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Abstract
In computer vision, monocular depth estimation is the prob-
lem of obtaining a high-quality depth map from a two-
dimensional image. This map provides information on three-
dimensional scene geometry, which is necessary for various
applications in academia and industry, such as robotics and
autonomous driving. Recent studies based on convolutional
neural networks achieved impressive results for this task.
However, most previous studies did not consider the rela-
tionships between the neighboring pixels in a local area of
the scene. To overcome the drawbacks of existing methods,
we propose a patch-wise attention method for focusing on
each local area. After extracting patches from an input fea-
ture map, our module generates attention maps for each lo-
cal patch, using two attention modules for each patch along
the channel and spatial dimensions. Subsequently, the atten-
tion maps return to their initial positions and merge into one
attention feature. Our method is straightforward but effec-
tive. The experimental results on two challenging datasets,
KITTI and NYU Depth V2, demonstrate that the proposed
method achieves significant performance. Furthermore, our
method outperforms other state-of-the-art methods on the
KITTI depth estimation benchmark.

Introduction
Monocular depth estimation is the task of generating a dense
depth map from a single RGB image. It has been studied
extensively as a fundamental problem in computer vision,
which is relevant in various applications such as robotics
and autonomous vehicles. An accurate dense depth map pro-
vided for a corresponding RGB image is particularly use-
ful for understanding the three-dimensional (3D) geometric
information of a scene for solving various computer vision
tasks. Therefore, an estimated high-quality depth map could
be used as prior information for processing an RGB image,
and it is practical in both academia and industry. For this
reason, the depth estimation task is critical and requires a
solution. However, the estimation of a depth map from a
monocular image is ambiguous and ill-posed since a two-
dimensional (2D) scene may be projected from an infinite
number of real-world 3D scenes.

Early researchers used statistically useful hand-crafted
features based on texture, color information, and perspec-
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Figure 1: Example of proposed patch-wise attention. Each
local patch extracted from an input feature has a correspond-
ing attention module. Attention maps that pass through each
attention module return to their initial position and merge
into one output feature.

tive geometry to overcome this ambiguity (Saxena, Chung,
and Ng 2006; Saxena, Sun, and Ng 2008; Malik and Choi
2008; Karsch, Liu, and Kang 2014). In recent years, ap-
proaches based on convolutional neural networks (CNNs)
have made breakthroughs with excellent performance in
numerous computer vision tasks. Based on the success of
CNNs in other tasks, many previous studies (Fu et al. 2018;
Lee et al. 2019; Yin et al. 2019; Diaz and Marathe 2019;
Zhang et al. 2019; Kim et al. 2020) on monocular depth es-
timation employed CNNs to extract features that are more
significant than hand-crafted ones, by using a large amount
of labeled data.

However, these methods do not include a component to
consider the relationships between the neighboring pixels in
a local area. Intuitively, it can be considered that neighbor-
ing depth values of the same object should be close (Gan
et al. 2018). That is, the relationship between the neigh-
boring pixels representing the same object in a local area
should be close, whereas those of different objects should be
far. Few studies have considered the relationships between
neighboring pixels. Saxena, Chung, and Ng (2006) intro-
duced the first learning-based method for monocular depth
estimation and employed a Markov random field (MRF) to
learn the relationships between different points or parts of
the image (Saxena, Sun, and Ng 2008). Gan et al. (2018)
proposed the affinity layer to extract relative features, which
represents the correlation of the values with the surrounding
pixels. This layer can be integrated into a fully end-to-end
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Figure 2: Effectiveness of proposed method. These results
demonstrate that our patch-wise attention effectively pro-
vides objects reconstruction and cleaner boundaries in the
local area.

CNN architecture. Zhang et al. (2018) proposed a regular-
ization method using the gradient information of the object
boundary in the local area.

Moreover, depth estimation in autonomous driving has
additional challenges. The light detection and ranging (Li-
DAR) value is inevitably noisy owing to its characteristics.
To create a wide field of view, a mechanical LiDAR uses a
rotating assembly. When the mechanical LiDAR is rotating,
if the LiDAR sensor is moving by itself or if the surrounding
environment changes, the sensor value may differ even for
the same object. For example, the laser scanner, which is a
component of the KITTI dataset (Geiger et al. 2013) record-
ing system, spins at 10 frames per second. This means that
the laser scanner sees the same direction once again after
0.1 s. As the KITTI dataset was obtained from a driving car,
we can reasonably assume that the data are noisy. Therefore,
considering the relationships among the neighboring pixels
in the local area is important for improving the performance
of the depth estimation task.

To address the abovementioned problems, we propose the
patch-wise attention (PWA) method that is straightforward
but effective. Unlike most attention methods that are applied
to the whole scene, the proposed method is designed to focus
on the relationships among the neighboring pixels in the lo-
cal areas of a scene. To achieve this, we first combine the in-
put features, including the local context information and the
global context features, which already represent information
on each local area. Subsequently, we feed them to the con-
volutional layer for converging the global and local context
information and extract patches of a predefined patch size.
Next, each local patch sequentially passes through the corre-
sponding channel and spatial attention modules to generate
an attention map and find the important features. Because
each local patch has the corresponding attention module, it
can focus on its position and learn the relationship among
the neighboring pixels. The attention maps return to their
initial position and merge into one attention map. Finally,
the attention map is multiplied by the input feature to pro-
duce a refined feature.

We conduct comprehensive evaluations on two challeng-
ing datasets, KITTI Eigen split (Geiger et al. 2013) and
NYU Depth V2 (Silberman et al. 2012). The results demon-
strate that the proposed method achieves significant im-
provements compared to state-of-the-art methods, both qual-
itatively and quantitatively. Furthermore, our method out-
performs other state-of-the-art methods on the online KITTI
depth estimation benchmark (Uhrig et al. 2017).

Related Work
Supervised Monocular Depth Estimation
Monocular depth estimation has been extensively studied.
Saxena, Chung, and Ng (2006) used a discriminatively-
trained MRF to predict the depth with local and global im-
age features. Using a similar methodology, they incorpo-
rated monocular and stereo cues by applying an MRF (Sax-
ena et al. 2007). Liu, Gould, and Koller (2010) performed
two phases, semantic segmentation and depth reconstruc-
tion, to leverage context information for depth estimation.
Liu, Salzmann, and He (2014) defined depth prediction as
a discrete-continuous optimization problem and suggested
particle belief propagation to solve this task.

In recent years, with the success of CNNs, numer-
ous depth estimation studies have been published. Eigen,
Puhrsch, and Fergus (2014) suggested a multiscale deep net-
work with two component stacks: the coarse-scale network
and fine-scale network. Furthermore, they proposed a scale-
invariant error to measure the relationships between pixels in
the image, regardless of the global scale. Li et al. (2015) em-
ployed a CNN model to learn the mapping from the image to
the depth or surface normal and refined it to the pixel level
using conditional random fields. Fu et al. (2018) and Diaz
and Marathe (2019) addressed the problem by adopting a
spacing-increasing discretization strategy and reformulated
the training as ordinal regression. Yin et al. (2019) used not
only 2D space information, but also geometric constraints
in 3D space. They reconstructed a 3D point cloud from the
estimated depth and exploited 3D geometry to enhance the
performance. Lee et al. (2019) applied local planar guidance
layers in the decoder to recover the original resolution ef-
fectively. Kim et al. (2020) suggested two new modules to
refine the multiscale encoder features and obtain rich con-
textual features. Lee and Kim (2020) proposed a new algo-
rithm for adaptively initializing and balancing the weights of
multiple losses that were used in training monocular depth
estimators. Wang et al. (2020) introduced additional tasks
such as depth-based scene classification and depth recon-
struction, to generate hierarchical embeddings. A loss func-
tion based on the embeddings and a newly proposed fusion
network was adopted to enhance accuracy and generaliza-
tion performance.

Attention Mechanism
Attention methods, which have already shown remarkable
performance in natural language processing, are also emerg-
ing as a standard for improving the performance of var-
ious computer vision tasks. Attention mechanisms are fa-
vored because they are highly cost-effective. They improve
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Figure 3: Overall architecture. The proposed architecture is an end-to-end framework based on the encoder-decoder
scheme (Ronneberger, Fischer, and Brox 2015). The proposed patch-wise attention module is located after the last upsam-
pling stage. sp is the patch size.

the overall performance with reasonable additional param-
eters. Among them, few methods exhibit high compatibil-
ity, and can be readily integrated into existing CNN archi-
tectures. Hu, Shen, and Sun (2018) introduced a squeeze-
and-excitation block that adaptively recalibrated features
via channel-wise attention generated from global average-
pooled features. Woo et al. (2018) extended the aforemen-
tioned module by applying both max-pooling and aver-
age pooling when generating attention maps and also ar-
ranged the pathways in a sequential manner. Fu et al. (2019)
proposed a dual attention network for scene segmentation.
They opted for a position attention module instead of spa-
tial attention, which captured the contextual relationships
between each and every feature. Wang et al. (2018) pre-
sented a general purpose non-local block that captures long-
range dependencies by computing the response at a posi-
tion as a weighted sum of features over all positions. Huynh
et al. (2020) devised an attention mechanism called depth-
attention volume that was tailored for enhancing monocular
depth estimation. It enhances learning by capturing a copla-
nar relation between non-local points.

Method
Overall Architecture
The overall architecture is shown in Figure 3. We employ
the encoder-decoder method proposed by Ronneberger, Fis-
cher, and Brox (2015). The transposed convolutional lay-
ers in the decoder have 3 × 3 kernels with a stride of 2.
Following the second upsampling stage, DenseASPP (Yang
et al. 2018) is implemented to capture multiscale informa-
tion from both the encoder and decoder features. At the end
of the decoder, our patch-wise attention (PWA) module uses
the feature from the last upsampling layer and the global
context features from DenseASPP. Next, we feed PWA mod-
ule’s output to the last convolutional layer. Subsequently, the
output is input into the sigmoid function. Finally, the desired
depth map is generated by scaling to a predefined maximum
depth value.

Patch-Wise Attention Module
We propose a patch-wise attention (PWA) to consider the re-
lationships among the neighboring pixels in the local area.
Unlike most attention methods focus on the whole scene,

PWA focuses on each local patch extracted from the input
feature. Figure 4 shows the proposed PWA module. We ap-
ply patch-wise channel attention and then another step of
patch-wise spatial attention sequentially. The PWA module
takes two inputs, a local context feature F ∈ RC×H×W and
a global context feature FG ∈ RC×H/sp×W/sp , where sp
denotes the predefined patch size. Each pixel of FG corre-
sponds to each patch, which has the size of sp×sp, extracted
from F . Therefore, the one pixel of FG and the one patch of
F represent the same area of the input feature. The number
of patches is set to H/sp ×W/sp.

Patch-Wise Channel Attention. We first operate the
max-pooing and average-pooling using a size of sp ×
sp to generate two different feature maps F c

max and
F c
avg , respectively aggregating spatial information, where
{F c

max, F
c
avg} ⊂ RC×H/sp×W/sp . Subsequently, FG,

F c
max, and F c

avg are concatenated and passed through a
3 × 3 convolutional layer Convc to generate a feature map
Fc ∈ RC×H/sp×W/sp , which is a feature that combines the
global and local context information.
Fc = Convc([FG;MaxPools(F );AvgPools(F )])

= Convc([FG;F
c
max;F

c
avg])

(1)

Next, we extract patches F c
i ∈ RC×1×1 from Fc, where

i denotes the patch of ith position in Fc. Each local patch
F c
i is forwarded to a corresponding multilayer perceptron

(MLPi) that comprises one hidden layer and the ReLU acti-
vation function. We set the number of hidden layer channels
to C/8 to reduce network parameters. Then, channel atten-
tion vectors Ec

i ∈ RC×1×1 are generated with a sigmoid
function σ.

Ec
i = σ(MLPi(F

c
i )) (2)

EachEc
i returns to an initial location and appears as an atten-

tion map Ec ∈ RC×H/sp×W/sp . Finally, we obtain a patch-
wise channel refined feature F ′ ∈ RC×H×W by multiplying
the interpolated Ec using scale factor sp and the local con-
text feature F .

Patch-Wise Spatial Attention. Next, we discuss the gen-
eration of a patch-wise spatial attention, which is similar to
the generation of the patch-wise channel attention. To gener-
ate the spatial attention map, we first concatenate the chan-
nel refined feature F ′ and interpolated global context fea-
ture F I

G ∈ RC×H×W by scale factor sp. Second, we obtain
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Figure 4: Patch-Wise Attention Method. Our method refines an input feature with attention weights generated by focusing on
the local area. Each local patch has the corresponding attention modules. sp is the patch size.

Fs ∈ RC×H×W when the concatenated feature is passed
through 3× 3 convolutional layer Convs.

Fs = Convs([F
′;F I

G]) (3)

Next, we extract patches F s
j ∈ R2×sp×sp from a con-

catenation of max-pooled and average-pooled features,
F s
max and F s

avg , over channel dimensions of Fs, where
{F s

max, F
s
avg} ⊂ R1×H×W , and j denotes the patch of jth

position in Fs. Notably, F s
j and F c

i represent the same area
of the scene if j = i. We feed each local patch to a cor-
responding convolutional layer Convj with a kernel size
of 7 × 7. Each Convj aggregates the spatial information
with the sigmoid activation to generate a spatial attention
Es

j ∈ R1×sp×sp to the corresponding patch.

Es
j = σ(Convj([MaxPoolc(Fs,j);AvgPoolc(Fs,j)]))

= σ(Convj([F
s
max,j ;F

s
avg,j ]))

= σ(Convj(F
s
j ))

(4)
Each Es

j returns to an initial location and appears as an at-
tention map Es ∈ R1×H×W . After expanding Es over the
channel dimension, we obtain a patch-wise spatial refined
feature F ′′ ∈ RC×H×W by multiplying the channel refined
feature F ′.

Finally, we generate the desired final output using a skip
connection to add F ′′, the original local context feature F
and the interpolated global context feature F I

G. Therefore,
patch-wise channel attention and spatial attention can learn
the relationship between neighboring pixels by focusing on
the local area in the scene.

Training Loss Function
To train the network, we adopt a well-known training loss
for depth prediction proposed by Eigen, Puhrsch, and Fer-
gus (2014). Specifically, the loss is a mixture of element-
wise l2 and the scale-invariant error. If we denote a network

prediction and the corresponding ground truth by y and y∗,
respectively, and set

di = log yi − log y∗i (5)

to be the difference between the prediction and ground truth
at pixel i, then the loss function L is defined as

L =

√√√√ 1

n

∑
i

d2i −
λ

n2

(∑
i

di

)2

, (6)

where n is the number of valid pixels of the ground truth.
We set λ to 0.5 as in Eigen, Puhrsch, and Fergus (2014).

Experiments
We conducted extensive experiments to compare our method
with state-of-the-art approaches on two datasets: NYU
Depth V2 (Silberman et al. 2012) and KITTI (Geiger et al.
2013). Moreover, we demonstrated the evaluation results on
the KITTI online benchmark server (Uhrig et al. 2017). All
experiments were implemented on PyTorch (Paszke et al.
2019).

Datasets and Evaluation Metrics
NYU Depth V2 dataset. The NYU Depth V2 dataset (Sil-
berman et al. 2012) contains 464 indoor scenes, which con-
tain 120K images and paired depth maps with a resolution of
640×480. As in the previous studies, we divided the dataset
into 249 scenes for training and 215 scenes (654 images) for
testing. All images used for the experiments on NYU Depth
V2 were collected from Lee et al. (2019). In the evaluation,
we applied a center crop from Eigen, Puhrsch, and Fergus
(2014) used in Fu et al. (2018); Lee et al. (2019); Yin et al.
(2019).
KITTI dataset. The KITTI dataset (Geiger et al. 2013)
contains 61 outdoor scenes captured by multiple sensors
mounted on a driving car. The dataset contains stereo im-
ages with a resolution of approximately 1241× 375 and the
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Variant δ1 ↑ δ2 ↑ δ3 ↑ AbsRel↓ SqRel↓ RMSE↓ RMSElog ↓ SILog↓

NYU Depth V2

Baseline 0.783 0.956 0.990 0.154 0.109 0.512 0.192 16.131
Baseline + CBAM (Woo et al. 2018) 0.814 0.966 0.992 0.137 0.092 0.481 0.175 14.323
Baseline + DualAttention (Fu et al. 2019) 0.808 0.963 0.993 0.143 0.096 0.485 0.177 14.542

Baseline
+ Patch-Wise Attention

sp = 8 0.808 0.962 0.992 0.141 0.094 0.483 0.179 15.004
sp = 16 0.814 0.964 0.993 0.140 0.093 0.481 0.178 14.668
sp = 32 0.824 0.967 0.994 0.135 0.086 0.461 0.170 14.062
sp = 64 0.833 0.971 0.994 0.131 0.083 0.454 0.165 13.478
sp = 128 0.834 0.969 0.994 0.130 0.084 0.454 0.166 13.698
sp = 256 0.833 0.969 0.993 0.131 0.087 0.464 0.167 13.667

sp = img size 0.803 0.960 0.992 0.145 0.100 0.492 0.182 15.198

Baseline + Patch-Wise Attention
+ DenseASPP (Yang et al. 2018)

sp = 32 0.852 0.976 0.995 0.121 0.074 0.430 0.155 12.776
sp = 64 0.860 0.976 0.995 0.119 0.072 0.424 0.152 12.541
sp = 128 0.858 0.975 0.994 0.122 0.076 0.428 0.155 12.641

KITTI Eigen split

Baseline 0.937 0.991 0.998 0.072 0.299 3.040 0.112 10.365
Baseline + CBAM (Woo et al. 2018) 0.939 0.991 0.998 0.072 0.294 3.004 0.111 10.177
Baseline + DualAttention (Fu et al. 2019) 0.929 0.989 0.997 0.079 0.329 3.225 0.119 11.124

Baseline
+ Patch-Wise Attention

sp = 8 0.940 0.991 0.998 0.071 0.290 3.018 0.110 10.126
sp = 16 0.942 0.991 0.998 0.070 0.286 2.965 0.109 10.020
sp = 32 0.944 0.992 0.998 0.069 0.279 2.961 0.108 9.857
sp = 64 0.945 0.992 0.998 0.068 0.280 2.964 0.107 9.746
sp = 128 0.942 0.992 0.998 0.070 0.288 3.038 0.109 9.984
sp = 256 0.941 0.991 0.998 0.071 0.293 3.020 0.109 10.150

sp = img size 0.940 0.991 0.998 0.071 0.286 2.985 0.109 10.082

Baseline + Patch-Wise Attention
+ DenseASPP (Yang et al. 2018)

sp = 32 0.946 0.992 0.998 0.069 0.283 2.982 0.106 9.713
sp = 64 0.947 0.992 0.998 0.069 0.277 2.927 0.105 9.493
sp = 128 0.944 0.992 0.998 0.069 0.280 2.944 0.107 9.715

Table 1: Ablation study on both NYU Depth V2 and KITTI Eigen split datasets. Here, δi denotes δ < 1.25i. The baseline is the
encoder-decoder network that uses MobileNetV2 (Sandler et al. 2018) as a backbone network. sp is the patch size. Best results
are in bold and second results are underlined in each category.

corresponding LiDAR point clouds. We used a recently re-
leased official dataset from KITTI, which includes RGB im-
ages and the post-processed depth maps from the projected
LiDAR point clouds as the ground truth. The ground truth
is produced by combining LiDAR scans. In the experiments
on the KITTI Eigen split, we followed the common data split
proposed by Eigen, Puhrsch, and Fergus (2014) for compar-
ison with previous studies. In the evaluation, we used the
center crop proposed by Garg et al. (2016) as in Guo et al.
(2018); Lee et al. (2019). For the online KITTI depth predic-
tion, we used the official benchmark split (Uhrig et al. 2017).
The KITTI benchmark dataset contains 85,898 training and
1,000 selected validation data, respectively, as well as 500
test data without the ground truth. The test data was cropped
to a size of 1216×352.

Evaluation Metrics. For the NYU Depth V2 and KITTI
Eigen split datasets, we compared our results with previ-
ous studies using the following commonly used evaluation
metrics by Eigen, Puhrsch, and Fergus (2014): the accuracy
under the threshold (δi < 1.25i, i = 1, 2, 3), mean absolute
relative error (AbsRel), mean squared relative error (SqRel),
root mean squared error (RMSE), root mean squared log

error (RMSElog), and mean log10 error (log10). We used
the following metrics for the online KITTI depth prediction
benchmark (Uhrig et al. 2017): scale invariant logarithmic
error (SILog), percentage of AbsRel and SqRel (absError-
Rel, sqErrorRel), and root mean squared error of the inverse
depth (iRMSE).

Implementation Details
We used ResNeXt101 (Xie et al. 2017), DenseNet161
(Huang et al. 2017), and MobileNetV2 (Sandler et al.
2018), which were pretrained on image classification us-
ing the ImageNet-1K dataset (Russakovsky et al. 2015), as
the backbone networks. The output channels of transposed
convolutional layers were [512, 256, 128, 64, and 32] on
ResNeXt101 and DenseNet161, and [320, 96, 32, 24, and
32] on MobilinetV2, sequentially. For the network train-
ing, we used a mini-batch size of 8 and 16 on NYU Depth
V2 and KITTI dataset. We adopted the ADAM optimizer
with β1 = 0.9, β2 = 0.999, and ε = 10−8. The learn-
ing rate started from 0.0005 on MobileNetV2 and 0.0001 on
ResNeXt101 and DenseNet161. We used a polynomial de-
cay method with power p = 0.9 to schedule the learning
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Method Backbone cap δ1 ↑ δ2 ↑ δ3 ↑ AbsRel↓ SqRel↓ RMSE↓ RMSElog ↓

Saxena, Sun, and Ng (2008) -

0-80m

0.601 0.820 0.926 0.280 3.012 8.734 0.361
Eigen, Puhrsch, and Fergus (2014) - 0.692 0.899 0.967 0.190 1.515 7.156 0.270

Gan et al. (2018) ResNet50 0.890 0.964 0.985 0.098 0.666 3.933 0.173
Guo et al. (2018) VGG-16 0.892 0.967 0.986 0.096 0.641 4.095 0.168
Fu et al. (2018) ResNet101 0.932 0.984 0.994 0.072 0.307 2.727 0.120
Yin et al. (2019) ResNeXt101† 0.938 0.990 0.998 0.072 - 3.258 0.117
Lee et al. (2019) DenseNet161 0.956 0.993 0.998 0.059 0.241 2.756 0.096
Kim et al. (2020) ResNeXt101 0.958 0.993 0.999 0.060 0.231 2.650 0.094

Ours
MobileNetV2

0-80m
0.947 0.992 0.998 0.069 0.277 2.928 0.105

DenseNet161 0.956 0.994 0.999 0.062 0.240 2.708 0.096
ResNeXt101 0.958 0.994 0.999 0.060 0.221 2.604 0.093

Gan et al. (2018) ResNet50

0-50m

0.898 0.967 0.986 0.094 0.552 3.133 0.165
Guo et al. (2018) VGG-16 0.901 0.971 0.988 0.092 0.515 3.163 0.159
Fu et al. (2018) ResNet101 0.936 0.985 0.995 0.071 0.268 2.271 0.116
Lee et al. (2019) DenseNet161 0.964 0.994 0.999 0.056 0.169 1.925 0.087
Kim et al. (2020) ResNeXt101 0.964 0.995 0.999 0.058 0.163 1.893 0.088

Ours
MobileNetV2

0-50m
0.956 0.994 0.998 0.066 0.204 2.124 0.098

DenseNet161 0.963 0.995 0.999 0.059 0.175 1.952 0.089
ResNeXt101 0.965 0.995 0.999 0.057 0.161 1.872 0.087

Table 2: Performance on KITTI Eigen split. All methods are evaluated on the split by Eigen, Puhrsch, and Fergus (2014). Our
approach achieves state-of-the-art results. Here, δi denotes δ < 1.25i, and † denotes the method using ResNeXt101 (32x4d).

rate, and we set the numbers of epochs for training our net-
works to 10. We augmented data as follows. Randomly hor-
izontal flipping was applied in all experiments. Thereafter, a
random rotation of the inputs was applied in ranges of [-5,
5] and [-1, 1] for the NYU Depth V2 and KITTI datasets,
respectively. Furthermore, we randomly changed the bright-
ness, contrast, and saturation of the input images in the range
of [0.8, 1.2], and the hue in the range of [0.9, 1.1]. All data
augmentations were performed with a 50% probability. For
the KITTI dataset, we trained our networks 1216 × 352 us-
ing a bottom-center crop. For the NYU Depth V2, we train
our networks on full-size images. If the width and height of
an input image are not divided by the patch size, we applied
the zero-padding operation to the input image.

Ablation Study
We performed extensive ablation studies to verify the effec-
tiveness of our proposed methods. Both the KITTI and NYU
Depth V2 datasets were used in these experiments. The re-
sults are displayed in Table 1. Moreover, examples of the
qualitative results on the NYU Depth V2 dataset are pre-
sented in Figure 2. In this study, the baseline network in-
cluded the encoder and decoder and used MobileNetV2 as a
backbone.

The proposed PWA method could outperform global at-
tention method counterparts, such as CBAM (Woo et al.
2018) and DualAttention (Fu et al. 2019), for a proper patch
size of sp. If sp is too small, then each patch represents an
area that is extremely small; therefore, it was difficult to
produce a meaningful attention map despite the increased
number of parameters, resulting in poor performance. How-
ever, if sp is too large, the PWA lost its advantage, and be-
came similar to global attention methods. Therefore, moder-

ate value of sp would work effectively; experimentally, the
value was established as approximately on both NYU Depth
V2 and KITTI Eigen split datasets. sp = 64 also worked
well with DenseASPP (Yang et al. 2018) on both datasets,
with significant performance gains. Therefore, 64 was a ro-
bust optimal value of sp in various situations. We used this
value for further experiments.

Comparison with State-of-the-art
For comparison, we set sp to 64 and used MobileNetV2,
DenseNet161, and ResNeXt101 (32x8d) as backbone net-
works.

KITTI Eigen split. We compared the proposed networks
with state-of-the-art methods on the KITTI Eigen split
dataset. In the experiments, we set the maximum depth value
to 80 m. As indicated in Table 2, our ResNeXt-based model
achieved a state-of-the-art performance in the ranges of both
0 to 50 m and 0 to 80 m, except for AbsRel. Especially, our
MobileNet-based model outperformed the methods from Fu
et al. (2018); Yin et al. (2019) that used ResNet101 and
ResNeXt101 (32x4d) as backbone networks, respectively.

KITTI Benchmark. We also evaluated the proposed
method on the online KITTI depth prediction benchmark
server1. In the experiments on the KITTI benchmark, we set
the maximum depth value to 90 m. The results are presented
in Table 3. Compared with the other methods, our ResNeXt-
based model achieved state-of-the-art performance in terms
of SILog, which is the main metric of the benchmark. The
qualitative results are presented in Figure 5.

1http://www.cvlibs.net/datasets/kitti/eval depth.php?
benchmark=depth prediction
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Image Ours BTS (Lee et al. 2019) DORN (Fu et al. 2018)

Figure 5: Qualitative comparison with other state-of-the-art methods on the KITTI benchmark dataset. Our method provides
cleaner boundaries and more effective object reconstruction than the other methods.

Method SILog sqErrRel absErrRel iRMSE

PAP (Zhang et al. 2019) 13.08 2.72 10.27 13.95
VNL (Yin et al. 2019) 12.65 2.46 10.15 13.02
SORD (Diaz and Marathe 2019) 12.39 2.49 10.10 13.48
DORN (Fu et al. 2018) 11.77 2.23 8.78 12.98
BTS (Lee et al. 2019) 11.67 2.21 9.04 12.23
Ours 11.45 2.30 9.05 12.32

Table 3: Comparison with state-of-the-art methods on online
KITTI depth prediction benchmark.

NYU Depth V2. To validate our method’s efficiency in in-
door scenes, we evaluated our networks on the NYU Depth
V2 dataset. Table 4 indicates that our method outperforms
the other methods on all metrics. The proposed DenseNet-
based model reduces AbsRel and RMSE by approximately
4% compared to that of Lee et al. (2019) using the same
backbone network. Moreover, our ResNeXt-based model
outperformed the methods from Kim et al. (2020) using the
same backbone network. Furthermore, our MobileNet-based
model showed the best performance among the methods us-
ing a lightweight backbone network, as shown in Table 5.

Conclusion
In this paper, we proposed a patch-wise attention method to
consider the relationships among the neighboring pixels in
the local area, which is straightforward but effective. As op-
posed to the previous attention modules, which were applied
to the whole scene, our method applies a separate attention
module to each local patch extracted from the input feature.
Because each local patch has the corresponding attention
module, our method can focus on each local area and learn
the relationships between neighboring pixels. The results
of extensive experiments using various backbone networks
on two challenging datasets, NYU Depth V2 and KITTI,

Method
higher is better lower is better

δ1 δ2 δ3 AbsRel log10 RMSE

Eigen and Fergus (2015) 0.769 0.950 0.988 0.158 - 0.641
Fu et al. (2018) 0.828 0.965 0.992 0.115 0.051 0.509

Zhang et al. (2019) 0.846 0.968 0.994 0.121 - 0.497
Yin et al. (2019) 0.875 0.976 0.994 0.108 0.048 0.416
Kim et al. (2020) 0.878 0.981 0.995 0.111 0.047 0.388

Huynh et al. (2020) 0.882 0.980 0.996 0.108 - 0.412
Lee et al. (2019) 0.885 0.978 0.994 0.110 0.047 0.392

Ours (ResNeXt101) 0.892 0.984 0.997 0.105 0.045 0.376
Ours (DenseNet161) 0.892 0.985 0.997 0.105 0.045 0.374

Table 4: Performance on NYU Depth V2. Our method out-
performs the state-of-the-art methods on all evaluation met-
rics. Here, δi denotes δ < 1.25i.

Method
higher is better lower is better

δ1 δ2 δ3 AbsRel RMSE RMSElog

Nekrasov et al. (2019) 0.790 0.955 0.990 0.149 0.565 0.205
Yin et al. (2019) 0.829 0.956 0.980 0.134 0.485 0.185
Lee et al. (2019) 0.860 0.974 0.993 0.121 0.431 0.156

Ours 0.860 0.976 0.995 0.119 0.424 0.152

Table 5: Results on NYU Depth V2 with a lightweight back-
bone (MobileNetV2). Here, δi denotes δ < 1.25i.

demonstrated the effectiveness of the proposed method. Our
method outperformed other state-of-the-art methods. As part
of our future work, we plan to investigate the design of a spe-
cific layer to learn more complicated relationships among
the neighboring depth values in the local area.
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