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Abstract

For stability and reliability of real-world applications, the
robustness of DNNs in unimodal tasks has been evaluated.
However, few studies consider abnormal situations that a vi-
sual question answering (VQA) model might encounter at
test time after deployment in the real-world. In this study, we
evaluate the robustness of state-of-the-art VQA models to five
different anomalies, including worst-case scenarios, the most
frequent scenarios, and the current limitation of VQA mod-
els. Different from the results in unimodal tasks, the maxi-
mum confidence of answers in VQA models cannot detect
anomalous inputs, and post-training of the outputs, such as
outlier exposure, is ineffective for VQA models. Thus, we
propose an attention-based method, which uses confidence
of reasoning between input images and questions and shows
much more promising results than the previous methods in
unimodal tasks. In addition, we show that a maximum en-
tropy regularization of attention networks can significantly
improve the attention-based anomaly detection of the VQA
models. Thanks to the simplicity, attention-based anomaly
detection and the regularization are model-agnostic methods,
which can be used for various cross-modal attentions in the
state-of-the-art VQA models. The results imply that cross-
modal attention in VQA is important to improve not only
VQA accuracy, but also the robustness to various anomalies.

Introduction
Visual question answering (VQA) is a challenging task that
requires a comprehensive understanding of vision, language,
and commonsense knowledge (Antol et al. 2015; Goyal et al.
2017). Despite the difficulty, the accuracy of VQA has con-
stantly improved by deep neural networks (DNNs) showing
great potential for real-world applications (Anderson et al.
2018; Kim, Jun, and Zhang 2018; Yu et al. 2017, 2018,
2019). For example, a VQA system can assist the blind, al-
lowing them to use smartphone to take pictures and pose
natural language questions about their images (Gurari et al.
2018).

Orthogonal to answer accuracy, the capability to recog-
nize abnormal situations is essential for stability and relia-
bility, because there is little control of the test input after de-
ployment of the model in practice. In the example of blind
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users, if a VQA model fails to detect anomalous situations
and returns wrong answer, then the incorrect answers on ab-
normal situations will lead to fatal accidents. However, eval-
uating robustness of VQA models is only limited to irrel-
evant questions in previous studies (Mahendru et al. 2017;
Ray et al. 2016).

Many studies focus on how DNN classifiers can detect
anomalies, such as the unrecognizable (Nguyen, Yosinski,
and Clune 2015), the irrelevant (Ray et al. 2016), or the out-
of-distribution (OOD) inputs (Hendrycks and Gimpel 2017).
They commonly calibrate a predictive confidence by maxi-
mum softmax probability (MSP) in the output predictions
(Hendrycks and Gimpel 2017; Liang, Li, and Srikant 2018)
and detect OOD inputs. In addition, (Hendrycks, Mazeika,
and Dietterich 2019; Hein, Andriushchenko, and Bitterwolf
2019) use post-training to make the predictions have a uni-
form distribution on anomalies, and show that the robustness
of DNNs is significantly improved.

However, previous studies have focused only on anomaly
detection in unimodal tasks such as image or text classifi-
cation, rather than on tasks with multimodal inputs, such as
VQA. Furthermore, extending anomaly detection to VQA
has not been discussed, although it is not trivial and must be
carefully conducted because of the bimodality of VQA in-
puts. In this study, we categorize various anomalies in VQA
into five types according to two criteria: 1) whether the im-
ages and/or questions are from OOD or not and 2) whether
the pairs of in-distribution (ID) images and questions are an-
swerable by VQA models. From a distributional perspective,
our categorization is a disjoint and complete partition of all
possible anomalies in VQA and includes worst-case scenar-
ios, the most frequent scenarios, and the current limitation
of VQA models.

Then, we propose a simple attention-based method to cal-
ibrate predictive confidences and detect various anomalies
in VQA. We find that MSP, which is the most common
in unimodal tasks, can only detect samples with undefined
answers, whose answers are not among the answer candi-
dates due to the current limitation of VQA models. How-
ever, MSP cannot detect the worst-case and the most fre-
quent scenarios, which are OOD images/questions and irrel-
evant pairs of images and questions respectively. Thus, we
use cross-modal attention of VQA models, which associate
most related visual objects and question tokens in an input
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Figure 1: The framework of VQA models contains atten-
tion modules and multimodal feature fusion to predict the
answer, given an image and a question.

pair. When an input of VQA models is an anomaly, cross-
modal attention networks cannot associate the given image
and question, and the anomaly can be detected simply by
maximum attention probability (MAP) with low confidence.

To enhance the robustness of VQA models to various
anomalies, we also propose a maximum entropy regulariza-
tion of a cross-modal attention distribution in VQA models.
We find that post-training by outlier exposure (Hendrycks,
Mazeika, and Dietterich 2019) in unimodal tasks also fails
to enhance the robustness of VQA models and causes severe
accuracy degradation of a VQA model. Instead, we show
that post-training with a maximum entropy regularization of
a cross-modal attention in VQA models can significantly im-
prove anomaly detection by MAP, keeping the accuracy of
VQA models. As the choice of anomalies for post-training
is directly related to anomaly detection results (Hendrycks,
Mazeika, and Dietterich 2019), we also discuss how to se-
lect training anomalies to enhance the robustness of VQA
models, considering the bimodality of the inputs and char-
acteristics of VQA.

Our main contributions include:

• This is the first study to define various anomalies in VQA
and evaluate the robustness of recent VQA models to
those anomalies. In addition, we show that anomaly de-
tection methods in unimodal tasks cannot be simply gen-
eralized in multimodal tasks such as VQA.

• Our attention-based anomaly detection is technically sim-
ple yet powerful. Thanks to the simplicity, our approach is
a model-agnostic method, which can be used for various
attention modules in the state-of-the-art VQA models. In
addition, our maximum entropy regularization of a cross-
modal attention distribution can significantly improve the
robustness of VQA models and keep the VQA accuracy.

• We claim that cross-modal attention modules are the key
to detecting various anomalies for DNNs with multimodal
inputs, including VQA models.

The Framework of VQA Models
A VQA dataset contains a set of triples of answer, image,
and question D = {(A,V,Q)} (Antol et al. 2015; Goyal
et al. 2017). A VQA model predicts the answer about a
given real-world image and an open-ended question (Fig. 1).
The hidden features of K objects (regions) in the image
and question (tokens) are extracted by pretrained models

Task V Q Abnormal Distribution
1 OOD ID p(vout)
2 ID OOD p(qout)
3 OOD OOD p(vout) and p(qout)
4 ID ID pout(vin|qin) or pout(qin|vin)
5 ID ID p(aout|vin,qin)

Table 1: Summary of anomalies in VQA according to ID (in-
distribution), OOD (out-of-distribution), and abnormal dis-
tribution.

(Pennington, Socher, and Manning 2014; Ren et al. 2015;
He et al. 2016). Then, the two kinds of features from two
modalities are integrated by feature fusion such as element-
wise product (Anderson et al. 2018), bilinear pooling (Fukui
et al. 2016), or multi-modal factorized bilinear (MFB) pool-
ing (Yu et al. 2017). Before the integration, attention mod-
ules are commonly used to increase the accuracy by cross-
modal reasoning between visual objects in the image and the
question (Anderson et al. 2018; Yu et al. 2018), or between
every pair of visual objects and question tokens (Kim, Jun,
and Zhang 2018; Yu et al. 2019). In this paper, we consider
VQA models with various types of attention modules. Fi-
nally, the answer is predicted by the joint features of image
and question. The model parameters θ are trained to maxi-
mize expected log likelihood, where (a,v,q) ∈ D,

θ∗ = argmax
θ

EpD [log pθ (a|v,q)] . (1)

Definition of Anomalies in VQA
We define and categorize the five anomaly types in VQA
to evaluate the robustness of VQA models. Considering 1)
worst-case scenarios, 2) the most frequent scenarios, and 3)
current limitation of VQA models, we divide anomalies in
VQA into OOD images/questions and unanswerable pairs
of images and questions (irrelevant questions and undefined
answers). Our categorization includes all possible anoma-
lies of p(a,v,q) in a distributional approach, and satisfies
disjoint and complete partition (Table 1). Fig. 2 shows the
overview of anomalies in VQA and includes the most ex-
treme case for ease of understanding. The details of each
anomaly are described in the remaining parts.

Out-of-distribution Image & Question
The typical anomaly is a sample from OOD that differs from
training data. Although OOD samples seem to be unrealistic,
worst, and extreme cases in real-world scenarios, detecting
them is important because DNNs are not robust but rather
over-confident on OOD (Hendrycks and Gimpel 2017; Lee
et al. 2018; Hein, Andriushchenko, and Bitterwolf 2019).

Task 1: Image from Out-of-Distribution Task 1 detects
the first type of anomalies whose images are from OOD,
p(vout). Thus, they are different from images in the origi-
nal VQA dataset (Goyal et al. 2017). Then, OOD images
can have different visual characteristics, such as different
objects, colors, or resolutions. VQA assumes that an in-
put image contains visual objects in various contexts of the
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Task 1: OOD Image Task 2: OOD Question Task 5: Undefined AnswerTask 4: Irrelevant Question

Out-of-Distribution Images/Questions Unanswerable Pairs of Images/Questions

This is a major 
improvement and 

he suit the role

Q) What does  
the sign say?

A) Reduce 
speed

Q) What color  
is the airliner?

A) None
Is there a red 
sandal here ?

Figure 2: Overview of Anomalies in VQA: OOD images and questions, and unanswerable samples with irrelevant questions
and undefined answers.

(Q) Is there any number  
in the image?  (A) No (97.3 %)

(Q) What color is the flower? 
(A) brown (65.8 %)

(Q) Is not there any number  
in the image? (A) No (99.0 %)

(Q) How many animals are  
in the picture? (A) 1 (93.1 %)

Figure 3: Examples of unreliable and over-confident mis-
classification of BUTD for questions about an out-of-
distribution MNIST image.

real-world (Lin et al. 2014). However, VQA models can en-
counter an OOD image when the image is highly corrupted
or selected by users’ mistake.

Even though an input image is from OOD but answerable
to its question, OOD images need to be detected regardless
of the answerability. In other words, VQA models are sus-
ceptible to OOD images and tend to provide arbitrary pre-
dictions with high confidence. We observe that VQA mod-
els often predict unreliable and over-confident answers on
an OOD image even if it has the correct answer to the ques-
tion. For example, the BUTD model (Anderson et al. 2018)
always replies that there is no number in MNIST images
regardless of the questions, and the confidences scores are
high (Fig. 3). Including the examples in Fig. 2 and 3, our
experiments also contain more realistic OOD images, such
as real-world visual objects with low resolution.

Task 2: Question from Out-of-distribution Task 2 de-
tects the second type of anomalies whose questions are from
OOD, p(qout). An OOD question means a non-question sen-
tence without interrogatives. Questions, such as ”Is there a
red sandal here?” or ”What color is the airliner?”, are ex-
pected in VQA. However, after the deployment of the model,
VQA models can encounter non-question sentences uncon-
sidered at training time. When VQA models take a non-
question sentence, they have to detect and refuse to answer
the input, since there is no right answer to the non-question
sentence. In this task, we evaluate whether a VQA model
can distinguish such OOD questions from normal ones.

Task 3: Image/Question from Out-of-Distribution Task
3 detects the third type of anomalies where image and ques-
tion are both from out-of-distribution, p(vout) and p(qout).
Although this situation is rare in the real-world, including
this task considers extreme cases, making our categorization

of anomalies in VQA complete.

Unanswerable Pair of Image & Question
Although both image and question are from in-distribution,
p(vin) and p(qin), the pair of image and question can be an
anomaly, which is unanswerable by a VQA model. Unan-
swerable situations occur when the correct answer does not
exist because of question irrelevance or the limited capabil-
ity of the VQA model. Note that unanswerable pairs are the
most frequent and realistic anomalies, because each image
and question is similar to training samples.

Task 4: Irrelevant Question Task 4 detects the fourth
type of anomalies where each sample has a question irrel-
evant to the image. Different from OOD questions, irrele-
vant questions are sentences with interrogatives. However,
the questions are unrelated to the given input images. Out-
of-domain questions (Kamath, Jia, and Liang 2020) are also
included in this task, because we define out-of-distribution
questions as non-question types of sentences. Although both
image and question are from in-distribution, an irrelevant
pair of image and question is from out of joint distribution,
pout(qin|vin).

If the image and the question are unrelated to each other,
the correct answer requires either external knowledge or
does not exist (Ray et al. 2016). For example, a non-visual
question, “Who is the president of the USA?,” requires gen-
eral knowledge irrelevant to the input image. Moreover,
when a question has a visual false-promise, which means
that an object implied by the question does not exist in the
image, there is no correct answer for the given image and
question pair. In Fig. 2, the question asks about an airliner,
but no airliner exists in the image.

Task 5: Undefined Answer Task 5 detects the fifth type
of anomalies where each sample has an undefined answer,
which is not among the answer candidates of a VQA model
and is from p(aout|vin,qin). Considering VQA as a predic-
tion task, answer candidates are predefined, and some an-
swers that rarely appear in training data are excluded from
answer candidates to improve training efficiency and accu-
racy (Anderson et al. 2018). Thus, the unanswerability of
samples with an undefined answer results not from any ab-
normality of the input pairs, but from the limited predefined
answer candidates. The main reasons for rare answers are
ambiguous questions, synonyms, and granularity of answers
(Bhattacharya, Li, and Gurari 2019), reading numbers or
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texts. For example, in Fig. 2, the correct answer is “reduce
speed,” but that answer is not defined in the VQA model be-
cause of its rare occurrence.

Anomaly Detection in VQA
In this section, we show how VQA models detect various
anomalies without the addition of an extra model or mod-
ification of the model architecture. First, we introduce a
confidence-based anomaly detector and its limitation to de-
tect various anomalies in VQA. Then, we propose the max-
imum attention score as the confidence of reasoning to cali-
brate the predictive confidence of an input pair of an image
and a question. How to further classify the types of detected
anomalies is interesting future work.

Confidence-based Anomaly Detector
A confidence-based anomaly detector g determines an input
pair (v,q) as anomalous if the predictive confidence S is
under threshold δ:

g(v,q) =

{
1 if S(v,q) ≤ δ
0 else (2)

To determine the threshold δ in this anomaly detector, an
additional validation dataset can be used in practice.

To compute the confidence S in DNNs, the maximum
value of softmax in the output layer (MSP) is commonly
used (Settles 2009; Hendrycks and Gimpel 2017).

S(v,q;T ) = max
i
pθ(ai|v,q;T )

= max
i

exp(fi(v,q)/T )∑N
j=1 exp(fj(v,q)/T )

, (3)

where fi returns the preactivated output for the i-th class
in the output layer, N is the number of answer candidates,
and T is a temperature parameter. The temperature is 1.0 in
training, and increasing T in test time is known to improve
confidence calibration and OOD detection (Guo et al. 2017;
Liang, Li, and Srikant 2018). Recent studies (Liang, Li, and
Srikant 2018; Hendrycks, Mazeika, and Dietterich 2019) in
unimodal tasks show that MSP with temperature scaling can
detect OOD samples well. Meanwhile, MSP is still a sen-
sible measure for calibrating predictive uncertainty of VQA
models, which are trained with binary cross entropy for mul-
tiple correct answers, because the models still use MSP for
inference at test time and evaluation of VQA accuracy.

Despite the simplicity and popularity of MSP, we empha-
size that MSP fails to detect various anomalies in VQA for
two main reasons. First, MSP is not enough metric to detect
whether an input is from abnormal distribution (Meinke and
Hein 2019). MSP does not directly measure p(vin,qin), but
rather p(ain|vin,qin). Thus, MSP can detect a sample with
p(aout|vin,qin). However, MSP can often fail to detect in-
put pairs of images and questions, which are from abnormal
p(v,q), including p(vout), p(qout), and pout(qin|vin) (task 1-
4). Second, after the multimodal feature fusion, an abnormal
source of a modality vanishes. For example, although an in-
put image and question are from OOD and ID respectively,
the joint features after the feature fusion are hardly distin-
guishable from those of normal inputs.

Attention-based Anomaly Detection
If the joint density of inputs, p(v,q), is explicitly estimated,
we can predict the likelihood of an input pair (v,q) and de-
cide whether the pair is from abnormal distribution. How-
ever, the explicit density estimation of multimodal data is
computationally expensive and hard to train (Salimans et al.
2017; Kingma and Dhariwal 2018).

In this study, we propose attention-based anomaly detec-
tion to detect various anomalies from p(v,q). Instead of us-
ing MSP for S in Eq (2), we use maximum attention proba-
bility (MAP), A(v,q;T ) of a cross-modal attention:

A(v,q;T ) = max
i,j

Aij(v,q;T )

= max
i,j

exp(a(vi,qj)/T )∑K
k=1

∑M
m=1 exp(a(vk,qm)/T )

, (4)

where a is a cross-modal attention layer in a VQA model;
Aij is the attention score between i-th visual object (region)
and j-th question token; vi and qj are the features of the i-th
visual object and j-th question token; and K and M are the
numbers of visual objects and question tokens. The temper-
ature parameter is increased only when detecting anomalies,
because increasing T affects the prediction results.

We postulate that although MAP does not directly esti-
mate p(v,q), MAP can detect abnormal inputs from p(vout),
p(qout), and pout(qin|vin). For example, when the image v
and question q are both from in-distribution and relevant to
each other, we can expect the joint density of the input pair
(v,q) to be high. Together with the high input density, VQA
models have high MAP on the input pair, creating a strong
attention between a visual object in the image and corre-
sponding question tokens in the question. In contrast, when
either v or q is from out-of-distribution, or they are irrele-
vant, we expect the density of the input pair to be low, and
VQA models also have low MAP because they cannot find
any strong association between the image and question.

Note that MAP is a model-agnostic metric so it can be
used for various attention mechanisms in state-of-the-art
VQA models. If the attention layer does not take all ques-
tion tokens, but rather uses the context vector of the ques-
tion (Anderson et al. 2018; Yu et al. 2018), we can notate
that qm is the context vector and M = 1 in Eq (4). When
a VQA model uses multi-head attentions (Kim, Jun, and
Zhang 2018; Yu et al. 2019), we use the average of the max-
imum attention scores in each head over all attention heads.

Regularization of Attention Networks for Anomaly
Detection
In unimodal tasks such as image and text classification,
post-training of DNNs with known anomalies, such as out-
lier exposure (OE) (Hendrycks, Mazeika, and Dietterich
2019), has shown remarkable improvement of OOD detec-
tion (Hendrycks, Mazeika, and Dietterich 2019; Hein, An-
driushchenko, and Bitterwolf 2019). Unfortunately, we find
that anomaly detection of VQA models does not improve
much when we directly exploit OE.

In this section, we introduce how to regularize atten-
tion networks by post-training with additional anomalies for
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boosting anomaly detection of VQA models. Similar to OE,
we explicitly fine-tune VQA models to avoid strong attention
to anomalies, adding a regularization of attention networks:

E(v,q)∼Pin [log pθ (a|v,q)]

+λE(v′,q′)∼Panomaly

 K∑
i=1

M∑
j=1

log (1−Aij(v′,q′))

 (5)

where (v′,q′) is sampled from selected anomaly datasets,
Panomaly, and λ is a hyperparameter. If the high order atten-
tion is used, we also regularize all elements in the multi-
order attention maps.

Note that a uniform distribution is the optimal solution for
maximizing the regularization term in Eq (5), which is a con-
straint on

∑K
i=1

∑M
j=1Aij = 1 such that Aij ∈ [0, 1]. Max-

imizing entropy of the attention distribution makes MAPs
on anomalies close to zero, and the VQA models can easily
distinguish anomalies from normal samples by the MAPs.

Experiments
Experimental Setup
VQA Models We evaluate four VQA models, which have
different attention networks and have shown promising re-
sults in recent VQA challenges: BUTD (Anderson et al.
2018), MHB+ATT (Yu et al. 2018), BAN (Kim, Jun, and
Zhang 2018), and MCAN (Yu et al. 2019).

Datasets The VQA v2 dataset (Goyal et al. 2017) is
used for training and is considered normal. Test samples
of MNIST, SVHN, FashionMNIST, CIFAR-10, and Tiny-
ImageNet are used for OOD images. The 20 Newsgroup,
Reuter 52, and IMDB movie review datasets are used for
OOD questions. For irrelevant question datasets, the two test
datasets are used: 1) Visual vs. Non-visual Question (VNQ)
(Ray et al. 2016) contains general knowledge or philosophi-
cal questions. 2) Question Relevance Prediction and Expla-
nation (QRPE) (Mahendru et al. 2017) contains questions
with false-premises about the existence of visual objects in
the VQA v2 images. We define answer candidates that oc-
cur in the training dataset over nine times, and 4303 samples
in the VQA dataset have undefined answers, which occur in
the training dataset fewer than nine times.

Training Setup K = 36 objects are detected by pre-
trained faster R-CNN (Ren et al. 2015), and a 2048 di-
mensional vector for each object is extracted by pretrained
ResNet-152 (He et al. 2016). Question tokens are trimmed
to a maximum of 14 words, and pretrained GloVe (Penning-
ton, Socher, and Manning 2014) is used for word embed-
ding. The batch size is 256.

For regularization of the attention network, we use train-
ing samples of TinyImage, VNQ, and QRPE for Panomaly in
Eq (5). Note that there is no overlap of anomaly data be-
tween data for training and evaluation. VQA models can
be trained with the regularization from scratch, but we have
found that they require a longer training time but have poor
accuracy. For example, a BUTD model has 44 % VQA accu-
racy when it is trained with the regularization from scratch.

Accuracy (%) Baseline OE Ours
BUTD 62.6 54.9(-7.7) 61.9(-0.5)
MHB+ATT 63.3 62.4(-0.9) 62.8(-0.5)
BAN 63.8 61.9(-1.9) 63.7(-0.1)
MCAN 64.3 62.0 (-2.3) 62.4 (-1.9)

Table 2: VQA Accuracy and its degradation after post-
training of VQA models

Thus, we fine-tune the pretrained VQA models in 15 epochs,
and the λ in Eq (5) is set to 0.00001. We choose small value
of λ to balance the magnitude of the original loss and the
regularization loss. At the first epoch of post-training, the
regularization loss can have up to 100 times larger value than
the original loss, and large λ can make the post-training un-
stable. All codes are implemented with Pytorch 0.4.1 and
available1.

Evaluation We fuse the normal and abnormal datasets and
evaluate whether VQA models can distinguish anomalies
from normal samples. We use a threshold-free metric, the
area under the receiver operating characteristic curve (AU-
ROC), for evaluating OOD and undefined answer detection.
The uninformative detector has 50.0 AUROC. We use 10 %
of training samples to determine the increased temperature
T and δ, maximizing AUROC scores on the samples.

Compared Methods for Anomaly Detection We use the
two baselines of anomaly detection for VQA models: the
MSP (Hendrycks and Gimpel 2017) and the maximum at-
tention probability (MAP, ours). Then, we also compare the
AUROCs of the three variants of MSP and MAP with in-
creased temperature (T), outlier exposure (OE), and our reg-
ularizing attention networks (RA). We exclude the results of
RA-MSP and OE-MAP, since RA-MAP is significantly bet-
ter than RA-MSP, and OE-MAP is worse than MAP.

Evaluation of VQA Accuracy
Although post-training for a robust model is known to de-
grade the accuracy (Goodfellow, Shlens, and Szegedy 2014;
Hendrycks, Mazeika, and Dietterich 2019), we find that OE
results in more degradation of VQA accuracy on the VQA
v2 validation dataset than our regularization (Table 2). OE
affects all trainable parameters in the VQA models, easily
making VQA models unstable, while our regularization af-
fects parameters related to attention networks. Note that OE
severely degrades the accuracy of the BUTD model by 7.7%.

Out-of-Distribution Detection (Task 1-3)
We analyze the performance of VQA models and anomaly
detection methods on various OOD datasets (Table 3).
Our experiments include two main results: 1) previous
confidence-based approaches (MSP, OE-MSP) fail to detect
OOD samples, and 2) our attention-based approaches (MAP,
RA-MAP) significantly improve OOD detection in VQA.

1https://github.com/LeeDoYup/Anomaly Detection VQA

1849



AUROC BUTD MHB+ATT BAN MCAN
Image MSP/MSP(T)/OE-MSP(T)/MAP(T)/RA-MAP(T)
MNIST 60.3/71.5/75.0/89.0/97.8 54.2/42.4/95.9/89.9/94.7 54.8/35.0/54.1/99.0/100 58.7/58.1/64.0/84.1/95.1
SVHN 60.5/72.8/75.2/90.3/97.9 54.1/42.4/96.6/89.7/96.2 55.0/35.2/55.5/100/100 58.8/58.1/64.2/83.6/95.2
FashionMNIST 60.4/72.2/75.3/89.6/97.8 53.9/42.0/96.4/90.5/95.7 54.9/35.0/55.4/99.9/100 58.8/58.1/64.1/84.5/95.3
CIFAR10 60.7/73.5/75.5/90.5/98.0 54.1/42.3/97.1/89.9/96.9 55.0/35.3/56.1/100/100 58.7/58.1/64.2/83.5/95.3
TinyImageNet 61.4/75.6/75.5/92.7/99.7 53.8/41.6/96.8/91.5/99.2 54.8/34.8/59.7/100/100 58.9/58.3/64.2/83.4/95.1
Question MSP/MSP(T)/OE-MSP(T)/MAP(T)/RA-MAP(T)
20 Newsgroup 69.3/79.8/47.1/78.2/95.5 54.1/55.0/73.8/78.9/92.6 64.0/81.5/62.6/81.7/87.3 62.3/62.6/73.0/81.1/88.7
Reuters52 70.2/81.5/47.5/76.4/97.0 50.9/52.0/77.7/77.4/94.3 64.3/83.2/60.0/81.7/87.3 62.0/60.1/75.3/83.9/94.2
IMDB 59.9/69.2/45.4/78.2/92.8 49.4/50.2/70.0/77.9/91.1 56.1/76.3/60.7/78.1/82.5 57.3/56.3/67.6/85.4/90.9

Table 3: Out-of-distribution detection performance of VQA models.

Attention-based Anomaly Detection In contrast to the
results in unimodal tasks, Table 3 shows that MSP is not a
proper metric for detecting images and questions from out-
of-distribution. Since MSP directly estimates p(a|v,q), not
p(v,q), it fails to detect OOD images and questions. For ex-
ample, the AUROCs of MSP (T) in unimodal tasks are close
to 100.0 (Liang, Li, and Srikant 2018), but the MSP and
MSP(T) of the VQA models are fairly closed to the AUROC
of the uninformative detector. Furthermore, MHB+ATT and
BAN rather have more confident predictions on OOD im-
ages than normal inputs. The result is unintuitive, but a sim-
ilar result, where the OOD samples have higher likelihood
than ID samples, is also reported in (Choi, Jang, and Alemi
2018; Ren et al. 2019), when ID is more complex than OOD.

Our attention-based anomaly detection (MAP), however,
shows superior results to MSP regardless of VQA models.
The AUROCs differ according to VQA models, but all re-
sults are promising with AUROCs (> 80.0). The results
show that VQA models do not make a strong attention be-
tween images and questions, when they are from OOD. Fur-
thermore, the promising results mean that instead of explicit
estimation of the joint density of p(v,q), MAP can distin-
guish OOD samples from normal samples.

The Effect of Regularization of Attention Networks
OE-MSP in Table 3 shows that OE fails to improve OOD
detection by MSP, in contrast to the results in unimodal tasks
(Hendrycks, Mazeika, and Dietterich 2019). After the mul-
timodal feature fusion in VQA models, a source of abnor-
mality in input images or questions vanishes, and the MSP,
which exploit the fused features, can neither detect OOD
inputs nor be improved by OE. Only the OE-MSP(T) of
MHB+ATT for Task 1 shows promising results, and we in-
fer the reason from that MHB+ATT has five times larger di-
mensions of visual features than other VQA models and can
remain the abnormality source after the feature fusion.

On the other hand, our maximum entropy regularization
of cross-modal attention networks consistently improves the
detection of OOD images and questions by MAP. The results
imply that our regularization can be successfully applied in
VQA models, allowing them to avoid generating a strong
attention when the input image or question is from OOD. For
example, after our regularization, the AUROCs of RA-MAP
(T) for all VQA models increase and reach almost perfect
OOD detection (> 90.0).

Accuracy (%) VNQ QRPE
Q-Q’ SIM (Ray et al. 2016) 92.3 —
QPC-Sim (Mahendru et al. 2017) — 76.7
RA-MAP (BUTD) 93.8 78.0
RA-MAP (MHB+ATT) 96.4 89.1
RA-MAP (BAN) 82.0 59.7
RA-MAP (MCAN) 72.1 56.6

Table 4: Comparison of irrelevant question detection models

Note that our regularization does not use the OOD
datasets, which are used in Table 3 for testing. The VQA
models can detect all OOD image datasets, although atten-
tion networks are regularized by the TinyImageNet training
dataset only. Furthermore, we do not use an OOD question
in training, but the robustness of the VQA models is signifi-
cantly improved by regularizing on irrelevant questions. We
emphasize that OOD datasets of task 1 and 2 are far from
VQA tasks. Nevertheless, MSP and OE fail to detect such
easy anomalies, while our attention-based anomaly detec-
tion methods can easily detect them.

The results of Task 3 (both OOD image and question) are
consistent with Table 3. We conclude that MSP and OE,
which are the most common methods in unimodal tasks,
cannot detect OOD images or questions in VQA, but the
cross-modal attention with our regularization is the most ap-
propriate to detect unseen OOD samples and improve the
capability of the OOD robustness in VQA models.

Irrelevant Question Detection (Task 4)
In Table 4, the attention-based anomaly detection outper-
forms the previous methods with extra models for irrele-
vant question detection. Q-Q’ SIM (Ray et al. 2016) and
QPC-Sim (Mahendru et al. 2017) are the tailored methods,
which build extra models, using captioning models (Karpa-
thy and Fei-Fei 2015) to generate a question relevant to
the image and compares it with the input question. Even
though our attention-based anomaly detector does not use
additional models to detect irrelevant questions, RA-MAPs
(T) of BUTD and MHB+ATT outperform the previous tai-
lored methods. Moreover, our method can also be applied to
detect other types of anomalies, including irrelevant ques-
tions.

Compared to BUTD and MHB+ATT, BAN and MCAN
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MSP/MAP BUTD MHB+ATT BAN MCAN
AUROC 87.2/51.5 90.7/51.3 85.3/55.5 81.3/71.5

Table 5: Undefined answers detection results

AUROC CIFAR10 Reuters52 QRPE (test)
BUTD (MAP) 90.5 76.4 49.6
+Tiny 99.9 79.0 47.1
+IMDB 57.6 99.8 46.9
+Tiny, IMDB 99.8 99.9 44.3
+Tiny, QRPE 97.8 87.8 89.3
+Tiny, VNQ, QRPE 98.0 97.0 84.8

Table 6: AUROCs of BUTD for detecting CIFAR10,
Reuters52, and QRPE datasets. TinyImageNet, IMDB,
VNQ, and QRPE datasets are used for our regularization

have a room for improvement of irrelevant question detec-
tion. BAN and MCAN use the pairwise relationship between
all question tokens and visual objects in their cross-modal
attention networks, along with multiple heads of attention.
Thus, one of the attention heads might pay strong attention
to interrogatives in irrelevant questions. In this study, we fo-
cus on the importance of cross-modal attention for anomaly
detection in VQA.

Undefined Answer Detection (Task 5)
Although MSP cannot detect OOD images and questions,
and irrelevant questions, Table 5 shows that for detecting
samples with undefined answers, MSP achieves higher ac-
curacy than MAP. MSP directly estimates p(ain|vin,qin) and
has low value on a sample with undefined answers from
p(aout|vin,qin). Thus, MSP can successfully detect samples
with undefined answers, but is limited to detect them.

MAP cannot detect samples with undefined answers, be-
cause the images and questions are not from abnormal
p(v,q). Although the correct answer is undefined among
the answer candidates, there exists the correct answer be-
tween the input image and question. Then, as in the case of
normal samples, VQA models can generate proper attention
between the correlated visual object and the word token as a
confident reasoning of the answer.

Ablation Study
Selection of Anomaly Datasets for Regularization The
selection of abnormal datasets for the post-training, Panomaly
in Eq (5), is important because considering all possible
anomalies at training time is impossible. Thus, we com-
pare the performance at detecting OOD images (CIFAR10),
questions (Reuters52), and irrelevant questions (QRPE) ,ac-
cording to the change of selection of Panomaly (Table 6).

Using anomalies of only a certain modality for the reg-
ularization of VQA models does not improve detection of
anomalies in the other modality. Anomalies in one modal-
ity do not affect the encoder of another modality at the
post-training. For example, when we use only OOD images
(Tiny) or questions (IMDB) for the regularization, unseen
OOD images (CIFAR10) or questions (Reuters52) are well

detected respectively. However, the detection of abnormal
inputs in the other modality is not improved. Thus, regular-
izing both modalities is necessary for the robustness of VQA
models to anomalies from both modalities.

For selecting abnormal questions, irrelevant questions al-
low VQA models to detect both OOD and irrelevant ques-
tions. When IMDB sentences are selected instead of irrel-
evant questions, the regularization cannot remove the un-
conditional bias of attention networks on interrogatives re-
gardless of the relevance of an input question and an image.
However, after regularizing with irrelevant questions (VNQ,
QRPE), the model also detects OOD questions (Reuters52)
because OOD questions are much easier to detect than irrel-
evant questions. Note that OOD questions contain no inter-
rogatives and are also irrelevant to the input images.

Scope of Post-Training for Outlier Exposure OE has
shown severe degradation of VQA accuracy, and the scope
of trainable parameters in post-training is related to unstable
performance. In post-training, OE updates all trainable pa-
rameters of VQA models to predict uniform scores over an-
swer candidates. Thus, OE can make attention modules un-
able to associate a question with visual objects and severely
degrade the VQA accuracy (Table 2). For example, when
OE updates parameters only after the feature fusion, the ac-
curacy drop of BUTD has halved from −7.7 % to −3.7 %,
and the anomaly detection performance remains the same as
in the paper.

Related Work
MSP-based OOD detection has mainly been studied, and
it shows promising results for unimodal tasks. The MSP
is a simple yet powerful method for OOD detection, when
temperature scaling or input preprocessing is combined
(Hendrycks and Gimpel 2017; Liang, Li, and Srikant 2018).
Moreover, (Hendrycks, Mazeika, and Dietterich 2019; Hein,
Andriushchenko, and Bitterwolf 2019) use the post-training
of DNNS to predict uniform distribution on abnormal sam-
ples and enhance MSP to detect unseen OOD samples al-
most perfectly. Meanwhile, (Meinke and Hein 2019) show
that MSP may not be a metric enough to detect OOD in-
puts. Our study is the first on OOD detection in multimodal
tasks such as VQA, and shows that MSP cannot detect OOD
images and questions, or irrelevant questions.

Few studies consider abnormal situations in VQA, but
are confined to limited tasks. (Bhattacharya, Li, and Gurari
2019) investigate why annotators provide different answers
to the same visual question. (Mahendru et al. 2017; Ray
et al. 2016) mainly cover detection of irrelevant questions,
but to quantify question relevance, they build an extra tai-
lored model to generate a question relevant to the image and
compare the input question with the generated questions. We
define anomaly detection in VQA more generally and show
how VQA models can detect irrelevant questions by atten-
tion networks without any extra or tailored model.

Some studies regularize attention weight distribution for
various purposes. In machine translation, abstractive sum-
marization, and query-driven multi-instance learning, the at-
tention distribution is regularized to be sharp or uniform to
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increase their performance (Zhang et al. 2018; Hsu et al.
2020). In this study, we regularize attention networks to im-
prove the robustness of VQA models to various anomalies.

Conclusions
For a VQA system to be safe in the real-world, the models
have to be generalized on unseen abnormal samples, having
low predictive confidence. We have defined the five anomaly
types in VQA according to out-of-distribution and answer-
ability, and have evaluated the robustness of four VQA mod-
els to defined anomalies. In contrast to the major results in
unimodal classification, we find that MSP and OE are lim-
ited to detecting various anomalies from p(v,q)

In this study, we propose the attention-based method and
regularization of attention networks to significantly improve
anomaly detection of VQA models. Cross-modal reason-
ing (i.e., attention) improves not only VQA accuracy, but
also the robustness to various abnormal situations in VQA.
Our method also conserves the VQA accuracy; detects OOD
images and questions almost perfectly; and achieves a new
state-of-the-art detection for irrelevant questions.

In future work, we believe that further classification
of anomalies will offer promise for distinguishing various
anomalies. Furthermore, an analysis of anomaly detection
on a range of distributional shifts would be an interesting fu-
ture work. Meanwhile, elaborating attention-based anomaly
detection for pairwise and multiple heads attentions is worth
exploration to improve irrelevant question detection. We
have observed that VQA accuracy is easily degraded in
post-training when the VQA model contains many attention
heads. Thus, finding an optimal architecture with multi-head
attention for accurate and robust VQA models would be an
interesting future work. Moreover, user studies of anomaly
detection in VQA for real-life scenarios would also be an
interesting future work.
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