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Abstract

There are many realistic applications of activity recognition
where the set of potential activity descriptions is combina-
torially large. This makes end-to-end supervised training of
a recognition system impractical as no training set is practi-
cally able to encompass the entire label set. In this paper, we
present an approach to fine-grained recognition that models
activities as compositions of dynamic action signatures. This
compositional approach allows us to reframe fine-grained
recognition as zero-shot activity recognition, where a detec-
tor is composed “on the fly” from simple first-principles state
machines supported by deep-learned components. We evalu-
ate our method on the Olympic Sports and UCF101 datasets,
where our model establishes a new state of the art under mul-
tiple experimental paradigms. We also extend this method
to form a unique framework for zero-shot joint segmenta-
tion and classification of activities in video and demonstrate
the first results in zero-shot decoding of complex action se-
quences on a widely-used surgical dataset. Lastly, we show
that we can use off-the-shelf object detectors to recognize
activities in completely de-novo settings with no additional
training.

Introduction
Fine-grained activity recognition is a challenging problem
due to the combinatorial number of different fine-grained
activities that are possible, and the variety of ways that they
may be performed. For example, in video surveillance, we
are most often interested in unique instantiations of an event
— for example “locate an instance where a man wearing a
yellow jacket approaches a blue SUV and places a brown
package underneath it.” This particular combination of ac-
tor, attributes, activity, and sequence is unique, and repre-
sents only one of millions of other activity sequences that
are similar in structure, but unique in detail.

In this paper, we introduce the notion of dynamic ac-
tion signatures as a representation for fine-grained problems
where there are a combinatorial number of potential fine-
grained activity labels. The key observation is that we can
translate this problem into one of zero-shot activity recogni-
tion, where a recognition method is constructed “on the fly”
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using a composition of structured and deep-learned compo-
nents. As we show in our experiments, this method is highly
flexible, and can be adapted to problem domains ranging
from video surveillance to surgery.

In our framework, an action signature is a particular con-
figuration of visually detectable entities, such as attributes,
objects, and relations, which describe a segment of a video.
A key element of our approach is that we view these
signatures as time-varying, rather than static—i.e. an ac-
tion’s attributes change over time in a characteristic man-
ner. For example, the act of a person entering a vehicle
as shown in Figure 1 (Logic Acceptor) can be described
as the attribute sequences a person exists followed
by a person does not exist composed with a a
vehicle exists relational constraint.

In the remainder of this paper, we show that dynamic ac-
tion signatures provide a powerful semantic label embed-
ding for zero-shot action classification and establish a new
state-of-the-art on the Olympic Sports (Niebles, Chen, and
Fei-Fei 2010) and UCF101 (Soomro et al. 2012) datasets.
We also use our methodology to impose constraints on the
predicted action sequences themselves, leading to the first
zero-shot segmentation results on complex action sequences
in a widely-used surgical dataset (Gao et al. 2014), and es-
tablish, for the first time, a zero-shot baseline result that is
competitive with end-to-end trained methods.

The aforementioned experiments required training using
samples from the target dataset to acquire action signature
detectors. We show that we can eliminate any kind of su-
pervised training on the dataset from which unseen (test)
cases are drawn by using publicly available, off-the-shelf
object detectors to construct action signatures. We combine
this with our framework to provide a true de novo model
of an activity. We evaluate quantitatively and qualitatively
our zero-shot framework using these “on the fly” models on
the challenging DIVA dataset1, which contains fine-grained
human-object interactions under a real world video security
footage.
In summary, the main contributions of the paper are:

• A zero-shot classification of actions with dynamic ac-
tion signatures which establishes a new state-of-the-art on
Olympic Sports (Niebles, Chen, and Fei-Fei 2010) and

1https://actev.nist.gov/
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Figure 1: Our full system diagram. One path of the diagram creates transducers from neural attribute detections which get
composed with the state-machine instantiated from the activity definitions. The best-path decode computes a compatibility
score of a hypothesized activity.

UCF101 (Soomro et al. 2012) datasets. We outperform
all other methods for the standard zero-shot evaluation re-
gardless of training assumptions (inductive/transductive).

• To the best of our knowledge, we are the first to demon-
strate zero-shot decoding of complex action sequences.
We present our results on a surgical dataset, JIGSAWS
(Gao et al. 2014), to jointly segment and classify fine-
grained surgical gestures where we establish a strong
baseline.

• A demonstration of zero-shot classification of fine-
grained human-object interactions in security footage that
requires no supervised training of attribute detectors by
leveraging off-the-shelf object detectors.

Related Work
Rule-based approaches: Zero-shot classifiers require de-
scriptions of novel activities provided either by humans
or existing knowledge bases. In the seminal approach of
(Ivanov and Bobick 2000), descriptions of activities come
from an attribute based stochastic context-free grammar
which encodes expert knowledge to recognize activities.
Variants of probabilistic graphical models such as Markov
Logic networks (Tran and Davis 2008), And-Or graphs
(Lin, Gong, and Li 2009) and attribute-multiset grammars
(Damen and Hogg 2009) have been proposed since then to
implement temporal rules to provide stronger representation
of activities. Such rule-based approaches effectively mod-
eled temporal behavior of activities in a true zero-shot man-
ner using a set of selected attributes. Our approach is similar
in that temporal rules and detections are parsed using struc-
tured state machines to score observed sequences. However,
the biggest criticism of this line of work was its inability to
scale due to the hand-crafted nature of attribute set-selection
and rule-design. We claim in this paper and support with

our experiments that a small set of (four) temporal ‘rules’
implemented using our dynamic action signatures are scal-
able and not problem specific. We empirically show that they
scale effectively across datasets and even across application
domains. Moreover, we show evidence that zero-shot meth-
ods can move-away from ad-hoc selection of attributes by
demonstrating how our framework utilizes generic features
such as off-the-shelf object detectors to compose zero-shot
action classifiers.

Visual attributes as semantic descriptions of activity
labels: Compared to rule-based approaches from the past,
recent zero-shot methods focus on mapping a deep feature
representation of a video and some semantic description
of a label into a common embedding space where similar-
ity functions or simple classifiers can be learned. The line
of work that uses attribute based semantic embedding for
zero-shot action classification followed a pioneering work
that originally proposed to categorize novel objects using
visual attributes (Lampert, Nickisch, and Harmeling 2009).
As a natural extension, manually defined visual attributes are
widely used to provide semantic descriptions of human ac-
tions for zero-shot learning (Akata et al. 2015; Fu et al. 2014;
Gan et al. 2015; Lampert, Nickisch, and Harmeling 2009;
Liu, Kuipers, and Savarese 2011; Wang and Chen 2017). Us-
ing a fixed collection of attributes, a given sample is embed-
ded as a vector of binary (Lampert, Nickisch, and Harmel-
ing 2009; Liu, Kuipers, and Savarese 2011) or soft assign-
ments (Fu et al. 2014; Romera-Paredes and Torr 2015) of an
attribute in the input. These attributes define a powerful se-
mantic embedding space, as evidenced by recent approaches
(Gao, Zhang, and Xu 2019; Mandal et al. 2019; Mishra et al.
2018; Qin et al. 2017; Brattoli et al. 2020) that consistently
outperform word-embedding based approaches on zero-shot
human action classification benchmarks (Niebles, Chen, and
Fei-Fei 2010; Soomro et al. 2012). Such methods perceive
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activities as a collection ‘static’ action signatures, limited to
either presence or absence of a particular set of attributes in a
given action sequence. In this work, we present dynamic ac-
tion signatures where an attribute can exhibit state changes
over time.

Word embedding as semantic descriptions of activity
labels: Paired with improvements in natural language pro-
cessing and parsing (Mikolov, Yih, and Zweig 2013), the
popular Word2vec implementation (Mikolov et al. 2013) has
been used for word embeddings in zero-shot systems (Akata
et al. 2015; Alexiou, Xiang, and Gong 2016; Gao, Zhang,
and Xu 2019; Guadarrama et al. 2013; Liu et al. 2019; Man-
dal et al. 2019; Hahn, Silva, and Rehg 2019; Mishra et al.
2018; Qin et al. 2017; Roitberg, Al-Halah, and Stiefelha-
gen 2018; Wang and Chen 2017; Huang, Zhang, and Li
2018; Zhang, Hu, and Sha 2018; Zhang and Peng 2018; Xu,
Hospedales, and Gong 2017; Hendricks et al. 2018; Gao
et al. 2017; Xu, Hospedales, and Gong 2016). The funda-
mental assumption of word embedding based approaches is
that an activation pattern in the feature layer of the skip-gram
model (Mikolov et al. 2013) given an interest-word (text of
activity label) as input provides a discriminative represen-
tation of novel categories. Despite offering a clean manual-
labor free solution compared to the attribute-based embed-
dings, zero-shot approaches using manual attributes consis-
tently outperform Word2vec based models given the same
methodology (Luis et al. 2019). We believe an important fac-
tor in zero-shot action classification (as opposed to the static
application of image classification) is to model the tempo-
ral evolution of elements in video. A text embedding of key
words in its current form does not fully capture the dynamic
structure present in activities.

Objects as attributes: The work of (Jain et al. 2015) con-
structs a word embedding augmented by a skip-gram model
of object categories in videos. Further, a spatial-aware object
based embedding is proposed in (Mettes and Snoek 2017)
for additional zero-shot localization of actions. An approach
to learn relations between action-attribute-object in an end-
to-end manner using two-stream graph convolutional net-
work is proposed in (Gao, Zhang, and Xu 2019). We also
view objects as a promising source of additional informa-
tion to provide a rich semantic embedding for zero-shot ac-
tivity recognition. Our approach allows temporal modeling
of object level information and we demonstrate that we can
achieve zero-shot recognition of actor-object interactions us-
ing off-the-shelf object detectors in our experiments using
the DIVA dataset.

Domain Shift: In practice, the distributions of features
from seen and unseen categories are often not well aligned
for accurate zero-shot inference especially when using pre-
trained deep features. Researchers have identified this prob-
lem as the domain shift problem, analyzed empirically in
(Fu et al. 2014) and theoretically in (Romera-Paredes and
Torr 2015). This has led to a series of approaches (Fu et al.
2014; Xu, Hospedales, and Gong 2017; Kodirov et al. 2015;
Mishra et al. 2018; Gao, Zhang, and Xu 2019; Mandal et al.
2019) that allow the use of unlabeled instances from the
unseen test categories as part of training, defined as the
transductive setting for zero-shot learning. In this work, we

focus on the introduction of a novel semantic embedding
space with dynamic action signatures to improve temporal
representation of activities, rather than a method to allevi-
ate the domain shift between seen and unseen categories.
We note that the recent work of (Brattoli et al. 2020) aims
to completely move away from training on videos sampled
from the target dataset by pretraining an end-to-end video-
to-word-embedding network using large-scale independent
video datasets. We also believe a more practical zero-shot
system should be able to utilize available resources such as
off-the-shelf word embeddings or object detectors to recog-
nize true de novo instances without having to finetue on sam-
ples from the target dataset. Our DIVA experiments demon-
strate how our zero-shot system can be deployed in this
open-set setting.

Methodology
We first formulate the zero-shot action classification and de-
scribe the static action signature in Section . In Section , we
then introduce dynamic action signatures for zero-shot prob-
lem and highlight the differences with the static counterpart.
Then, in Section , we include a brief overview of finite state
machines which are augmented to implement dynamic ac-
tion signatures as described in Section . Finally, in Section
, we introduce how the same framework can be extended to
model complex activities as sequences of actions to solve
zero-shot temporal activity segmentation applications.

Zero-shot Action Classification and Static Action
Signatures
The goal of the zero-shot action classification task is to
discriminate between a set of action categories Y =
{y1, . . . , yN} that the classifier has never encountered in its
training data. It is assumed in this setting that although we
have no example videos from the unseen categories, the cat-
egories themselves are known to the user. Thus, zero-shot
action recognition methods require mapping both a video
x = (x1, . . . , xT ) and a label y to a shared feature space—
specifically, one in which a video’s representation is closest
to that of its ground-truth label under some similarity func-
tion s:

ygt = argmax
y∈Y

s(f(y), g(x)) (1)

In general this space can be abstract. For example, the
video’s mapping function g can be derived from visual fea-
tures, and the label’s mapping function f can be derived
from a word vector representation.

Attribute-based zero-shot methods define this space so it
corresponds to a set of semantic concepts {a1, . . . , aK}. In
this case the label’s representation is a K-dimensional “ac-
tion signature” a(y), whose elements are set to one if the
attribute is present or zero if it is not. Likewise, the video’s
representation is a set of attribute detections â(x) ∈ RK .

Dynamic Action Signatures
Previous work has defined the label’s action signature as a
single vector, and reduced either the video representation or
the similarity function along the time dimension. However,
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Figure 2: The figure illustrates how our framework scores an example observation with two frames. The ‘Logic’ acceptor
describes the dynamic signature of “present, then absent”. The ‘Observation’ transducer produces a time series of detection
probabilities. The sum of paths in the composed machine can be viewed as a compatibility score of the logic and the observation.
In this particular example, the sum of weights in the ‘Composed‘ transducer is large which suggests that our observation is well-
aligned with ‘person disappears’ dynamic action signature. Please refer to Sections and for notation definitions.

in many scenarios the actions of interest are distinguished by
their time evolution rather than the presence or absence of
static signatures. Take “person entering a vehicle” and “per-
son exiting a vehicle”, for example. Both of these actions
share the static action signature vehicle present and
person present. However, they are differentiated from
each other by what happens to the person over time—in an
entering action the person disappears into the vehicle,
but in an exiting action the person appears out of it.

In this paper, we make a very natural extension to this
approach by extending an action signature in the temporal
dimension. This gives us a dynamic action signature of the
form a(y) = (a(y, 1), . . . , a(y, T )) that may change over
time. In the case that the value of an action signature is spec-
ified for every sample t, the best category y∗ can be chosen
using a straightforward sample-wise comparison:

y∗ = argmax
y∈Y

s(â(x), a(y)) = argmax
y∈Y

T∑
t=1

σ(â(xt), a(y, t))

(2)
In Eq. 2, σ(·, ·) implements a sample-level similarity
score—for example, the inner product.

Our framework can also handle the more interesting sit-
uation in which only the temporal ordering of attributes is
specified—for example, for the entering vehicle cat-
egory we expect to see person detected → person
not detected, but we likely do not know exactly when
the transition occurs. In this case there can be many attribute
sequences that are consistent with the specified ordering, and
we can define the similarity between a video x and a cate-
gory y as the best value over that set (which we will call
A):

s(â(x), a(y)) = argmax
a(y)∈A

T∑
t=1

σ(â(xt), a(y, t)) (3)

One of the key ideas in this paper is that we can describe
the setA using a composition of a small vocabulary of finite
state machines, and we can frame recognition as finding the

maximum weight path in that machine. We note that these
machines can be either learned from data, or can be hand-
specified. Here we pursue the latter approach; for clarity we
review the fundamentals of finite state methods in the next
section.

Background: Finite State Machines
A finite state acceptor (FSA) is a directed graph whose edges
are labeled with input symbols. Each vertex st represents a
state of the machine at time step t, and each edge represents
the state transition induced by observing a particular symbol
(i). When the edges of an FSA carry a weight w, it is a
weighted FSA (WFSA); in this case we write the edges as
a pair (i/w). The total weight of any path in a WFSA is
defined to be the product of the weights on each edge in the
path.

An automaton that has been augmented to map input se-
quences to output sequences, rather than only accept a set of
inputs, is called a weighted finite state transducer (WFST).
The edges of a WFST are labeled with a triple, (i : j)/w,
defining the input symbol i, the output symbol j, and the
weight w associated with that input-output pair. For exam-
ple, the transducer shown in Figure 2 (“Observation Trans-
ducer”) maps sample indices (time steps) to attribute detec-
tions.

Composition of WFSTs: The ‘Logic’ Transducer T1 (see
Figure 2) provides a description of a particular dynamic pat-
tern. Given an ‘Observation’ transducer T2, we can compute
the compatibility between the pattern described by T1 and
the observation via composition of the two WFSTs.

Let e1(t) = (i1 : j1)/w1 ∈ T1 and e2(t) = (i2 :
j2)/w2 ∈ T2 be edges in their respective transducers at
a common time-step t (both edges originate from state st
in the respective transducers). For all such pairs of edges
e1(t), e2(t) where j1 = i2, two edges can be composed as
a single edge in a composed transducer T = T1 ◦ T2 with a
composed edge e(t) = (ie : je)/we such that:

ie = i1, je = j2, we = w1 ∗ w2 (4)
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Please refer to the ‘Composed’ transducer in Figure 2 as a
concrete example.

When using finite state machines for sequence prediction
tasks, one is usually concerned with finding an optimal path
(eg the most probable output sequence given a particular in-
put sequence), or with finding the total weight of a set of
paths (eg the total probability of the data). These quantities
can be computed using generalizations of the well-known
Viterbi and Forward algorithms (respectively) for hidden
Markov models/linear-chain CRFs.

Dynamic Action Signatures as Finite State
Machines
We now return to Equation 3 where the task is to find the dy-
namic action signature a(y) in set A that produces the best
score given attribute detections â1:T . The set A of all se-
quences that are consistent with the rule can be described by
a left-to-right weighted finite state acceptor A, the ‘Logic’
Acceptor, with edges of the form ea = (i/wa) where i =
{0, 1} and wa = 1. Figure 2 shows an example ‘Logic’ Ac-
ceptor for an input with only two time-steps which accepts
one ‘1‘ followed by one ‘0’. Intuitively, the machine gener-
ally describes a sequence where an attribute signal is present
early and then is absent later in the sequence (person
detected → person not detected). The rule ac-
ceptorA can be re-written as a WFST Ta, the ‘Logic’ Trans-
ducer in Figure 2, by replicating inputs and output such that
an edge is defined as ea = (i : i)/wa and wa = 1.

Then, we instantiate a WFST Tb that accepts sample in-
dices t as input, gives detections (0 or 1) as output, and
whose weights p(1 or 0|xt) correspond to attribute detec-
tion scores (the ‘Observation’ Transducer in Figure 2). In
the running example, Tb describes a time-series of probabil-
ity of human presence. Finally, given Ta and Tb, we obtain
the ‘Composed’ Transducer T = Tb ◦Ta as defined in Equa-
tion 4. Then, the solution to Equation 3 is equivalent to find-
ing the most probable ‘Logic’ acceptor, a(y), which yields
the highest product of path weights when composed with the
observation (we take the log sum instead in practice).

Complex Activities as a Sequence of Actions
When a video is labeled with a sequence of actions y =
(y1, . . . , yM ) (as opposed to sequence of attributes), we can
extend the zero-shot classification scenario to perform joint
classification and segmentation in a zero-shot manner by
defining a sequence-level score function over M hypothe-
sized segments:

y∗ = argmax
y∈Y⊗T

M∑
i=1

s(â(xti:ti+di
), a(yti:ti+di

)) (5)

In equation 5, the quantity inside the sum implements the
segment-level score function of Eq. 3 (or as a special case,
Eq. 2), defined over the i-th hypothesized segment with start
time ti, duration di, and label yi.

In many cases, these activities have a structure that is
known a priori, and which can be exploited to rule out
impossible action sequences. For example, the JIGSAWS

dataset is composed of surgical suturing videos. In these se-
quences, only certain gesture sequences are realizable. We
can restrict the system’s search space to valid sequences
rather than the set of all possible action sequences Y⊗T .
The best segmentation can be computed using a dynamic
program—for example, one of the algorithms presented in
(Lea et al. 2017) or (Sarawagi and Cohen 2005).

Experiments
In the following sections, we discuss the datasets that we
evaluate on and how our method can be applied in a zero-
shot manner on datasets built for action classification and
datasets built for joint classification & segmentation.

Datasets
Olympic Sports and UCF101: Zero-shot Action Classi-
fication We evaluate the benefit of dynamic action signa-
tures for zero-shot action classification using the Olympic
Sports (Niebles, Chen, and Fei-Fei 2010) and UCF101
(Soomro et al. 2012) datasets. We adhere to the settings pro-
posed by (Xu, Hospedales, and Gong 2017) and perform
30 independent test runs with randomly chosen seen/unseen
classes (8/8 for Olympics, 51/50 for UCF101) for both stan-
dard (ZSL) and generalized (GZSL) zero-shot evaluations.
We report the mean-per-class accuracy over 10 trials along
with the standard deviation over trials. As reported in (Man-
dal et al. 2019), we report mean accuracies for both seen and
unseen categories in the test set and compute the harmonic
mean of the two.

JIGSAWS Here, we demonstrate that we can extend our
framework to model complex activities as sequences of ac-
tions. We use the JIGSAWS dataset (Gao et al. 2014) to
evaluate our framework on a more complex task: joint seg-
mentation and classification. This is a publicly available
dataset containing 39 instances of eight surgeons performing
a benchtop simulation training task for robotic surgery. The
dataset includes endoscopic video of the performance with
per-frame gesture class labels for 10 types of actions that oc-
cur during the task. JIGSAWS only provides annotations for
gestures (activities), and so we use the method described in
Section to obtain per-frame attribute annotations.

DIVA The DIVA dataset (extended from the VIRAT (Oh
et al. 2011) dataset) consists of very long video sequences
captured from 5 independent camera viewpoints. It is a chal-
lenging activity detection benchmark where strong end-to-
end baselines such as (Xu, Das, and Saenko 2017) per-
forms very poorly. Factors such as lack of sufficient train-
ing data and large intra-class variance across camera view-
points lead to poor performance of deep network based ap-
proaches (Gleason et al. 2018; Kim et al. 2019). However,
(Kim et al. 2019) has shown that objects such as vehicles and
humans can be detected reliably. With DIVA experiments,
we demonstrate that off-the-shelf object detectors can be
used to compose dynamic action signatures to perform zero-
shot activity recognition and may even out-perform fully-
supervised baselines under such data conditions.
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ZSL GZSL
Method Emb ID/TD Olympic UCF101 Olympic UCF101

GA (Mishra et al. 2018) W ID 34.1± 10.1 17.3± 1.1 - -
DAP (Lampert, Nickisch, and Harmeling 2009) A ID 45.4± 12.8 15.9± 1.2 - -

HAA (Liu, Kuipers, and Savarese 2011) A ID 46.1± 12.4 14.9± 0.8 49.4± 10.8 18.7± 2.4
SJE (Akata et al. 2015) A ID 47.5± 14.8 12.0± 1.2 32.5± 6.7 8.9± 2.2
GA (Mishra et al. 2018) A ID 50.4± 11.2 22.7± 1.2 - -

GCN (Gao, Zhang, and Xu 2019) W ID 56.5± 6.6 34.2± 3.1 - -
E2E+K664* (Brattoli et al. 2020) W ID - 48.0± 0.0 - -

DASZL (Ours) A ID 74.2± 9.9 48.9± 5.8 56.4± 9.4 43.8± 3.5
OD (Mandal et al. 2019) W TD 50.5± 6.9 26.9± 2.8 53.1± 3.6 37.3± 2.1
GA (Mishra et al. 2018) A TD 57.8± 14.1 24.4± 2.9 52.4± 12.2 23.7± 1.2

GCN (Gao, Zhang, and Xu 2019) W TD 59.9± 5.3 41.6± 3.7 50.2± 6.8 33.4± 3.4
f-GAN (Xian et al. 2018) A TD 64.7± 7.5 37.5± 3.1 59.9± 5.5 44.4± 3.0
OD (Mandal et al. 2019) A TD 65.9± 8.1 38.3± 3.0 66.2± 6.3 49.4± 2.4

DASZL (Ours) A TD 74.2± 9.9 48.9± 5.8 61.0± 4.9 45.3± 2.8

Table 1: Comparison of methods on Olympic Sports and UCF101 datasets. Manually defined attributes (A), Word embeddings
(W). E2E+K664 follows a different training protocol where 664 classes from Kinetics is used to pretrain the network.

Implementation Details
To re-use attribute definitions already provided by public
datasets, we first describe a simple approach to extend static
signatures into dynamic ones. Next we provide information
on how these dynamic attributes can be learned from video.

Dynamic Attribute Annotations: We highlight that both
Olympic Sports and UCF101 already have publicly available
binary attributes associated per action class. These annota-
tions denote whether an attribute (e.g. “Ball-like Object”)
exists or not per action class. We extend these binary values
by adding two temporal patterns. This totals to the following
four dynamic attribute patterns, namely: (0):Absence,
(1):Persistence, (2):Start and (3):End. Please
refer to the supplementary material for all dynamic action
signatures defined for Olympic/UCF activities. For the JIG-
SAWS dataset, no attribute annotations exist but the total
number of attributes and actions are small, leading to an effi-
cient annotation effort. In realistic applications, the relevant
attributes will be defined by the problem itself (eg. search
where a ‘needle’ is transferred from ‘left’ to ‘right gripper’)
or will be given by an expert with surgical domain knowl-
edge.

In DIVA, the required attribute set is described in the ac-
tion definition itself. We re-emphasize that many realistic
zero-shot applications such as the DIVA setting (as opposed
to Olympics, UCF) are of this form. For example the ac-
tion “Person Enters Car” already defines both “Person” and
“Car” attributes. No annotations are necessary as off-the-
shelf detectors are utilized.

Attribute Detectors: For experiments on Olympic Sports,
UCF101 and JIGSAWS, we finetune a pretrained TSM (Lin,
Gan, and Han 2019) to predict attribute presence given a
video segment. We sample a video snippet xt:t+d from a
videoX where d is the length of the snippet, t+d < T and T
is the length of X . The presence of an attribute a(xt:t+d) in
the snippet is determined accordingly based on its dynamic

attribute label (eg (2):End) and relative position of t with
respect to T . For example, given a video of length T = 100
and a dynamic attribute label of (2):End, a(x10:42) = 0
whereas a(x70:90) = 1 for the two snippets extracted from
X . Optimization settings are provided in the supplementary
material.

Results & Discussion
In Section we provide evaluations on the Olympic Sports
(Niebles, Chen, and Fei-Fei 2010) and UCF101 (Soomro
et al. 2012) datasets. We demonstrate that dynamic action
signatures significantly improve zero-shot action classifica-
tion performance. In Section , we then broaden the scope and
describe our approach for the joint segmentation and clas-
sification of activities on the JIGSAWS (Gao et al. 2014)
dataset. Lastly, we demonstrate that off-the-shelf detectors
can be used for zero-shot activity classification of fine-
grained human-object interactions in the DIVA dataset using
our framework.

Zero-shot Action Classification
Zero-shot training and testing settings In the zero-shot
action recognition literature, there are two settings for eval-
uation: zero-shot learning (ZSL) and generalized zero-shot
learning (GZSL). Additionally, there are two settings for
training models: inductive (ID) and transductive (TD). We
explain these here.

Testing setup (ZSL/GZSL) In the ZSL evaluation, the set
of activities in the training videos (labelled videos) are dis-
joint from the set of activities in the test videos (unlabelled
videos). Because test activities never overlap with training
activities in the ZSL setting, it is not possible to evaluate
whether models are biased to more accurately predict the
activities they were trained on. The GZSL evaluation was
built to test the effect of this bias, and differs from the ZSL
setting in that the test videos are drawn from the union of
both the labelled and unlabelled activity sets.
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Training setup (ID/TD) In the inductive (ID) setting, the
training videos are from the labeled set of activities. In the
transductive (TD) setting, both the labelled training videos
and the unlabelled test videos are included during train-
ing. This training setup was built to mitigate the problem
of domain-shift between the activity sets, and improve per-
formance in the GZSL setting. Our approach is inductive.

State-of-the-art Comparisons In Table 1, the top half of
the table compares models with the same training data as-
sumptions (ID) as our approach under both evaluations. We
highlight that under both tasks, our approach outperforms
other ID models by a large margin. The ZSL evaluation pro-
vides a clean measure to directly compare the expressive-
ness of zero-shot systems for action classification because a
classifier’s bias to seen categories (Mandal et al. 2019) does
not affect classification performance. We empirically show
that by modeling actions using dynamic action signatures,
we obtain a much more powerful zero-shot action classifier.

The bottom half of Table 1 compares TD zero-shot meth-
ods. Again, our approach establishes a new state of the art
under the ZSL evaluation even when compared to models
with relaxed training data assumptions compared to our ap-
proach. This is a strong evidence that exploiting the temporal
structure of actions leads to more gains in zero-shot classifi-
cation performance than observing unlabeled test instances.

For the GZSL evaluation, with the ID version of our
model, we report accuracies of 76.2% for seen and 44.7%
for unseen categories (harmonic mean of 56.4%) on
Olympics. And consistently in UCF101, we see 67.2% on
seen and 32.5% on unseen activities (harmonic mean of
43.8%). We observe the domain shift problem mentioned
in the previous section. However, we can adopt methods
such as the binary in-vs-out-of-distribution auxiliary classi-
fier (ODaux) proposed in (Mandal et al. 2019) to implement
a naive transductive solution. At inference time, the auxil-
iary binary prediction simply serves to limit the allowable
prediction of our model which ultimately increases the re-
call of unseen categories at the cost of seen categories. For
GZSL, the addition of ODaux reduces the performance gap
between the seen and unseen categories which ultimately
leads to gains of 4.6 and 1.5 on Olympics and UCF101.
Since it is unnecessary to invoke the ODaux for the ZSL
evaluation, we report identical results for ID/TD settings.
We view a transductive extension of our framework as an
interesting direction for future work.

JIGSAWS: Zero-shot Action Classification &
Segmentation
We have established that modeling actions as sequences of
dynamic attributes leads to state of the art zero-shot clas-
sification performance. However, current zero-shot evalua-
tion framework focuses on comparing models that all as-
sume common semantic embedding of labels such as pre-
defined attribute sets or word vector embeddings. Though
such evaluation protocol provides fair and straight-forward
comparisons between zero-shot methods, it fails to paint a
clear picture of how zero-shot methods can extend beyond
action classification. In the following sections, we show that
we can extend our zero-shot framework easily to model ac-
tivities as sequences of actions and thus enabling the first
application of temporal zero-shot activity segmentation.

Classification We begin by performing an ablation ex-
periment studying the effectiveness of our dynamic sig-
natures on the JIGSAWS dataset for the classification
setting. For the static-signature system, we map all dy-
namic signatures to their nearest static counterparts. Specif-
ically, we map signatures (2):start and (3):end to
(0):absence. Our static-attribute system’s average ac-
curacy is 58.9%, while our system with dynamic attributes
performs at 69.7%. Allowing dynamic signatures disam-
biguates between these gestures that are otherwise indistin-
guishable using only static signatures.

Classification & Segmentation We next turn to the task
of zero-shot decoding, joint classification and segmentation,
of surgical activity. For this task, a long video which con-
tains multiple actions is given and the task is to specify the
start, end and label of all actions within a complex activ-
ity. This task can be performed in a naive way by doing
zero-shot classification for individual samples or windows
of samples, but frequently practitioners are aware of addi-
tional structure that restricts which action sequences are re-
alizable. In this experiment, we compare the performance of
a grammar derived from first-principles knowledge of surgi-
cal suturing tasks with an unstructured baseline.

More specifically, our grammar describes an ideal exe-
cution of the suturing task (see fig. 3 for an illustration).
The practitioner begins by reaching for the needle (G1),
then moves to the work area (G5), then executes a suture
(G2 - G6). At this point they can either transfer the nee-
dle from the left to the right hand (G4) and perform another
suture, or drop the suture and end the activity (G11). Note
that not every sequence in the JIGSAWS dataset conforms
to this model—there are a few rare states (G8, G9, and G10)
that correspond to errors made during the suturing process.

start
G5 G2 G3 G6 G4

G11

G2

Figure 3: State machine depicting an ideal suturing gesture sequence.
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Method Edit Score Acc (%)
IDT (s) 8.5 53.9
VGG (s) 24.3 45.9
DASZL w/o grammar (z) 32.7 48.5
DASZL (z) 61.7 56.6
Seg-CNN (s) (Lea et al. 2016) 66.6 74.7
ST-CNN (s) (Lea et al. 2016) 68.0 77.7
TCN (s) (Lea et al. 2017) 83.1 81.4

Table 2: Comparison of our zero-shot method with previous
supervised methods for joint classification and segmentation
on JIGSAWS. (s): Supervised and (z): zero-shot methods

Supervised Zero-shot
R(2+1)D TSM E2E-K664 DASZL (ours)

Accuracy 57.1 63.7 50.0 85.0

Table 3: Accuracies R(2+1)D and TSM baselines supervised
using action labels and a zero-shot baseline E2E-K664 on
the DIVA dataset. By using object detectors to compose dy-
namic action signatures, we show that our model generalizes
better than fully supervised baselines and is more accurate
than the state-of-the-art true zero-shot method.

Since this work addresses zero-shot applications, we focus
on modelling reliable and structured correct cases instead of
the more variable incorrect ones.

The performance of our zero-shot decoding system and
the unstructured baseline are recorded in Table 2. Our struc-
tured model improves frame-level accuracy over the unstruc-
tured one by about 8%. However, the improvement in edit
score is much more substantial. By providing information
about the basic structure of the sequence derived from what
we know about the underlying process, we obtain close to a
100% relative improvement in edit score.

Table 2 compares our method with previous, fully-
supervised ones. All listed methods except ours (DASZL
variants) are fully supervised methods. The first three su-
pervised models represent unstructured, neural baselines es-
tablished in (Lea et al. 2017). Interestingly, we obtain better
edit distance than all of them and better accuracy than two of
the three without ever training on gesture-labeled data. Fur-
thermore, our edit distance comes close to that of the seg-
mental spatiotemporal CNN of (Lea et al. 2017)—a fully-
supervised model that also incorporates a grammar.

DIVA: Zero-Shot Interaction Classification with
Off-the-Shelf Detectors
Both experiments on zero-shot classification of human activ-
ities and zero-shot segmentation of surgical gestures involve
a supervised training step to obtain attribute detectors using
instances from seen categories. In this section, we demon-
strate that publicly available, off-the-shelf object detectors
can be used to compose a system to classify human-object
interactions in a truly supervision-less zero-shot manner. We
demonstrate how we encode first-principles temporal logic
to define activities using state machines combined with off-

Figure 4: A set of state machines defined for Entering (left)
and Exiting (right). A practitioner, using our framework, can
effectively encode dynamic relations that may change over
time to compose action classifiers in an open-set setting.

the-shelf object detectors to tackle this realistic open-set sce-
nario.

Given detectable objects {Human, Vehicle}, we define
a human Entering and Exiting a vehicle with state machines
shown in Figure 4. We use publicly available object detec-
tors (He et al. 2017) and do not finetune the detectors.

We compare our zero-shot system against well established
end-to-end fully-supervised baselines, TSM (Lin, Gan, and
Han 2019)) and R(2+1)D (Tran et al. 2018). The DIVA
dataset consists of instances sampled from five independent
camera viewpoints where a model is trained on instances
from four scenes and tested on samples from the held-out
fifth scene (scene 0000). The results in Table 3 show that
our zero-shot approach outperforms the supervised baselines
which are optimized end-to-end to predict activity labels
given a video. This not only shows the discriminative power
of dynamic action signatures for zero-shot methods but also
emphasizes that the presented framework generalizes more
robustly across viewpoints given its compositional nature.
We also attempted to train TSM and R(2+1)D to jointly pre-
dict action labels and object presence but the models failed
to converge.

We also compare against a truly zero-shot baseline (Brat-
toli et al. 2020) which is trained to predict word embeddings
directly given a video. We show that the E2E-K664 model
performs poorly (chance is 50.0). We suspect that the word
vector representations of Entering and Exiting are actually
similar in the embedding space but for this classification
task, we want the representations to be orthogonal. This is
a fundamental limitation of activity representations derived
from static word embeddings. The large performance gap
corroborates that dynamic action signatures provide large
benefits when modeling fine-grained interactions in a zero-
shot manner.

Conclusion
We have presented a compositional approach for model-
ing fine-grained activities using dynamic action signatures.
We showed that modeling actions as compositions spatio-
temporal patterns of actors (attributes or objects) with tem-
poral information improves zero-shot classification and we
established a new state-of-the-art results on Olympic Sports
and UCF101 datasets. Further, by modeling activities as
sequences of actions, we established for the first a com-
petitive baseline for a novel task of zero-shot segmenta-
tion of complex surgical gesture sequences. Finally, with
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our framework, we showed an effective application of de-
scribing and recognizing fine-grained human-object inter-
actions using first-principles knowledge combined with off-
the-shelf object detectors.
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