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Abstract

We present an end-to-end joint training framework that ex-
plicitly models 6-DoF motion of multiple dynamic objects,
ego-motion, and depth in a monocular camera setup without su-
pervision. Our technical contributions are three-fold. First, we
highlight the fundamental difference between inverse and for-
ward projection while modeling the individual motion of each
rigid object, and propose a geometrically correct projection
pipeline using a neural forward projection module. Second,
we design a unified instance-aware photometric and geomet-
ric consistency loss that holistically imposes self-supervisory
signals for every background and object region. Lastly, we
introduce a general-purpose auto-annotation scheme using any
off-the-shelf instance segmentation and optical flow models to
produce video instance segmentation maps that will be utilized
as input to our training pipeline. These proposed elements are
validated in a detailed ablation study. Through extensive ex-
periments conducted on the KITTI and Cityscapes dataset, our
framework is shown to outperform the state-of-the-art depth
and motion estimation methods. Our code, dataset, and models
are publicly available.

Introduction
Knowledge of the 3D environment structure and the mo-
tion of dynamic objects is essential for autonomous navi-
gation (Shashua, Gdalyahu, and Hayun 2004; Geiger et al.
2014). The 3D structure is valuable because it implicitly mod-
els the relative position of the agent, and it is also utilized to
improve the performance of high-level scene understanding
tasks such as detection and segmentation (Lee et al. 2015,
2017; Yang et al. 2018; Shin, Kwon, and Tomizuka 2019;
Behley et al. 2019; Lee et al. 2019b). Besides scene structure,
the 3D motion of the agent and traffic participants such as
pedestrians and vehicles is also required for safe driving. The
relative direction and speed between them are taken as the
primary inputs for determining the next direction of travel.

Recent advances in deep neural networks (DNNs) have
led to a surge of interest in depth prediction using monoc-
ular images (Eigen, Puhrsch, and Fergus 2014; Garg et al.
2016) and stereo images (Mayer et al. 2016; Chang and Chen
2018), as well as in optical flow estimation (Dosovitskiy
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(a) Inverse projection (Casser et al. 2019a) and forward projection.

(b) Reversed warping (Wang et al. 2018b) and forward projection.

Figure 1: Different rendering techniques on dynamic objects.
Inverse projection and reversed inverse warping cause signif-
icant appearance distortions and ghosting effects, while our
forward projection technique preserves object appearance.

et al. 2015; Sun et al. 2018; Lv et al. 2018). These super-
vised methods require a large amount and broad variety of
training data with ground-truth labels. Studies have shown
significant progress in unsupervised learning of depth and
ego-motion from unlabeled image sequences (Zhou et al.
2017; Godard, Mac Aodha, and Brostow 2017; Wang et al.
2018a; Mahjourian, Wicke, and Angelova 2018; Ranjan et al.
2019). The joint optimization framework uses a network for
predicting single-view depth and pose, and exploits view syn-
thesis of images in the sequence as the supervisory signal.
However, these works ignore or mask out regions of moving
objects for pose and depth inference.

In this work, rather than considering these moving objects
as nuisances under the assumption of static structure, we uti-
lize them as important clues for estimating 3D object motions.
This problem can be formulated as factorization of object
and camera motion. Factorizing object motion in monocular
sequences is a challenging problem, especially in complex
urban environments that contain numerous dynamic objects.

To address this problem, we propose a novel framework
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that explicitly models 3D motions of dynamic objects and
ego-motion together with scene depth in a monocular camera
setting. Our unsupervised method relies solely on monocular
video for training (without any geometric ground-truth labels)
and imposes a unified photometric and geometric consistency
loss on synthesized frames from one time step to the next
in a sequence. Given two consecutive frames in a video, the
proposed neural network produces depth, 6-DoF motion of
each moving object, and the ego-motion between adjacent
frames. In this process, we leverage the instance mask of
each dynamic object, obtained from off-the-shelf instance
segmentation and optical flow modules.

Our main contributions are the following:
Neural forward projection Differentiable depth-based ren-
dering (which we call inverse warping) was introduced
in (Zhou et al. 2017), where the target view It is reconstructed
by sampling pixels from a source view Is based on the tar-
get depth map Dt and the relative pose Tt→s. The warping
procedure is effective in static scene areas, but the regions
of moving objects cause warping artifacts because the 3D
structure of the source image Is may become distorted after
warping based on the target image’s depth Dt (Casser et al.
2019a) as shown in Fig. 1a. To build a geometrically plausible
formulation, we introduce forward warping (or projection)
which maps the source image Is to the target viewpoint based
on the source depth Ds and the relative pose Ts→t.1 There
is a well-known remaining issue with forward warping that
the output image may have holes. Thus, we propose the dif-
ferentiable and hole-free forward warping module that works
as a key component in our instance-wise depth and motion
learning from monocular videos.
Instance-aware photometric and geometric consistency
Existing works (Cao et al. 2019; Lee et al. 2019a; Liu et al.
2020) have successfully estimated independent object mo-
tion with stereo cameras. Approaches based on stereo video
can explicitly separate static and dynamic motion by using
stereo offset and temporal information. On the other hand,
estimation from monocular video captured in the dynamic
real world, where both agents and objects are moving, suffers
from motion ambiguity, as only temporal clues are available.
To address this issue, we introduce instance-aware view syn-
thesis and unified projection consistency into the training
loss. We first decompose the image into background and ob-
ject (potentially moving) regions using a predicted instance
mask. We then warp each component using the estimated
single-view depth and camera poses to compute photometric
consistency. We also impose a geometric consistency loss for
each instance that constrains the estimated geometry from all
input frames to be consistent.

1This is different from the reversed optical flow leveraged in (Liu
et al. 2019; Wang et al. 2019; Luo et al. 2019). Since flow-based
warping techniques do not consider geometric structure, serious
distortions will appear where multiple source pixels are warped
to the same target locations, e.g., object boundaries, as shown in
Fig. 1b. Our forward and inverse warping are not about temporal
order, but rather which coordinate frame from which to conduct the
geometric transformation when warping from the reference to the
target view. Hereafter, we express forward projection as forward
warping for consistency with inverse warping.

Auto-annotation of video instance segmentation We intro-
duce a general-purpose auto-annotation scheme to generate
a video instance segmentation dataset, which is expected to
contribute to various areas of self-driving research. The role
of this method is similar to that of (Yang, Fan, and Xu 2019),
but we design a new framework that is tailored to driving
scenarios on existing datasets (Geiger, Lenz, and Urtasun
2012; Cordts et al. 2016). We modularize this task into in-
stance segmentation (He et al. 2017; Liu et al. 2018) and
optical flow (Sun et al. 2018) steps and combine each exist-
ing fine-tuned model to generate the tracked instance masks
automatically. we show the validity of adopting off-the-shelf
instance segmentation and optical flow models without fine-
tuning for our instance-wise depth and motion learning.
State-of-the-art performance Our self-supervised monocu-
lar depth and pose estimation is validated with a performance
evaluation which shows that our jointly learned system out-
performs earlier approaches. Our code, dataset, and models
are publicly available.2

Related Works
Unsupervised depth and ego-motion learning Several
works (Zhou et al. 2017; Wang et al. 2018a; Mahjourian,
Wicke, and Angelova 2018; Ranjan et al. 2019; Pillai,
Ambruş, and Gaidon 2019) have studied joint self-supervised
learning of depth and ego-motion from monocular sequences
with the basic concept of Structure-from-Motion (SfM).
Zhou et al. (Zhou et al. 2017) introduce a unsupervised
learning framework for depth and ego-motion by maxi-
mizing photometric consistency across monocular video
frames during training. Along with photo-consistency, sev-
eral works (Mahjourian, Wicke, and Angelova 2018; Bian
et al. 2019; Chen, Schmid, and Sminchisescu 2019) impose
geometric constraints between nearby frames with a static
structure assumption. Semantic knowledge is also used to
enhance the feature representation for monocular depth esti-
mation (Chen et al. 2019; Guizilini et al. 2020b). Recently,
Guizilini et al. (Guizilini et al. 2020a) introduce a detail-
preserving representation using 3D convolutions.

The aforementioned studies have a limitation on dealing
with moving objects due to the rigidity assumption, which
leads to performance degradation in estimating object depths.
To handle this, stereo pairs are leveraged during the training
process as an auxiliary as presented by Godard et al. (Go-
dard, Mac Aodha, and Brostow 2017) and Hur et al. (Hur
and Roth 2020). With this stereo pair, every pixel correspon-
dence between the left and right frames is described by a
single camera rectification. Please note that the monocular-
based approaches are differentiated from the methodology of
learning through stereo videos.
Learning motion of moving objects Recently, the joint op-
timization of dynamic object motion along with depth and
ego-motion has gained interest as a new research topic. Cao et
al. (Cao et al. 2019) propose a self-supervised framework
with a given 2D bounding box to learn scene structure and
3D object motion from stereo videos. The disparity from the
paired images, which is deterministic, enables computing

2https://github.com/SeokjuLee/Insta-DM
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Figure 2: Overview of the proposed frameworks.

the 3D motion vector of each instance using simple mean
filtering. Gordon et al. (Gordon et al. 2019) and Li et al. (Li
et al. 2020) propose a motion field network to estimate a
pixel-wise transformation. It receives two consecutive rough
images, which are, however, ambiguous and unclear inputs
to explicitly disentangle the motion of the camera and non-
rigid objects. Hence, we suggest to design the network to
determine the object motion by looking at the residual signal
between two images caused by pure object motion. Casser et
al. (Casser et al. 2019a,b) and Klingner et al. (Klingner et al.
2020) present an unsupervised image-to-depth framework
that models the motion of moving objects and cameras with
given segmentation knowledge.

All the aforementioned studies use the inverse warping
technique when rendering dynamic objects, which causes
appearance distortion, illustrated in Fig. 1. Thus, we pro-
pose a geometrically correct projection method in dynamic
situations, which is a fundamental problem in 3D geometry.

Methodology

We introduce an end-to-end joint training framework for
instance-wise depth and motion learning from monocular
videos without supervision as illustrated in Fig. 2. Our main
contribution lies in applying the inverse and forward warping
in appropriate projection situations. In this section, we intro-
duce the instance-wise forward projective geometry and the
networks for each type of output: DepthNet, Ego-PoseNet,
and Obj-PoseNet. Further, we describe our novel loss func-
tions and how they are designed for back-propagation in
decomposing the background and moving object regions.

Method Overview
Baseline Given two consecutive RGB images (I1, I2) ∈
RH×W×3, sampled from an unlabeled video, we first pre-
dict their respective depth maps (D1, D2) via our presented
DepthNet Dθ : RH×W×3 → RH×W with trainable param-
eters θ. By concatenating two sequential images as an in-
put, our proposed Ego-PoseNet Eφ : R2×H×W×3 → R6,
with trainable parameters φ, estimates the six-dimensional
SE(3) relative transformation vectors (P1→2, P2→1). With
the predicted depth, relative ego-motion, and a given cam-
era intrinsic matrix K ∈ R3×3, we can synthesize an ad-
jacent image in the sequence using an inverse warping op-
eration Fiw(Ii, Dj , Pj→i,K) → Îi→j , where Îi→j is the
reconstructed image by warping the reference frame Ii (Zhou
et al. 2017; Jaderberg et al. 2015). As a supervisory signal, an
image reconstruction loss, Lrec = ||Ij − Îi→j ||1, is imposed
to optimize the parameters, θ and φ.
Instance-wise learning The baseline method has a limita-
tion that it cannot handle dynamic scenes containing moving
objects. Our goal is to learn depth and ego-motion, as well as
object motions, using monocular videos by constraining them
with instance-wise geometric consistencies. We propose an
Obj-PoseNet Oψ : R2×H×W×3 → R6 with trainable param-
eters ψ, which is specialized to estimate individual object
motions. We annotate a novel video instance segmentation
dataset to utilize it as an individual object mask while training
the ego-motion and object motions. Given two consecutive
binary instance masks (M i

1,M
i
2) ∈ {0, 1}H×W×n corre-

sponding to (I1, I2), n instances are annotated and matched
between the frames. First, in the case of camera motion,
potentially moving objects are masked out and only the back-
ground region is fed to Ego-PoseNet. Secondly, the n binary
instance masks are multiplied to the input images and fed to

1865



(a) (b) (c)

Figure 3: (a) Warping discrepancy occurs for inverse projection of moving objects. Different warping results on (b) moving and
(c) close objects. Îiw and Îfw are warped only by the camera motion.

Obj-PoseNet. For both networks, motions of the kth element
are represented as P i=k1→2, where k = 0 indicates camera mo-
tion from frame I1 to I2. The details of the motion models
will be described in the following subsections.
Training objectives The previous works (Mahjourian,
Wicke, and Angelova 2018; Bian et al. 2019; Chen, Schmid,
and Sminchisescu 2019; Zhang et al. 2020) imposed geo-
metric constraints between frames, but they are limited to
rigid projections. Regions containing moving objects cannot
be constrained with this term and are treated as outlier re-
gions with regard to geometric consistency. In this paper, we
propose instance-wise geometric consistency. We leverage
instance masks to impose geometric consistency region-by-
region. Following instance-wise learning, our overall objec-
tive function can be defined as follows:

L = λpLp + λgLg + λsLs + λtLt + λhLh, (1)

where (Lp,Lg) are the photometric and geometric consis-
tency losses applied on each instance region including the
background, Ls stands for the depth smoothness loss, and
(Lt,Lh) are the object translation and height constraint
losses. {λp, λg, λs, λt, λh} is the set of loss weights. We
train the models in both forward (I1 → I2) and backward
(I2 → I1) directions to maximally use the self-supervisory
signals. In the following subsections, we introduce how to
constrain the instance-wise consistencies.

Forward Projective Geometry
A fully differentiable warping function enables learning of
structure-from-motion tasks. This operation is first proposed
by spatial transformer networks (STN) (Jaderberg et al.

2015). Previous works for learning depth and ego-motion
from unlabeled videos so far follow this grid sampling mod-
ule to synthesize adjacent views. To synthesize Î1→2 from
I1, the homogeneous coordinates, p2, of a pixel in I2 are
projected to p1 as follows:

p1 ∼ KP i=0
2→1D2(p2)K

−1p2. (2)

As expressed in the equation, this operation computes Î1→2

by taking the value of the homogeneous coordinates p1 from
the inverse rigid projection using P i=0

2→1 and D2(p2). As a
result, the coordinates p1 are not valid if p2 lies on an object
that moves between I1 and I2. Therefore, the inverse warp-
ing is not suitable for removing the effects of ego-motion in
dynamic scenes. As shown in Fig. 3a, the inverse warping
causes pixel discrepancy on a moving object, since it repro-
jects the point (Xb

tgt) from the target geometry where the 3D
point has moved. This causes distortion of the appearance
of moving objects as in Fig. 3b and ghosting effects (Janai
et al. 2018) on objects near to the camera as in Fig. 3c. To
solve this problem, we define an intermediate frame which is
transformed by camera motion with reference geometry, and
mitigate the residual displacement (orange arrow in Fig. 3a)
by training Obj-PoseNet as a supervisory signal. In Table 1,
we describe the difference between input resources of in-
verse and forward warping, as well as their advantages and
disadvantages.

In order to synthesize the novel view (from I1 to Î1→2)
properly when there exist moving objects, we propose for-
ward projective geometry, Ffw(Ii, Di, Pi→j ,K)→ Îi→j as
follows:

p2 ∼ KP i=0
1→2D

↑
1(p1)(K

↑)−1p1. (3)
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Inverse warping Forward warping

Inputs Iref , Dtgt, P
ego
tgt→ref Iref , Dref , P egoref→tgt

Pros. Dense registration by STN. Geometry corresponds to ref.
Cons. Errors on moving objects. Holes are generated.

Table 1: Comparison between inverse and forward warping.

Unlike inverse projection in Eq. (2), this warping process
cannot be sampled by the STN since the projection is in the
forward direction (inverse of grid sampling). In order to make
this operation differentiable, we first use sparse tensor coding
to index the homogeneous coordinates p2 of a pixel in I2.
Invalid coordinates (exiting the view where p2 /∈ {(x, y)|0 ≤
x < W, 0 ≤ y < H}) of the sparse tensor are masked out.
We then convert this sparse tensor to be dense by taking the
nearest neighbor value of the source pixel. However, this
process has a limitation that there exist irregular holes due to
the sparse tensor coding. Since we need to feed those forward
projected images into the neural networks in the next step,
the size of the holes should be minimized. To fill these holes
as much as possible, we pre-upsample the depth map D↑1(p1)
of the reference frame. If the depth map is upsampled by a
factor of α, the camera intrinsic matrix is also upsampled as
follows:

K↑ =

[
αfx 0 αW
0 αfy αH
0 0 1

]
, (4)

where (fx, fy) are the focal lengths along the x- and y-axis.
In the following subsection, we describe the steps of how to
synthesize novel views with inverse and forward projection
in each instance region.

Instance-Aware View Synthesis and Projection
Consistency
Instance-wise projection Each step of the instance-wise
view synthesis is depicted in Fig. 2. To synthesize a novel
view in an instance-wise manner, we first decompose the
image region into background and object (potentially mov-
ing) regions. With given instance masks (M i

1,M
i
2), the back-

ground mask along frames (I1, I2) is generated as

M i=0
1,2 = (1− ∪k∈{1,2,...,n}M i=k

1 ) ∩ (1− ∪k∈{1,2,...,n}M i=k
2 ). (5)

The background mask is pixel-wise multiplied (�) to the in-
put frames (I1, I2), and then concatenated along the channel
axis, which is an input to Ego-PoseNet. The camera motion
is computed as

P i=0
1→2, P

i=0
2→1 = Eφ(M i=0

1,2 � I1,M i=0
1,2 � I2). (6)

To learn the object motions, we first apply the forward warp-
ing, Ffw(·), to generate ego-motion-eliminated warped im-
ages and masks as follows:

Îfw1→2 = Ffw(I1, D↑1 , P i=0
1→2,K

↑),

M̂fw
1→2 = Ffw(M1, D

↑
1 , P

i=0
1→2,K

↑).
(7)

Now we can generate forward-projected instance images as
Îfw,i=k1→2 = M̂fw,i=k

1→2 � Îfw1→2 and Îfw,i=k2→1 = M̂fw,i=k
2→1 �

Îfw2→1. For every object instance in the image, Obj-PoseNet
predicts the kth object motion as

P i=k1→2, P
i=k
2→1 = Oψ(Îfw,i=k1→2 ,M i=k

2 � I2), (8)

where both object motions are composed of six-dimensional
SE(3) translation and rotation vectors. We merge all instance
regions to synthesize the novel view. In this step, we uti-
lize inverse warping, Fiw(·). First, the background region is
reconstructed as

Îiw,i=0
1→2 =M i=0

1,2 �Fiw(I1, D2, P
i=0
2→1,K), (9)

where the gradients are propagated with respect to θ and φ.
Second, the inverse-warped kth instance is represented as

Îfw→iw,i=k1→2 = Fiw(Îfw,i=k1→2 , D2, P
i=k
2→1,K), (10)

where the gradients are propagated with respect to θ and ψ.
Finally, our instance-wise fully reconstructed novel view is
formulated as

Î1→2 = Îiw,i=0
1→2 +

∑
k∈{1,2,...,n}

Îfw→iw,i=k1→2 . (11)

Instance mask propagation Through the process of for-
ward and inverse warping, the instance mask is also propa-
gated to represent information on instance position and pixel
validity. In the case of the kth instance mask M i=k

1 , the for-
ward and inverse warped mask is expressed as follows:

M̂fw→iw,i=k
1→2 = Fiw(M̂fw,i=k

1→2 , D2, P
i=k
2→1,K). (12)

Note that the forward warped mask M̂fw,i=k
1→2 has holes due

to the sparse tensor coding. To keep the binary format and
avoid interpolation near the holes while inverse warping, we
round up the fractional values after each warping operation.
The final valid instance mask is expressed as follows:

M̂1→2 =M i=0
1,2 +

∑
k∈{1,2,...,n}

M̂fw→iw,i=k
1→2 . (13)

Instance-wise geometric consistency We impose the geo-
metric consistency loss for each region of an instance. With
the predicted depth map and warped instance mask, D1 can
be spatially aligned to the frame D2 by forward and inverse
warping, represented asM i=0

1,2 �D̂
iw,i=0
1→2 and M̂fw→iw,i=k

1→2 �
D̂fw→iw,i=k

1→2 respectively for background and instance re-
gions. In addition, D2 can be scale-consistently transformed
to the frame D1, represented as M i=0

1,2 � Dsc,i=0
2→1 and

M̂fw→iw,i=k
1→2 � Dsc,i=k

2→1 respectively for background and
instance regions. Based on this instance-wise operation, we
compute the unified depth inconsistency map as:

Ddiff,i=0
1→2 =M i=0

1,2 �
|D̂iw,i=0

1→2 −Dsc,i=0
2→1 |

D̂iw,i=0
1→2 +Dsc,i=0

2→1

,

Ddiff,i=k
1→2 = M̂fw→iw,i=k

1→2 � |D̂
fw→iw,i=k
1→2 −Dsc,i=k

2→1 |
D̂fw→iw,i=k

1→2 +Dsc,i=k
2→1

.

(14)

Note that the above depth inconsistency maps are spatially
aligned to the frame D2. Therefore, we can integrate the
depth inconsistency maps from the background and instance
regions as follows:
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Ddiff
1→2 = Ddiff,i=0

1→2 +
∑

k∈{1,2,...,n}

Ddiff,i=k
1→2 . (15)

Training loss In order to handle occluded, view-exiting, and
invalid instance regions, we leverage Eq. (13) and Eq. (15).
We generate a weight mask as 1−Ddiff

1→2 and this is multiplied
to the valid instance mask M̂1→2. Finally, our weighted valid
mask is formulated as:

V1→2 = (1−Ddiff
1→2 )� M̂1→2. (16)

The photometric consistency loss Lp is expressed as follows:

Lp =
∑
x∈X

V1→2(x) ·
{
(1− γ) ·

∣∣∣I2(x)− Î1→2(x)
∣∣∣
1

+γ
(
1− SSIM(I2(x), Î1→2(x))

)}
,

(17)

where x is the location of each pixel, SSIM(·) is the struc-
tural similarity index (Wang et al. 2004), and γ is set to 0.85
based on cross-validation. The geometric consistency loss
Lg is expressed as follows:

Lg =
∑
x∈X

M̂1→2(x) ·Ddiff
1→2 (x). (18)

To mitigate spatial fluctuation, we incorporate a smooth-
ness term to regularize the predicted depth. We apply the
edge-aware smoothness loss proposed by Ranjan et al. (Ran-
jan et al. 2019), which is described as:

Ls =
∑
x∈X

(∇D1(x) · e−∇I1(x))2. (19)

Note that the above equations are imposed for both forward
and backward directions by switching the subscripts 1 and 2.

Since the dataset has a low proportion of moving objects,
the learned motions of objects tend to converge to zero. The
same issue has been raised in a previous study (Casser et al.
2019a). To supervise the approximate amount of an object’s
movement, we constrain the motion of the object with a
translation prior. We compute this translation prior, #»

tp, by
subtracting the mean estimate of the object’s 3D points in
the forward warped frame into that of the target frame’s 3D
object points. This represents the mean estimated 3D vector
of the object’s motion. The object translation constraint loss
measures scale and cosine similarity of 3D vectors as follows:

Lt =
∑

k∈{1,2,...,n}

(∣∣∣‖ #     »

ti=k ‖ − ‖
#     »

ti=kp ‖
∣∣∣
1
+ loss](

#     »

ti=k,
#     »

ti=kp )
)
, (20)

where
#     »

ti=k and
#     »

ti=kp are predicted object translation from Obj-
PoseNet and the translation prior on the kth instance mask,
and loss] is a cosine similarity loss between 3D vectors.

Although we have accounted for instance-wise geometric
consistency, there still exists a trivial case of infinite depth
for a moving object that has the same motion as the camera
motion, such as for a vehicle in front. To mitigate this issue,
we adopt the object height constraint loss proposed by a
previous study (Casser et al. 2019a), which is described as:

Lh =
∑

k∈{1,2,...,n}

1

D
·
∣∣∣∣D �M i=k − fy · ph

hi=k

∣∣∣∣
1

, (21)

Instance
knowledge

Geometric
consistency

Object warping AbsRel

inverse forward all bg. obj.
7 7 7 7 0.156 0.142 0.396
7 3 7 7 0.137 0.124 0.309
3 7 3 7 0.151 0.138 0.377
3 3 3 7 0.146 0.131 0.362
3 7 7 3 0.143 0.133 0.285
3 3 7 3 0.124 0.119 0.178

Table 2: Ablation study (backbone - DispResNet) on KITTI
Eigen split for both background (bg.) and object (obj.) areas.

Method Backbone D1 D2

bg. fg. all bg. fg. all
CC (Ranjan et al. 2019) DispResNet 35.0 42.7 36.2 – – –
SC-SfM (Bian et al. 2019) DispResNet 36.0 46.5 37.5 – – –
EPC++ (Luo et al. 2019) DispNet 30.7 34.4 32.7 18.4 84.6 65.6
Ours DispResNet 26.8 30.4 27.4 28.9 32.3 29.4

Table 3: Evaluation on KITTI 2015 scene flow training set.
We evaluate the disparity compared to recent monocular-
based training methods.

where D is the mean estimated depth, and (ph, hi=k) are a
learnable height prior and pixel height of the kth instance.
Unlike the previous study, for stable training, the learning
rate of ph is reduced to 0.1 times and the gradient of D is
detached. The final loss is a weighted summation of the five
loss terms, defined as Eq. (1).

Experiments
Implementation Details
Network details For DepthNet, we use DispResNet (Ranjan
et al. 2019) and a ResNet18-based encoder-decoder structure.
The network can generate multi-scale outputs (six different
scales), but the single-scale training converges faster and
produces better performance as shown from SC-SfM (Bian
et al. 2019). The structures of Ego-PoseNet and Obj-PoseNet
are the same, but the weights are not shared. They consist of
seven convolutional layers and regress the relative pose as
three Euler angles and three translation vectors.
Training Our system is implemented in PyTorch (Paszke
et al. 2019). We train our networks using the ADAM opti-
mizer (Kingma and Ba 2015) with β1 = 0.9 and β2 = 0.999
on 4×Nvidia RTX 2080 GPUs. The image resolution is set to
832×256 and the video data is augmented with random scal-
ing, cropping, and horizontal flipping. We set the mini-batch
size to 4 and train the networks over 200 epochs with 1,000
randomly sampled batches in each epoch considering the
representation capacity (Zhang et al. 2019, 2021). The initial
learning rate is set to 10−4 and is decreased by half every
50 epochs. The loss weights are set to λp = 2.0, λg = 1.0,
λs = 0.1, λt = 0.1, and λh = 0.02.
Video instance segmentation dataset We introduce an auto-
annotation scheme to generate two video instance segmenta-
tion datasets, KITTI-VIS and Cityscapes-VIS, from existing
driving datasets, KITTI (Geiger, Lenz, and Urtasun 2012)
and Cityscapes (Cordts et al. 2016). To this end, we adopt
an off-the-shelf instance segmentation model, e.g., Mask R-
CNN (He et al. 2017) and PANet (Liu et al. 2018), and an
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Method Backbone Training Test Error metric ↓ Accuracy metric ↑
AbsRel SqRel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

EPC++ (Luo et al. 2019) DispNet K K 0.141 1.029 5.350 0.216 0.816 0.941 0.976
CC (Ranjan et al. 2019) DispResNet K K 0.140 1.070 5.326 0.217 0.826 0.941 0.975
SC-SfM (Bian et al. 2019) DispResNet K K 0.137 1.089 5.439 0.217 0.830 0.942 0.975
Ours DispResNet K (S) K 0.124 0.886 5.061 0.206 0.844 0.948 0.979
GLNet (Chen, Schmid, and Sminchisescu 2019) ResNet18 K K 0.135 1.070 5.230 0.210 0.841 0.948 0.980
Monodepth2 (Godard et al. 2019) ResNet18 K K 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Li et al. (Li et al. 2020) ResNet18 K K 0.130 0.950 5.138 0.209 0.843 0.948 0.978
Struct2Depth (Casser et al. 2019a) ResNet18 K (S) K 0.141 1.026 5.290 0.215 0.816 0.945 0.979
Gordon et al. (Gordon et al. 2019) ResNet18 K (S) K 0.128 0.959 5.230 0.212 0.845 0.947 0.976
SGDepth (Klingner et al. 2020) ResNet18 K (S) K 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Ours ResNet18 K (S) K 0.112 0.777 4.772 0.191 0.872 0.959 0.982
CC (Ranjan et al. 2019) DispResNet C+K K 0.139 1.032 5.199 0.213 0.827 0.943 0.977
SC-SfM (Bian et al. 2019) DispResNet C+K K 0.128 1.047 5.234 0.208 0.846 0.947 0.976
Ours DispResNet C+K (S) K 0.119 0.863 4.984 0.202 0.856 0.950 0.980
Gordon et al. (Gordon et al. 2019) ResNet18 C+K (S) K 0.124 0.930 5.120 0.206 0.851 0.950 0.978
Ours ResNet18 C+K (S) K 0.109 0.740 4.547 0.184 0.883 0.962 0.983
Li et al. (Li et al. 2020) ResNet18 C C 0.119 1.290 6.980 0.190 0.846 0.952 0.982
Struct2Depth (Casser et al. 2019b) ResNet18 C (S) C 0.145 1.737 7.280 0.205 0.813 0.942 0.978
Gordon et al. (Gordon et al. 2019) ResNet18 C (S) C 0.127 1.330 6.960 0.195 0.830 0.947 0.981
Ours ResNet18 C (S) C 0.111 1.158 6.437 0.182 0.868 0.961 0.983

Table 4: Monocular depth estimation results on the KITTI (K) Eigen test split and Cityscapes (C) test set. Models pretrained on
Cityscapes and fine-tuned on KITTI are denoted by ‘C+K’. Models trained with semantic knowledge are denoted by ‘S’. For
each partition, best results are written in boldface.

optical flow model, PWC-Net (Sun et al. 2018), for mask
propagation. We first compute the instance segmentation for
every image frame, and calculate the Intersection over Union
(IoU) scores among instances in each frame. If the maximal
IoU in the adjacent frame is above a threshold (τ = 0.5),
then the instance is assumed to be tracked and both masks are
assigned with the same ID. The occluded regions by the bidi-
rectional consistency check (Meister, Hur, and Roth 2018)
are excluded while computing the IoU scores. The instance
ID is ordered by the size of the reference instance, with the
maximum size among the matched instances coming first.
This size ordering is necessary, since we set the maximum
number of instances with larger instances having a higher pri-
ority in the optimization. In our training, we set the maximum
number of instances as three.

Ablation Study
We conduct an ablation study to validate the effect of our
forward projective geometry and instance-wise geometric
consistency term on monocular depth estimation. The abla-
tion is performed with the KITTI Eigen split (Eigen, Puhrsch,
and Fergus 2014). The models are validated with the AbsRel
metric by separating the background and object areas, which
are masked by our annotation. As described in Table 2, we
first evaluate SC-SfM (Bian et al. 2019) as a baseline, which
is not trained with instance knowledge (the 1st and 2nd mod-
els). Since there are no instance masks, DepthNet is trained
by inverse warping the whole image. The results show that
the geometric consistency term over the whole image plane
boosts the performance of depth estimation. With the given
instance masks, we try both inverse and forward warping on
the object areas. The inverse warping on the objects slightly
improves the depth estimation; however, we observe that Obj-
PoseNet does not converge (the 3rd and 4th models). Rather,
the performance is degraded when using the instance-wise
geometric consistency term with inverse warping on the ob-

Method Seq. 09 Seq. 10
SfM-Learner (Zhou et al. 2017) 0.021± 0.017 0.020± 0.015
GeoNet (Yin and Shi 2018) 0.012± 0.007 0.012± 0.009
CC (Ranjan et al. 2019) 0.012± 0.007 0.012± 0.008
Struct2Depth (Casser et al. 2019a) 0.011± 0.006 0.011± 0.010
GLNet (Chen, Schmid, and Sminchisescu 2019) 0.011± 0.006 0.011± 0.009
SGDepth (Klingner et al. 2020) 0.017± 0.009 0.014± 0.010
Ours (w/o inst.) 0.012± 0.008 0.011± 0.010
Ours (w/ inst.) 0.010± 0.013 0.011± 0.008

Table 5: Absolute trajectory error (ATE) on KITTI visual
odometry.

Method
Seq. 09 Seq. 10

terr rerr terr rerr
GeoNet (Yin and Shi 2018) 39.4 14.3 29.0 8.6
SC-SfM (Bian et al. 2019) 11.2 3.4 10.1 5.0
Ours (w/o inst.) 10.2 5.2 10.1 4.8
Ours (w/ inst.) 8.6 2.9 9.2 4.5

Table 6: Relative translation terr (%) and rotation rerr
(◦/100m) errors on KITTI visual odometry.

jects (comparing the 2nd and 4th models). We conjecture
that the uncertainty in learning the depth of the object area
degrades the performance on the background depth around
which the object is moving. However, the forward warping
on the objects improves the depth estimation on both back-
ground and object areas (the 5th and 6th models). This shows
that a well-optimized Obj-PoseNet helps to boost the perfor-
mance of DepthNet and they complement each other. We
note that the background is still inverse warped to synthesize
the target view and the significant performance improvement
comes from the instance-wise geometric loss incorporated
with forward projection while warping the object areas.

Monocular Depth Estimation
Test setup First, we show the disparity results on the KITTI
2015 scene flow training set. Our models are trained with
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non-overlapped KITTI raw images. We follow the standard
metrics (D1, D2: percentage of erroneous pixels over all
pixels). Since monocular training has a scale issue, we as-
sume that the scale for disparity is given, which is the same
experimental setup in EPC++ (Luo et al. 2019).

Second, we train and test our models with the Eigen
split (Eigen, Puhrsch, and Fergus 2014) of the KITTI dataset,
and the Cityscapes dataset following the method from
Struct2Depth (Casser et al. 2019a). We compare the per-
formance of the proposed method with recent state-of-the-art
works (Chen, Schmid, and Sminchisescu 2019; Casser et al.
2019a; Bian et al. 2019; Ranjan et al. 2019; Godard et al.
2019; Gordon et al. 2019; Klingner et al. 2020; Li et al. 2020)
for unsupervised single-view depth estimation.
Results analysis Table 3 shows the results on KITTI 2015
scene flow. The foreground (fg.) results show the superiority
on handling dynamic regions. Table 4 shows the KITTI Eigen
split and Cityscapes test results, where ours achieves state-
of-the-art performance in the single-view depth prediction
task with unsupervised monocular training. The advantage
is evident from using instance masks and constraining the
instance-wise photometric and geometric consistencies. Note
that we do not need instance masks for DepthNet in testing.

Visual Odometry

Test setup We evaluate the performance of our Ego-PoseNet
on the KITTI visual odometry dataset. Following the eval-
uation setup of SfM-Learner (Zhou et al. 2017), we use se-
quences 00-08 for training, and sequences 09 and 10 for tests.
In our case, since the potentially moving object masks are
fed together with the image sequences while training Ego-
PoseNet, we test the performance of visual odometry under
two conditions: with and without instance masks.
Results analysis We measure the absolute trajectory error
(ATE) in Table 5 and relative errors (terr, rerr) in Table 6,
which show state-of-the-art performance. Although we do
not use the instance mask, the result of sequence 10 produces
favorable performance. This is because the scene does not
have many potentially moving objects, e.g., vehicles and
pedestrians, so the result is not affected much by using or not
using instance masks.

Conclusion

In this work, we propose a unified framework that predicts
monocular depth, ego-motion, and 6-DoF motion of multiple
dynamic objects by training on monocular videos. Leverag-
ing video instance segmentation, we design an end-to-end
joint training pipeline. There are three main contributions of
our work: (1) a neural forward projection module, (2) a uni-
fied instance-aware photometric and geometric consistency
loss, and (3) an auto-annotation scheme for video instance
segmentation. We show that our method outperforms the ex-
isting unsupervised methods that estimate monocular depth.
We also show that each proposed module plays a role in
improving the performance of our framework.
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