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Abstract
We propose a novel distance-based regularization method for
deep metric learning called Multi-level Distance Regulariza-
tion (MDR). MDR explicitly disturbs a learning procedure
by regularizing pairwise distances between embedding vec-
tors into multiple levels that represents a degree of similarity
between a pair. In the training stage, the model is trained with
both MDR and an existing loss function of deep metric learn-
ing, simultaneously; the two losses interfere with the objec-
tive of each other, and it makes the learning process difficult.
Moreover, MDR prevents some examples from being ignored
or overly influenced in the learning process. These allow the
parameters of the embedding network to be settle on a local
optima with better generalization. Without bells and whistles,
MDR with simple Triplet loss achieves the-state-of-the-art
performance in various benchmark datasets: CUB-200-2011,
Cars-196, Stanford Online Products, and In-Shop Clothes Re-
trieval. We extensively perform ablation studies on its behav-
iors to show the effectiveness of MDR. By easily adopting
our MDR, the previous approaches can be improved in per-
formance and generalization ability.

Introduction
Deep Metric Learning (DML) aims to learn an appropriate
metric that measures the semantic difference between a pair
of images as a distance between embedding vectors. Many
research areas such as image retrieval (Sohn 2016; Yuan,
Yang, and Zhang 2017; Oh Song et al. 2017; Duan et al.
2018; Ge 2018) and face recognition (Wang et al. 2017; Liu
et al. 2017; Wang et al. 2018; Deng et al. 2019) are based on
DML to seek appropriate metrics among instances. Those
studies focus on devising a better loss function for DML.

Most of previous loss functions (Sohn 2016; Bromley
et al. 1994; Hadsell, Chopra, and LeCun 2006; Yi et al. 2014;
Hoffer and Ailon 2015; Schroff, Kalenichenko, and Philbin
2015) use binary supervision that indicates whether a given
pair is positive or negative. Their common objective is to
minimize the distance between a positive pair and maximize
the distance between a negative pair (Figure 1a). However,
without any constraints, a model trained with such objec-
tive is prone to overfitting on a training set because posi-
tive pairs can be aligned too closely while the negative pairs
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can be aligned too far in the embedding space. Therefore,
several loss functions employ additional terms to avoid pos-
itive pairs to be too close and negative pairs to be too far,
e.g., margin m in Triplet loss (Schroff, Kalenichenko, and
Philbin 2015) and Constrastive loss (Hadsell, Chopra, and
LeCun 2006). Despite these attempts, they still can suffer
from overfitting due to the lack of explicit regularization for
the distances.

Our insight is that a learning procedure of DML can be en-
hanced by explicitly regularizing the distance between pairs
to disturb a loss function of DML from optimizing an em-
bedding network; one easy way to constrain a distance is to
pull the value of the distance to a predefined level. Conven-
tional loss functions of DML adjust the distance according
to its label, on the other hand, explicit distance-based regu-
larization prevents the distance from deviating from the pre-
defined level. Those two interfere with the objective of each
other, thus it makes the learning process difficult and allows
the embedding network to be more robust for generaliza-
tion. Additionally, we consider multiple levels with disjoint
intervals to regularize distances, not a single level, because
a degree of inter-class similarity or intra-class variation can
be different depending on classes or instances.

We propose a novel method called Multi-level Distance
Regularization (MDR) that makes the conventional loss
functions of DML have difficulty in converging by holding
each distance so that it does not deviate from the belonging
level. At first, MDR normalizes pairwise distances among
the embedding vectors of a mini-batch, with their mean and
standard deviation to obtain the objective degree of similar-
ity between a pair by considering overall distribution. MDR
defines the multiple levels that represent various degrees of
similarity for pairwise distances, and the levels and the be-
longing distances are trained to approach each other (Figure
1b). A conventional loss function of DML struggles to opti-
mize a model by overcoming the disturbance from the pro-
posed regularization. Therefore, the learning process suc-
ceeds in learning a model with a better generalization ability.
We summarize our contributions:

• We introduce MDR, a novel regularization method for
DML. The method disturbs optimizing pairwise distances
by preventing them from deviating from its belonging
level for better generalization.
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Figure 1: Conceptual comparison between the conventional learning scheme and our learning scheme. (a) illustrates the triplet
learning (Schroff, Kalenichenko, and Philbin 2015), which is one of the representative conventional learning. It increases the
relative difference between distances of a positive pair and that of a negative pair more than margin m. (b) illustrates our
learning combined with the triplet learning. It has multiple levels with disjoint intervals to reflect various degrees of similarity
between pairs. It disturbs the learning procedure to construct an efficient embedding space by preventing the pairwise distances
from deviating from its belonging level.

• MDR achieves the-state-of-the-art performance on vari-
ous benchmark datasets (Wah et al. 2011; Krause et al.
2013; Oh Song et al. 2016; Liu et al. 2016) of DML. More-
over, our extensive ablation studies show that MDR can be
adopted to any backbone networks and any distance-based
loss functions to improve the performance of a model.

Related Work
Loss Function. Improving the loss function is one of
the key objectives in recent DML studies. One family of
loss functions (Sohn 2016; Bromley et al. 1994; Schroff,
Kalenichenko, and Philbin 2015; Oh Song et al. 2016; Wang
et al. 2019a; Wu et al. 2017) focuses on optimizing pair-
wise distance between instances. The common objective of
these functions is to minimize the distance between posi-
tive pairs and to maximize the distance between negative
pairs in an embedding space. Contrastive loss (Bromley et al.
1994) samples pairs of two instances, whereas Triplet loss
(Schroff, Kalenichenko, and Philbin 2015) samples triplets
of anchor, positive and negative instances; then both losses
optimize the distance between the sampled instances. Also,
Global Loss (Kumar BG, Carneiro, and Reid 2016) mini-
mizes the mean and variance of all pairwise distances be-
tween positive examples and maximizes the mean of pair-
wise distances between all negative examples; Global Loss
helps to optimize examples that are not selected by the ex-
ample mining of DML. Histogram Loss (Ustinova and Lem-
pitsky 2016) minimizes the probability that a randomly sam-
pled positive pair has a smaller similarity than randomly
sampled negative pairs. To extend the number of relations
explored at once, NPair (Sohn 2016) samples a positive and
all negative instances for each example in a given mini-
batch; similar loss functions (Oh Song et al. 2016; Wang
et al. 2019a) also sample a large number of instances to

fully explore the pairwise relations in the mini-batch. On the
other, some loss functions (Cakir et al. 2019; Revaud et al.
2019) focus on learning to rank according to the similarity
between pairs. The performance of loss functions optimiz-
ing pairwise distance can be changed by a sampling method,
thus, several studies focused on the pair sampling (Suh et al.
2019; Schroff, Kalenichenko, and Philbin 2015; Wu et al.
2017) for stable learning and better accuracy. A recent work
(Wang et al. 2020) even samples pairs across mini-batches to
collect a sufficient number of negative examples. Instead of
designing a sampling method manually, a work (Roth, Mil-
bich, and Ommer 2020) employs reinforcement learning to
learn the policy for sampling. As a regularizer, MDR can be
combined with those loss functions to improve the general-
ization ability of a model.

Generalization Ability. Another goal of DML is to improve
the generalization ability of a given model. An ensemble
of multiple heads that share the backbone network (Opitz
et al. 2018; Kim et al. 2018; Jacob et al. 2019; Sanakoyeu
et al. 2019) has the key objective of diversifying each head
to achieve reliable embedding. Boosting can be used to re-
weight the importance of instances differently on each head
(Opitz et al. 2018; Sanakoyeu et al. 2019), or a spatial atten-
tion module can be used to differentiate a spatial region on
which each head focuses (Kim et al. 2018). HORDE (Jacob
et al. 2019) makes each head approximate a different higher-
order moment. Those methods focus on changing the archi-
tecture of a model, but our MDR, as a regularizer, focuses on
making a learning procedure harder to improve generaliza-
tion ability. Without adding any extra computational costs or
changing the architecture of the model, MDR can be easily
integrated with those DML methods by simply adding our
loss function.
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Figure 2: Learning procedure of the proposed MDR. The embedding network generates embedding vectors from given images.
Our MDR computes a matrix of pairwise distances for the embedding vectors, and then, the distances are normalized after
vectorization. In our learning scheme, a model is trained by simultaneously optimizing the conventional metric learning loss
such as Triplet loss (Schroff, Kalenichenko, and Philbin 2015) and the proposed loss, which regularizes the normalized pairwise
distances with multiple levels.

Proposed Method
In this section, we introduce a new regularization method
called Multi-level Distance Regularization (MDR), which
makes the learning procedure difficult by preventing each
pairwise distance from deviating from a corresponding level,
to learn a robust feature representation.

Multi-level Distance Regularization
We describe the detailed procedure of MDR to regulate pair-
wise distances in three steps (Figure 2).

(1) Distance Normalization. This step is performed to ob-
tain an objective degree of distance by considering overall
distribution for stable regularization. Here, an embedding
network f maps an image x into an embedding vector ewith
a certain dimensionality: e = f(x). A distance is defined as
Euclidean distance between two given embedding vectors,
d(ei, ej) = ‖ei − ej‖2. We normalize the distance as:

d̄(ei, ej) =
d(ei, ej)− µ

σ
, (1)

where µ is mean of distances and σ is standard deviation of
distances a set of pairs, which is P = {(ei, ej)|i 6= j} for
all instances of a mini-batch. To more widely consider the
overall dataset, we employ the momentum updates:

µ∗t = γµ∗t−1 + (1− γ)µ,

σ∗t = γσ∗t−1 + (1− γ)σ,
(2)

where µ∗t and σ∗t are respectively the momented mean and
momented standard deviation at iteration t, and γ is the mo-
mentum. With the momented statistics, the normalized dis-
tance is re-written:

d̄(ei, ej) =
d(ei, ej)− µ∗

σ∗
. (3)

(2) Level Assignment. MDR designates a level that acts as a
regularization goal for each normalized distance. We define
a set of levels s ∈ S , and the levels are initialized with pre-
defined values; each level s is interpreted as a multiplier of
the standard deviation of the normalized distance. g(d; s) is

an assignment function that outputs whether the given dis-
tance d and the given level s are the closest or not, and is
defined as:

g(d, s) =

{
1, if arg minsi∈S |d− si| is s
0, otherwise.

(4)

By adopting the assignment function, MDR selects valid
regularization levels for each distance with the consideration
of various degrees of similarities.
(3) Regularization. Finally, this step is performed to prevent
pairwise distances from deviating from its belonging level.
MDR minimizes the difference between a given normalized
pairwise distance and the assigned level:

LMDR =
1

P
∑

(ei,ej)∈P

∑
s∈S

g
(
d̄(ei, ej), s

)
·
∣∣d̄(ei, ej)− s

∣∣ .
(5)

The levels are learnable parameters and are updated to op-
timally regularize the pairwise distances. Each normalized
distance is trained to become closer to the assigned level; the
assigned level is also trained to become closer to the corre-
sponding distances. As iterations pass, the levels are trained
to properly divide the normalized distances into multiple in-
tervals. Each level is a representative value of a certain inter-
val in the normalized distance. We describe the initial con-
figuration of the levels in Section .

In conclusion, MDR has two functional effects of regular-
ization: (1) the multiple levels of MDR disturbs optimizing
the pairwise distances among examples, (2) the outermost
levels of MDR prevents the positive pairs from getting too
close and the negative pairs from getting too far. By the for-
mal effect, the learning process does not easily suffer from
overfitting. By the latter effect, the learning process does not
suffer from diminishing of the loss from easy examples, and
also, does not suffer from being too biased to certain exam-
ples such as hard examples. Therefore, MDR stabilizes the
learning procedure to achieve a better generalization ability
on a test dataset.

Learning
Loss Function. The proposed MDR can be applied to any
loss functions LDML such as Contrastive loss (Bromley
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CUB-200 Cars-196
Recall@K 1 2 4 8 1 2 4 8
HTL (Ge 2018) 57.1 68.8 78.7 86.5 81.4 88.0 92.7 95.7
RLL-H (Wang et al. 2019b) 57.4 69.7 79.2 86.9 74.0 83.6 90.1 94.1
NSM (Zhai and Wu 2019) 59.6 72.0 81.2 88.4 81.7 88.9 93.4 96.0
MS (Wang et al. 2019a) 65.7 77.0 86.3 91.2 84.1 90.4 94.0 96.5
SoftTriple (Qian et al. 2019) 65.4 76.4 84.5 90.4 84.5 90.7 94.5 96.9
HORDE† (Jacob et al. 2019) 66.3 76.7 84.7 90.6 83.9 90.3 94.1 96.3
DiVA (Milbich et al. 2020) 66.8 77.7 - - 84.1 90.7 - -
Triplet 57.3±0.7 68.7±0.8 78.4±0.6 86.1±0.4 76.2±0.6 84.4±0.3 90.0±0.2 93.7±0.2

Triplet+L2Norm 65.1±0.3 76.1±0.2 84.2±0.2 90.3±0.1 79.8±0.3 87.1±0.3 91.9±0.4 95.1±0.1

Triplet+MDR 68.8±0.5 78.8±0.3 86.6±0.2 91.8±0.1 88.5±0.3 93.0±0.2 95.6±0.2 97.5±0.1

Triplet+MDR† 71.4±0.4 81.2±0.3 88.0±0.2 92.6±0.3 90.4±0.2 94.3±0.1 96.6±0.1 98.0±0.1

(a) CUB-200 (Wah et al. 2011) and Cars-196 (Krause et al. 2013)

SOP In-Shop
Recall@K 1 10 100 1000 1 10 20 40
NSM (Zhai and Wu 2019) 73.8 88.1 95.0 - - - - -
MS (Wang et al. 2019a) 78.2 90.5 96.0 98.7 89.7 97.9 98.5 99.1
SoftTriple (Qian et al. 2019) 78.3 90.3 95.9 - - - - -
HORDE† (Jacob et al. 2019) 80.1 91.3 96.2 98.7 90.4 97.8 98.4 98.9
DiVA (Milbich et al. 2020) 78.1 90.6 - - - - - -
Triplet 75.8±0.1 87.9±0.1 94.1±0.1 97.6±0.1 88.2±0.1 96.7±0.1 97.6±0.1 98.3±0.1

Triplet+L2Norm 79.1±0.1 90.9±0.1 96.3±0.1 98.8±0.1 90.1±0.1 97.8±0.1 98.6±0.0 99.1±0.1

Triplet+MDR 80.1±0.0 91.4±0.1 96.4±0.1 98.8±0.1 90.5±0.1 97.9±0.1 98.5±0.1 99.1±0.1

Triplet+MDR† 80.8±0.1 91.9±0.1 96.7±0.0 98.9±0.0 91.3±0.1 98.2±0.1 98.8±0.0 99.3±0.0

(b) SOP (Oh Song et al. 2016) and In-Shop (Liu et al. 2016)

Table 1: Recall@K comparison with state-of-the-art methods. The baseline methods and MDR are grouped in the gray-colored
rows. † indicates that the model is trained and tested with large images of 256×256 following the setting of (Jacob et al. 2019).
We round reported values to the first decimal place.

et al. 1994), Triplet loss (Schroff, Kalenichenko, and Philbin
2015) and Margin loss (Wu et al. 2017). We mostly adopted
Triplet loss as baseline for our experiments:

LTriplet =
1

|T |
∑

(ea,ep,en)∈T

[d(ea, ep)− d(ea, en) +m]+ ,

(6)
where T is a set of triplets of an anchor ea, a positive ep, and
a negative en sampled from a mini-batch.m is a margin. The
final loss functionL is defined as the sum ofLDML andLMDR
with a multiplier λ that balances the losses:

L = LDML + λLMDR. (7)

LDML optimizes the model by minimizing the distance of
positive pairs and maximizing the distance of negative pairs.
LMDR regularize the pairwise distances by constraining the
distances with multiple levels. The embedding network is
trained simultaneously with different objectives.
Embedding Normalization Trick for MDR. In our learn-
ing procedure, L2 Normalization (L2 Norm) is not adopted
because it can disturb the proper regularization effect of
MDR. However, the lack of L2 Norm can cause difficulty
in finding appropriate hyper-parameters of LDML such as

margin m in Triplet loss, because any prior knowledge of
the scale of embedding vectors is not given. To overcome
the difficulty, we normalize LDML by dividing the embed-
ding vectors e by µ during the training stage, such that the
expected pairwise distance is one: E

[
d( eiµ ,

ej
µ )
]

= 1. We
adopt this trick on several loss functions such as Constrastive
loss (Hadsell, Chopra, and LeCun 2006), Margin loss (Wu
et al. 2017), and Triplet loss in our experiments.

Experiments
To show the effectiveness of MDR and its behaviors, we
extensively perform ablation studies and experiments. We
follow the standard evaluation protocol and data splits pro-
posed in (Oh Song et al. 2016). For an unbiased evaluation,
we conduct 5 independent runs for each experiment and re-
port the mean and the standard deviation of them.
Datasets. We employ the four standard datasets of deep
metric learning for evaluations: CUB-200-2011 (Wah et al.
2011) (CUB-200), Cars-196 (Krause et al. 2013), Stanford
Online Product (Oh Song et al. 2016) (SOP) and In-Shop
Clothes Retrieval (Liu et al. 2016) (In-Shop). CUB-200 has
5,864 images of first 100 classes for training and 5,924 im-
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ages of the rest classes for evaluation. Cars-196 has 8,054
images of first 98 classes for training and 8,131 images of
the rest classes for evaluation. SOP has 59,551 images of
11,318 classes for training and 60,502 images of the rest
classes for evaluation. In-Shop has 25,882 images of 3,997
classes for training, and the remaining 7,970 classes with
26,830 images are partitioned into two subsets (query set
and gallery set) for evaluation.

Implementation Details
Embedding Network. All the compared methods and our
method use the Inception architecture with Batch Normal-
ization (IBN) (Ioffe and Szegedy 2015) as a backbone
network. IBN is pre-trained for ImageNet ILSVRC 2012
dataset (Deng et al. 2009) and then fine-tuned on the tar-
get dataset. We attach a fully-connected layer, where its out-
put activation is used as an embedding vector, after the last
pooling layer of IBN. For models trained with MDR, L2

Norm is not applied to the embedding vectors because it
disturbs the effect of the regularization. For a fair compar-
ison with the conventional implementation of Triplet loss
(Schroff, Kalenichenko, and Philbin 2015) that is used as
a baseline, we apply L2 Norm to those models.
Learning. We employ Adam (Kingma and Ba 2014) opti-
mizer with a weight decay of 10−5. For CUB-200 and Cars-
196, a learning rate and the size of mini-batch are set to
5 · 10−5 and 128. For SOP and In-Shop, a learning rate and
the size of mini-batch are set to 10−4 and 256. We mainly
apply our method to Triplet loss (Schroff, Kalenichenko, and
Philbin 2015). As a triplet sampling method, we employ the
distance weighted sampling (Wu et al. 2017). The margin
m of Triplet loss is set to 0.2. We summarized the hyper-
parameters of MDR: the configuration of the levels is ini-
tialized to three levels of {−3, 0, 3}, and the momentum γ
is set to 0.9. λ is set differently for each dataset: 0.6 for
CUB-200, 0.2 for Cars-196 and 0.1 for SOP and In-Shop.
For most of the datasets, λ of 0.1 is enough to improve a
given model; on CUB-200, a strong regularization is more
effective because it is a small dataset with only 5,864 train-
ing images where a model may easily suffer from overfit-
ting. Those hyper-parameters are not very sensitive to tune,
and we explain the effects of each hyper-parameter in the
ablation studies at Section .
Image Setting. During training, we follow the standard im-
age augmentation process (Oh Song et al. 2016; Wang et al.
2019a) with the following order: resizing to 256× 256, ran-
dom cropping, random horizontal flipping, and resizing to
224× 224. For evaluation, images are center-cropped.

Comparison with State-of-the-art Methods
We show the comparison of MDR and the recent state-
of-the-art methods (Table 1). All compared methods use
embedding vectors of 512 dimensionality. Our baseline
model is trained by Triplet loss without L2 Norm (Triplet)
and we also report the conventional Triplet with L2 Norm
(Triplet+L2 Norm). The lack of constraints of L2 Norm on
the embedding space results in poor generalization perfor-
mance, and it is known that Triplet loss is effective when L2
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Figure 3: (a) compares the three methods on various dimen-
sionalities of the embedding vector on CUB-200 and Cars-
196. (b) shows the learning curves of the three methods for
the training and test set on CUB-200.

Norm is applied (Schroff, Kalenichenko, and Philbin 2015).
However, the models with MDR outperform the Triplet+L2

Norm models on all the datasets. Those results prove the ef-
fectiveness of the proposed distance-based regularization.

Experimental Results. MDR improves performance on all
the datasets, and, in particular, the improvements are sig-
nificantly high on the small-sized datasets. For CUB-200,
MDR improves 3.7 percentage points on Recall@1 com-
pared to the conventional Triplet+L2 Norm; the result is
11.5 percentage points higher than Recall@1 of the Triplet.
For Cars-196, MDR improves 8.7 percentage points on Re-
call@1 compared to the conventional Triplet+L2 Norm; the
result is 12.3 percentage points higher than Recall@1 of the
Triplet. MDR also improves the recall performance com-
pared to the baselines on SOP and In-Shop. Moreover, our
method significantly outperforms the other state-of-the-art
methods in all recall criteria for all datasets.
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CUB-200 Cars-196
MDR X X

R18 51.2±0.5 63.6±0.5 63.4±1.0 82.3±0.2

R50 58.5±0.4 65.8±0.3 77.5±0.4 87.6±0.2

IBN 57.3±0.7 68.8±0.5 76.2±0.6 88.5±0.3

(a) Backbone Network

CUB-200 Cars-196
MDR X X

Contrastive 63.9±0.3 65.6±0.2 83.2±0.1 86.1±1.0

Margin 59.3±0.5 67.5±0.3 79.1±0.3 88.2±0.4

Triplet 57.3±0.7 68.8±0.5 76.2±0.6 88.5±0.3

(b) Loss Function

CUB-200
Fixed Learnable

{−1, 0, 1} 64.4±0.4 64.9±0.4

{−2, 0, 2} 67.9±0.2 68.2±0.5

{−3, 0, 3} 68.2±0.1 68.8±0.5

{−3,−1, 0, 1, 3} 64.0±0.4 64.9±0.1

{−3,−2, 0, 2, 3} 67.8±0.4 67.9±0.3

{−4,−2, 0, 2, 4} 67.8±0.3 67.8±0.2

{−6,−3, 0, 3, 6} 68.4±0.1 68.7±0.5

(c) Level Configuration

Table 2: Recall@1 comparison with various backbone net-
works, loss functions, and level configurations. The models
of (a) are trained with Triplet loss. The models of (b) use
IBN as the backbone network. In (a) and (b), a column with
X indicates that the models are trained with MDR.

Ablation Studies
We extensively perform ablation studies on the behaviors of
the proposed MDR.
Backbone Network. MDR can be widely applicable to any
backbone networks (Table 2a). We apply MDR on IBN
(Ioffe and Szegedy 2015), ResNet18 (R18) and ResNet50
(He et al. 2016) (R50), and achieve significant improve-
ments for all backbone networks. Especially, a light-weight
backbone, R18, with MDR even outperforms the baseline
models with a heavy-weight backbone such as R50 and IBN
on both datasets.
Loss Function. Our MDR also can be widely applicable to
any distance-based loss function (Table 2b). We apply MDR
on Constrastive loss (Hadsell, Chopra, and LeCun 2006),
Margin loss (Wu et al. 2017) and Triplet loss. MDR achieves
significant improvements for all loss functions.
Level Configuration S . Even though the levels are learn-
able, we should properly set the number of levels and the
initial values of levels. We perform experiments on vari-
ous initial configurations of levels and validate the impor-
tance of the learnability of levels (Table 2c). From the ex-
periments, we find that a sufficiently spaced configuration
is better than a tightly spaced configuration; {−3, 0, 3} is

CUB-200
L2 Norm at Inference X

Triplet 57.3±0.7 51.5±1.0
Triplet+MDR 68.8±0.5 68.2±0.4

Table 3: Recall@1 comparison with the effect of L2 Norm
at inference time for the models trained without L2 Norm.
A column with X indicates that the trained models are eval-
uated with L2 Norm.
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Figure 4: (a) compares the expectation of the two-norm of
the embedding vectors for the test set on CUB-200. (b) com-
pares the coefficient of variation of the two-norm of the em-
bedding vectors for the test set on CUB-200.

better than {−1, 0, 1}, and a configuration of three levels is
sufficient.

Discussion
Effectiveness in Small Dimensionality. We perform an ex-
periment on various dimensionalities of embedding vector
such as 64, 128, 256, and 512. MDR significantly improves
the Recall@1 of the models, especially in small dimension-
ality. In the experiment, our MDR only with 64 dimensional-
ity is similar to or surpasses the performance of other meth-
ods with 512 dimensionality (Figure 3a). The result indicates
that our MDR constructs a highly efficient embedding space
in compact dimensionality. Moreover, the improvements are
larger compared to Triplet+L2 Norm for all dimensionality.
Prevention of Overfitting as Regularizer. We investigate
the learning curves of three models: Triplet, Triplet+L2

Norm and Triplet+MDR (Figure 3b). There are two cru-
cial observations: (1) on the training set, Triplet+MDR is
less overfitted than the other two methods, but it shows the
most high performance on the test set., (2) the recall of
Triplet+MDR does not drop until the end of learning, un-
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(a) Triplet (b) Triplet + L2 Norm (c) Triplet + MDR

Figure 5: Class centers in the embedding space of two models trained without MDR (Triplet & Triplet+L2 Norm) and one
model trained with MDR (Triplet+MDR). We visualize using t-SNE (Maaten and Hinton 2008) on CUB-200.

Normalized Distance

Negative
Pairs

Positive
Pairs

Level 1 Level 2 Level 3

Figure 6: Visualization of assigned positive and negative pairs at each level on CUB-200. Regardless of positive or negative
pair, a visually close pair is assigned to level 1, and a visually distant pair is assigned to level 3; even the same birds of the same
species can be varying in appearance by the difference in perspectives, poses, and environments.

like the other methods, which suffer from severe overfitting.
These observations indicate that our MDR is an effective
regularizer for DML.
Equalizing the Two-Norm of Embedding Vectors. We
find that the embedding vectors of a model trained with
MDR have almost the same two-norm (Figure 4a and 4b).
This shows that the embedding vectors are almost located
on a hypersphere, even though the model is trained without
L2 Norm. Therefore, the model trained with MDR achieves
similar performance even if L2 Norm is applied at inference
time (Table 3). This observation implies that MDR has simi-
lar effects of L2 Norm at the end of the training, even though
MDR is a distance-based regularization and L2 Norm is
norm-based regularization.
Discriminative Representation. To show the effectiveness
of our method, we visualize how MDR constructs an em-
bedding space. In the embedding space of Triplet and
Triplet+L2 Norm, the class centers are often aligned closely
to each other (Figure 5a and 5b). However, in an embedding
space of Triplet+MDR, the class centers are evenly spaced
with a large margin (Figure 5c). This result indicates that
MDR constructs a more discriminative representation than
the conventional methods.

Qualitative Analysis on Level Assignment. In the step of
the level assignment, a lower level indicates that the pairs are
closely aligned in the embedding space and vice versa. Most
of the positive pairs are belonging to between level 1 and
2, and most of the negative pairs are belonging to between
level 2 and 3. However, hard-positive pairs may belong to
level 3 while hard-negative also may belong to level 1 (Fig-
ure 6). Therefore, levels are assigned to each pair regardless
of given binary supervision. The learning procedure tried to
overcome the disturbance that pulls the distances to belong-
ing levels by considering the various degrees of distances;
this multi-level disturbance leads to the improvement of the
generalization ability.

Conclusion
We introduce a new distance-based regularization method
that elaborately adjusts the pairwise distance into multiple
levels for better generalization. We prove the effectiveness
of MDR by showing the improvements that greatly exceed
the existing methods, and by extensively performing the ab-
lation studies of its behaviors. By applying our MDR, many
methods can be significantly improved without any extra
burdens at inference time.
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Potential Ethical Impact
Due to the gap between a training dataset and real-world
data, it is important to build a reliable model with better
generalization ability across the unseen dataset, e.g.test set,
for its practicality. Our MDR is a regularization method to
improve the generalization ability of a deep neural network
on the task of deep metric learning. As positive aspects, our
method can be applied to many practical applications such
as image retrieval and item recommendation. These appli-
cations are utilized for our conveniences and the proposed
MDR can improve their performance more reliably. We be-
lieve that our method does not have particular negative as-
pects because it is a fundamental method that assists conven-
tional approaches to improve reliability on unseen datasets.
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