84.27
Baseline++(1) (Chen et al. 2019) resnet-34 - - 69.55 85.17
MatchingNet(1) (Vinyals et al. 2016) resnet-34 - - 73.49 86.51
ProtoNet(1) (Snell, Swersky, and Zemel 2017) resnet-34 - - 73.22 87.86
MAML(1) (Finn, Abbeel, and Levine 2017) resnet-34 - - 70.32 83.47
RelationNet(1) (Sung et al. 2018) resnet-34 - - 70.47 84.05
Dist. ensemble (Dvornik, Schmid, and Mairal 2019) ensemble of 20× resnet18 - - 70.07 85.2
∆-encoder (Schwartz et al. 2018) resnet-18 - - 69.80 82.60
DeepEMD (Zhang et al. 2020) resnet-12 - - 75.65 88.69
CAN (Hou et al. 2019) resnet-12 57.1(2) 73.9(2) 75.01(2) 86.8(2)

MetaOpt (Lee et al. 2019) resnet-12 57.7(2) 74.8(2) 72.75(2) 85.83(2)

StarNet - shared backbone (ours)(3) resnet-12 61.0 77.0 79.44 88.8
StarNet (ours) 2× resnet-12 = resnet-18 63.0 78.0 79.58 89.5

Table 2: Few-shot classification accuracy (%), for all methods the 0.95 confidence intervals are < 1% (omitted for brevity).
For fair comparison, showing only results that do not use the validation set for training, do not use the transductive or semi-
supervised setting, use standard input resolution 84 × 84, and do not use additional information such as class label or class
attributes embedding. Results on additional few-shot classification benchmarks are provided in Appendix. (1)Results from
(Chen et al. 2019), best result among resnet-10/18/34. (2)using official code and best hyper-parameters between defaults and
those found by tuning on validation set for each benchmark. (3) shared backbone between StarNet stage-1 and stage-2.

unattended stage-2 72.92
StarNet stage-1 75.86
StarNet stage-2 76.74
full StarNet 78.78
full StarNet with iterative NMS 79.58

Table 3: Ablation study on CUB 1-shot / 5-way
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Appendix
An extended version of the appendix is available on
https://arxiv.org/abs/2003.06798.

Additional Qualitative Examples
Figure 4 shows some detection examples and some failure
cases from different episodes and different novel category
sets used in the PASCAL VOC WS-FSOD experiments de-
scribed in the paper. Videos depicting the evolution of the
back-projection heatmaps during StarNet training are avail-
able on Youtube https://tinyurl.com/4y7fdfvf .

Failure Cases Analysis - Partial Detections

A common weakness of WSOD methods is that the pre-
dicted bounding boxes cover only a part of the object, usu-
ally the most salient one. For pointing at objects, rather than
exactly bounding them, the IoU ≥ 0.5 matching criteria is
too restrictive. To analyze whether partial detection are re-
sponsible for the AP drop observed for StarNet and all the
baselines when moving from IoU ≥ 0.3 to IoU ≥ 0.5,
we consider the following pair of related measures. For a
ground truth (GT) bounding box G and a predicted box P

we define IoP =
G ∩ P
P

(Intersection over Predicted) and

IoG =
G ∩ P
G

(Intersection over Ground Truth). The IoP
and IoG provide the precision and recall information, re-
spectively, for object coverage. For equal-area P and G, the
IoU = 0.5 corresponds to IoP = 2

3 . We use this intuition to
substitute the IoU ≥ 0.5 criterion with IoP ≥ 2

3 , as a crite-
rion better accounting for partial detection when computing
the Average Precision (AP). The values of AP for IoP ≥ 2

3
are provided in Table 4.

The AP of StarNet, using IoP = 2
3 , is substantially

higher than that computed for IoU ≥ 0.5, corroborating our
assumption that the performance drop between IoU ≥ 0.3
and IoU ≥ 0.5 is mostly due to partial detections. Addi-
tionally, we found that the StarNet bounding boxes that pass
IoP = 2

3 and have correct predicted class label still cover a
significant portion of more than 32% of the GT boxes for ob-
jects on average. As can be seen from the table, for IoP ≥ 2

3
StarNet has large advantages over the baselines, consistent
with StarNet’s advantage observed for IoU -based criteria.
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Figure 4: Example detections (on query images) from the PASCAL VOC WS-FSOD experiment described in the paper. Both
detected object bounding boxes and a union of all their detected heatmaps produced by StarNet are visualized. Best viewed in
color and in zoom.

1-shot 5-shot
dataset method IoU ≥ 0.3 IoU ≥ 0.5 IoP ≥ 2

3
IoU ≥ 0.3 IoU ≥ 0.5 IoP ≥ 2

3
Imagenet-LOC MetaOpt+GC 32.4 13.8 29.2 51.9 22.1 41.4

MetaOpt+SS 16.1 4.9 6.7 27.4 10.2 12.7
PCL (Tang et al. 2018a) 25.4 9.2 23.8 37.5 11.3 34.3
CAN (Hou et al. 2019) 23.2 10.3 20.1 38.2 12.7 35.1
StarNet (ours) 50.0 26.4 43.6 63.6 34.9 54.8

CUB MetaOpt+GC 53.3 12.0 52.5 72.8 14.4 62.6
MetaOpt+SS 19.4 6.0 7.8 26.2 6.4 4.2
PCL (Tang et al. 2018a) 29.1 11.4 29.0 41.1 14.7 37.0
CAN (Hou et al. 2019) 60.7 19.3 55.4 74.8 26.0 66.1
StarNet (ours) 77.1 27.2 71.4 86.1 32.7 78.7

Table 4: Average precision (AP, %) of weakly supervised few-shot detection and comparison to baselines on the ImagenetLOC-
FS and CUB datasets. GC = GradCAM, SS = SelectiveSearch.
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