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Abstract

In this paper, we propose a novel text-based talking-head
video generation framework that synthesizes high-fidelity fa-
cial expressions and head motions in accordance with con-
textual sentiments as well as speech rhythm and pauses. To
be specific, our framework consists of a speaker-independent
stage and a speaker-specific stage. In the speaker-independent
stage, we design three parallel networks to generate anima-
tion parameters of the mouth, upper face, and head from texts,
separately. In the speaker-specific stage, we present a 3D face
model guided attention network to synthesize videos tailored
for different individuals. It takes the animation parameters
as input and exploits an attention mask to manipulate facial
expression changes for the input individuals. Furthermore,
to better establish authentic correspondences between vi-
sual motions (i.e., facial expression changes and head move-
ments) and audios, we leverage a high-accuracy motion cap-
ture dataset instead of relying on long videos of specific indi-
viduals. After attaining the visual and audio correspondences,
we can effectively train our network in an end-to-end fashion.
Extensive experiments on qualitative and quantitative results
demonstrate that our algorithm achieves high-quality photo-
realistic talking-head videos including various facial expres-
sions and head motions according to speech rhythms and out-
performs the state-of-the-art.

Introduction
Talking-head synthesis technology aims to generate a talk-
ing video of a specific speaker with authentic facial anima-
tions from an input speech. The output talking-head video
has been employed in many applications, such as intelligent
assistance, human-computer interaction, virtual reality, and
computer games. Due to its wide applications, talking-head
synthesis has attracted a great amount of attention.

Many previous works that take audios as input mainly fo-
cus on synchronizing lower facial parts (e.g., mouths), but
often neglect animations of the head and upper facial parts
(e.g., eyes and eyebrows). However, holistic facial expres-
sions and head motions are also viewed as critical chan-
nels to deliver communicative information (Ekman 1997).
For example, humans unconsciously use facial expressions
and head movements to express their emotions (Mignault
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Input text: “Get out! You shouldn‘t be here!”

Figure 1: Our method produces emotional, rhythmic and
photo-realistic talking-head videos from input texts.

and Chaudhuri 2003). Thus, generating holistic facial ex-
pressions and head motions will lead to more convincing
person-talking videos.

Furthermore, since the timbre gap between different in-
dividuals may lead the acoustic features in the testing utter-
ances to lying outside the distribution of the training acoustic
features, prior arts built upon the direct association between
audio and visual modalities may also fail to generalize to
new speakers’ audios (Chou et al. 2018). Consequently, the
acoustic feature-based frameworks do not work well on in-
put speeches from different people with distinct timbres or
synthetic speeches (Sadoughi and Busso 2016).

Unlike previous works, we employ time-aligned texts
(i.e., text with aligned phoneme timestamps) as input fea-
tures instead of acoustics features to alleviate the timbre gap
issue. In general, time-aligned texts can be extracted from
audios by speech recognition tools or generated by text-to-
speech tools. Since the spoken scripts are invariant to differ-
ent individuals, our text-based framework is able to achieve
robust performance against different speakers.

This paper presents a novel framework to generate holis-
tic facial expressions and corresponding head animations ac-
cording to spoken scripts. Our framework is composed of
two stages, i.e., a speaker-independent stage and a speaker-
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specific stage. In the speaker-independent stage, our net-
works are designed to capture generic relationships be-
tween texts and visual appearances. Unlike previous meth-
ods (Suwajanakorn, Seitz, and Kemelmacher-Shlizerman
2017; Taylor et al. 2017; Fried et al. 2019) that only syn-
thesize and blend mouth region pixels, our method intends
to generate holistic facial expression changes and head mo-
tions. Hence, we design three networks to map input texts
into animation parameters of the mouth, upper face and head
pose respectively. Furthermore, we employ a motion cap-
ture system to construct the correspondences between high-
quality facial expressions as well as head motions and audios
as our training data. Thus, our collected data can be used for
training our speaker-independent networks effectively with-
out requiring long-time talking videos of specified persons.

Since the animation parameters output by our speaker-
independent networks are generic, we need to tailor the an-
imation parameters to the specific input speaker to achieve
convincing generated videos. In the speaker-specific stage,
we take the animation parameters as input and then exploit
them to rig a given speaker’s facial landmarks. In addition,
we also develop an adaptive-attention network to adapt the
rigged landmarks to the speaking characteristics of the spec-
ified person. In doing so, we only require a much shorter
reference video (around 5 minutes) of the new speaker, in-
stead of more than one hour speaker-specific videos often
requested by previous methods (Suwajanakorn, Seitz, and
Kemelmacher-Shlizerman 2017; Fried et al. 2019).

Overall, our method produces photo-realistic talking-head
videos from a short reference video of a target performer.
The generated videos also present rich details of the per-
former, such as realistic clothing, hair, and facial expres-
sions.

Related work
Facial Animation Synthesis
Facial animation synthesis pre-defines a 3D face model and
generates the animation parameters to control the facial vari-
ation. LSTM (Hochreiter and Schmidhuber 1997) is widely
used in facial animation synthesis for sequential modeling.
Several works take BiLSTM (Pham, Cheung, and Pavlovic
2017), CNN-LSTM (Pham, Wang, and Pavlovic 2017) or
carefully-designed LSTM (Zhou et al. 2018) with regression
loss, GAN loss (Sadoughi and Busso 2019) or multi-task
training strategy (Sadoughi and Busso 2017) to synthesize
full facial/mouth animation. However, LSTM tends to work
slower due to the sequential computation. CNN is proven to
have comparable ability to deal with sequential data (Bai,
Kolter, and Koltun 2018). Some works employ CNN to ani-
mate mouth or full face from acoustic features (Karras et al.
2017; Cudeiro et al. 2019) or time-aligned phonemes (Taylor
et al. 2017). Head animation synthesis focuses on synthesiz-
ing head pose from input speech. Some works direct regress
head pose with BiLSTM (Ding, Zhu, and Xie 2015; Green-
wood, Matthews, and Laycock 2018) or the encoder of trans-
former (Vaswani et al. 2017). More precisely, head pose gen-
eration from speech is a one-to-many mapping, Sadoughi
and Busso (2018) employ GAN (Goodfellow et al. 2014;

Mirza and Osindero 2014; Yu et al. 2019b,a) to retain the
diversity.

Face Video Synthesis
Audio-driven. Audio-driven face video synthesis directly
generates 2D talking video from input audio. Previous works
(Vougioukas, Petridis, and Pantic 2019; Chen et al. 2018;
Zhou et al. 2019; Wiles, Sophia, and Zisserman 2018; Pra-
jwal et al. 2020) utilize two sub-modules to compute face
embedding feature and audio embedding feature for the tar-
get speaker, then fuse them as input to a talking-face gen-
erator. Another group of works decouple geometry gener-
ation and appearance generation into two stages. The ge-
ometry generation stage infers appropriate facial landmarks,
which is taken as input by the appearance generation stage.
Landmarks are inferred with speaker-specific model (Suwa-
janakorn, Seitz, and Kemelmacher-Shlizerman 2017; Das
et al. 2020; Zhou et al. 2020) or linear principal components
(Chen et al. 2019, 2020). Thies et al. (2020) generate expres-
sion coefficients of a 3D Morphable Model (3DMM), then
employ a neural renderer to generate photo-realistic images.
Fried et al. (2019) infer expression parameters by search-
ing and blending existing expressions of the reference video,
then employ a recurrent neural network to generate the mod-
ified video. Although also taking text as input, their method
generates novel sentences inefficiently (10min-2h) due to the
viseme search. Besides, both works fail to control the upper
face and head pose to match the speech rhythm and emotion.

Video-driven. Video-driven methods transfer expressions
of one person to another. Several works (Ha et al. 2020; Zeng
et al. 2020; Song et al. 2019; Siarohin et al. 2019) take a
single image as the identity input. Other works take videos
(Thies et al. 2015, 2018) as identity input to improve vi-
sual quality. Thies et al. (2016) reconstruct and renders a
mesh model and fill in the inner mouth as output, the re-
constructed face texture stays constant while talking. Some
works directly generate 2D images with GAN instead of 3D
rendering (Nirkin, Keller, and Hassner 2019; Zakharov et al.
2019; Wu et al. 2018; Thies, Zollhöfer, and Nießner 2019).
Kim et al. (2019) preserve the mouth motion style based on
sequential learning on the unpaired data of the two speak-
ers. Alternatively, our work generates paired mouth expres-
sion data to make the style learning easier. Kim et al. (2018)
also employs a 3DMM to render geometry information. In-
stead of transferring existing expressions, our method gen-
erates new expressions from text. Furthermore, our method
preserves the speaker’s mouth motion style and designs an
adaptive-attention network to obtain higher image resolution
and better visual quality.

Text-based Talking-head Generation
Our framework takes the time-aligned text as input and
outputs the photo-realistic talking-head video. It can be
generalized to a specific speaker with about 5 minutes of
his/her talking video (reference video). Figure 2 illustrates
the pipeline of our framework. Taking time-aligned text as
input, Gmou, Gupp and Ghed separately generate speaker-
independent animation parameters of mouth, upper face and
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Figure 2: Pipeline of our method. The speaker-independent stage takes the time-aligned text as input and generates head pose,
upper face, and mouth shape animation parameters. The speaker-specific stage then produces synthetic talking-head videos
from the animation parameters.

Face camera MoCap helmet Microphone

Figure 3: The collection of Mocap dataset. The recording
is carried out by a professional actress wearing a helmet.
Markers on the helmet offer information of head pose. The
infrared camera attached to the helmet records accurate fa-
cial expressions.

head pose. Instead of learning from the reference video, they
take advantage of a Mocap dataset for higher accuracy. Since
a small error in geometry inference may lead to obvious
artifacts in appearance inference, we introduce a 3D face
module Gldmk to incorporate the head and facial expres-
sion parameters and convert them to speaker-specific facial
landmark sequence. Finally, Gvid synthesizes the speaker-
specific talking-head video according to the facial landmark
sequence by rendering the texture of hair, face, upper torso
and background.

Mocap Dataset
To obtain high-fidelity full facial expressions and head pose,
we record an audiovisual dataset relying on a motion capture
(Mocap) system1 shown in Figure 3. The collected data in-
cludes the mouth parameter sequence mmou = {mmou

t }Tt=1
where mmou

t ∈ R28, the upper face parameter sequence
mupp = {mupp

t }Tt=1 where mupp
t ∈ R23 and the head pose

parameter sequence mhed = {mhed
t }Tt=1 where mhed

t ∈ R6.
T is the length of frames in an utterance. mmou and mupp

are defined as blendshape weights following the definition of
Faceshift. Each blendshape stands for some part of the face
movement, e.g.eye-open, mouth-left. We record 865 emo-
tional utterances of a professional actress in English (203

1Dynamixyz, http://www.dynamixyz.com
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Figure 4: Mouth animation generator.

surprise, 273 anger, 255 neutral and 134 happiness), each of
which lasts from 3 to 6 seconds. A time alignment analyzer
2 is employed to compute the duration of each phoneme and
each word from audio. According to the alignment result,
we represent the word sequence and phoneme sequence as
w = {wt}Tt=1 and ph = {pht}Tt=1 separately, where wt

and pht are the word and phoneme uttered at the t-th frame.
In this way, we build a high-fidelity Mocap dataset includ-
ing mmou, mupp, mhed, w and ph, which is then used to
train the speaker-independent generators. Another Chinese
dataset (925 utterances from 3 to 6 seconds) is similarly
built. Both datasets are released for research purposes3.

Mouth Animation Generator
Since the mouth animation mainly contributes to uttering
phonemes instead of semantic structures, Gmou learns a
mapping from ph to mmou ignoring w, as shown in Fig-
ure 4. The first step is to convert ph from phoneme space
into the embedding vectors Eph in a more flexible space.
We construct a trainable lookup table (Tang et al. 2014) V ph

to meet the goal, which is randomly initialized and updated

2qdreamer.com
3https://github.com/FuxiVirtualHuman/Write-a-Speaker
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Figure 5: Upper facial expression generator.

in the training stage. Afterwards, The stacked Res1D lay-
ers take Eph as input and output synthetic mouth parameter
sequence m̂mou according to co-articulation effects. We de-
sign the structure based on CNN instead of LSTM for the
benefits of parallel computation.

We apply L1 loss and LSGAN loss (Mao et al. 2017) for
training Gmou. The L1 loss is written as

Lmou
1 =

1

T

T∑
i=1

(‖mmou
i − m̂mou

i ‖1), (1)

where mmou
i and m̂mou

i are the real and generated vector of
the ith frame separately. The adversarial loss is denoted as

Lmou
adv = arg min

Gmou
max
Dmou

LGAN (Gmou, Dmou). (2)

Inspired by the idea of patch discriminator (Isola et al.
2017), Dmou is applied on temporal trunks of blendshape
which also consists of stacked Res1D layers. The objective
function is written as

L(Gmou) = Lmou
adv + λmouL

mou
1 . (3)

Upper Face/Head Pose Generators
While mouth motions contribute to speech co-articulation,
upper facial expressions and head motions tend to convey
emotion, intention, and speech rhythm. Therefore,Gupp and
Ghed are designed to capture longer-time dependencies from
w instead of ph. They share the same network and differ
from that ofGmou, as illustrated in Figure 5. Similar to V ph,
a trainable lookup table V txt maps w to embedding vec-
tors Etxt. In order to generate mupp with consistent emo-
tion, an emotion label (surprise, anger, neutral, happiness)
is either detected by a text sentiment classifier (Yang et al.
2019), or explicitly assigned for the specific emotion type.
Another trainable lookup table V emo projects the emotion
label to embedding vectors Eemo. Etxt and Eemo are fed
to an encoder-decoder network to synthesize mupp. Benefits
from the large receptive field, the encoder-decoder structure
captures long-time dependencies between words.

Since synthesizingmupp from text is a one-to-many map-
ping, the L1 loss is replaced with SSIM loss (Wang et al.
2004). SSIM simulates the human visual perception and has
benefit of extracting structural information. We extend SSIM
to perform on each parameter respectively, namely SSIM-
Seq loss, formulated as

Lupp
S = 1− 1

23

23∑
i=1

(2µiµ̂i + δ1)(2covi + δ2))

(µ2
i + µ̂2

i + δ1)(σ2
i + σ̂2

i + δ2))
. (4)

µi/µ̂i and σi/σ̂i represent the mean and standard deviation
of the i dimension of real/synthetic mupp, and covi is the
covariance. δ1 and δ2 are two small constants. The GAN
loss is denoted as

Lupp
adv = arg min

Gupp
max
Dupp

LGAN (Gupp, Dupp). (5)

where Dupp shares the same structure with Dmou. The ob-
jective function is written as

L(Gupp) = Lupp
adv + λuppL

upp
S . (6)

Ghed shares the same network and loss but ignores V emo

to generate mhed, as the variation of head poses in different
emotions is less significant than that of facial expressions.

Style-Preserving Landmark Generator
Gldmk reconstructs the 3D face from the reference video,
then drive it to obtain speaker-specific landmark images. A
multi-linear 3DMM U(s, e) is constructed with shape pa-
rameters s ∈ R60 and expression parameters e ∈ R51.
The linear shape basis are taken from LSFM (Booth et al.
2018) and scaled by the singular values. We sculpture 51
facial blendshapes on LSFM as the expression basis follow-
ing the definition of Mocap dataset, so that e is consistent
with (mupp

t ,mmou
t ). A 3DMM fitting method is employed

to estimate s of the reference video. Afterwards, we drive
the speaker-specific 3D face with generated m̂hed, m̂mou

and m̂upp to get the landmark image sequence. Our earlier
experiments show that videos generated from the landmark
images and rendered dense mesh are visually indifferent, we
therefore choose landmark images to cut down a renderer.

Furthermore, speakers may use different mouth shapes to
pronounce the same word, e.g. some people tend to open
their mouths larger than others, and people are sensitive to
the mismatched styles. Meanwhile, the generic m̂upp and
m̂hed work fine among different people in practice. Hence,
we retarget m̂mou to preserve the speaker’s style while leav-
ing m̂upp and m̂hed unchanged. On one hand, we extract
time-aligned text from the reference video and generate
m̂mou using Gmou. On the other hand, we estimate person-
alized m̆mou from the reference video using 3DMM. In this
way, we obtain paired mouth shapes pronouncing the same
phonemes. With the paired data, the style-preserving map-
ping from m̂mou to m̆mou is easily learnt. A two-layer fully-
connected network with MSE loss works well in our exper-
iments. We use the mapped m̆mou to produce the landmark
images.
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Figure 6: Photo-realistic video generator.

Photo-realistic Video Generator
Gvid produces the talking-head video {Ît}Tt=1 frame by
frame from the landmark images. Ît depicts the speaker’s
full facial expression, hair, head and upper torso poses, and
the background at the t-th frame. Considering the high tem-
poral coherence, we construct the conditional space-time
volume V as input of Gvid by stacking the landmark images
in a temporal sliding window of length 15.

Although typical image synthesis networks (Isola et al.
2017; Wang et al. 2018; Yu and Porikli 2016, 2017a,b) are
able to produce reasonable head images, their outputs tend
to be blurry on areas with high-frequency movements, espe-
cially the eye and mouth regions. The possible explanation
is that the movements of eye and mouth are highly corre-
lated with landmarks while the torso pose and background
are less, so it is not the best solution to treat all parts as a
whole. Motivated by the observation, we design an adaptive-
attention structure. As shown in Figure 6, Gvid is composed
by a feature extraction networkNfeat and self-attention ren-
dering network Nrend. To extract features from high res-
olution landmark images, Nfeat consists of two pathways
of different input scales. The extracted features of the two
pathways are element-wise summed.Nrend renders talking-
head images from the latent features. To model the different
correlations of body parts, we design a composite of three
parallel sub-networks.Nrend

face produces the target face Îface.
Nrend

clr is expected to compute the global color map Îcolor,
with hair, upper body, background and so on. Nrend

mask pro-
duces the adaptive-attention fusion mask M that focus on
the high-frequency-motion regions. The final generated im-
age Ît is given by

Ît = M ∗ Îface + (1−M) ∗ Îcolor. (7)

Figure 7 shows the details of our attention mask.
We follow the discriminators of pix2pixHD (Wang et al.

2018), consisting of 3 multi-scale discriminatorsDvid
1 ,Dvid

2

and Dvid
3 . The inputs of them are Ît/It and V , where It is

the real frame. The adversarial loss is defined as:

Lvid
adv = min

Gvid
max

Dvid
1 ,Dvid

2 ,Dvid
3

3∑
i=1

LGAN (Gvid, Dvid
i ), (8)

generated face mask global color map fusion result

Figure 7: Sample outputs of our photo-realistic video gen-
erator. It shows that the adaptive-attention mask is able to
distinguish the region of mouth and eyes from other regions.

To capture the fine facial details we adopt the perceptual
loss (Johnson, Alahi, and Fei-Fei 2016), following Yu et al.
(2018)

Lperc =
n∑

i=1

1

WiHiCi
‖Fi(It)− Fi(Ît)‖1, (9)

where Fi ∈ RWi×Hi×Ci is the feature map of the i-th layer
of VGG-19 (Simonyan and Zisserman 2014). Matching both
lower-layer and higher-layer features guides the generation
network to learn both fine-grained details and a global part
arrangement. Besides, we use L1 loss to supervise the gen-
erated Îface and Ît:

Limg
1 = ‖It − Ît‖1, Lface

1 = ‖Ifacet − Îfacet ‖1. (10)

Iface is cropped from It according to the detected landmarks
(Baltrusaitis et al. 2018).

The overall loss is defined as:

L(Gvid) = αLperc + βLimg
1 + γLface

1 + Lvid
adv. (11)

Experiments and Results
We implement the system using PyTorch on a single GTX
2080Ti. The training of the speaker-independent stage takes
3 hours on the Mocap dataset. The training of the speaker-
specific stage takes one day on a 5 mins’ reference video.
Our method produces videos of 512 × 512 resolution at 5
frames per second. More implementation details are intro-
duced in the supplementary material. We compare the pro-
posed method with state-of-the-art audio/video driven meth-
ods, and evaluate the effectiveness of the submodules. Video
comparisons are shown in the supplementary video.

Comparison to Audio-driven Methods
We first compare our method with Neural Voice Puppetry
(NVP) (Thies et al. 2020) and Text-based Editing (TE)
(Fried et al. 2019), which achieve state-of-the-art visual
quality by replacing and blending mouth region pixels of the
reference video. As shown in Figure 8, while achieving sim-
ilar visual quality on non-emotional speech, our method ad-
ditionally controls the upper face and head motion to match
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Figure 8: Comparison with NVP and TE. Our approach
matches the sentiment and rhythm of emotional audios.
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Figure 9: Comparison with Wav2Lip. Metrics of SyncNet
are listed below (offset/distance/confidence).

the sentiment and rhythm of emotional audios. In contrast,
NVP and TE do not have mechanisms to model sentiments
of audio.

We then compare our method with Wav2Lip (Prajwal
et al. 2020) in Figure 9, which only requires a reference
video of a few seconds. Metrics of SyncNet (Chung and Zis-
serman 2016) are listed below each image. Although their
method produces accurate lip shapes from audio, we can ob-
serve the obvious artifacts in the inner mouth. Our method
is compared to ATVGNet (Chen et al. 2019) in Figure 10,
which produces talking head videos from a single image.
Their method focuses on low resolution cropped front faces
while our method generates high-quality full head videos.
Considering their method learns identity information from
one image instead of a video, the visual quality gap is as
expected.

Comparison to Video-driven Methods
We also compare our method with Deep Video Portrait
(DVP) (Kim et al. 2018), whose original intention is expres-
sion transfer. We reproduce DVP and replace their detected
animation parameters with our generated animation param-
eters for fair comparison. Results are shown in Figure 11.
Although our method uses sparse landmarks instead of ren-
dered dense mesh, we synthesize better details on mouth and
eye regions.
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Figure 10: Comparison with ATVGNet. Metrics of SyncNet
are listed below (offset/distance/confidence).
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Figure 11: Comparison with DVP.

Evaluation of Submodules
In order to evaluateGmou andGupp, we reproduce the state-
of-the-art facial animation synthesis works (Karras et al.
2017; Pham, Wang, and Pavlovic 2017; Sadoughi and Busso
2017; Taylor et al. 2017; Cudeiro et al. 2019; Sadoughi and
Busso 2019). For fair comparison, their input features and
network structures are retained and the output is replaced
with facial expression parameters. To further evaluate the
loss terms, we additionally conduct an experiment by re-
moving the GAN loss in Equation 3 and 6 (Ours w/o GAN).
The groundtruth test data is selected from the high accuracy
Mocap dataset. For mouth parameters, we measure MSE of
mmou and lips landmark distance (LMD) on 3D face mesh.
LMD is measured on 3D face mesh instead of 2D images to
avoid the effect of head pose variation. For upper face pa-
rameters, we measure SSIM of mupp. Results are shown in
Table 1. Both Gmou and Gupp perform better than the above
methods.

To prove the superiority of Gvid, we compare Gvid

with pix2pix (Isola et al. 2017), pix2pixHD (Wang et al.
2018) and photo-realistic rendering network of DVP (de-
noted as DVPR). To evaluate the results, we apply multiple
metrics including SSIM, Fréchet Inception Distance (FID)
(Heusel et al. 2017), Video Multimethod Assessment Fu-
sion (VMAF) and Cumulative Probability of Blur Detection
(CPBD) (Narvekar and Karam 2011). For fair comparison,
we take the same space-time volume as the input of all net-
works and train them on the same datasets. Table 2 shows
the quantitative results, and Figure 12 shows the qualitative
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MSE↓ LMD↓ SSIM↑
(Karras et al. 2017) 88.75 0.0690 0.0931
(Pham, Wang, and Pavlovic 2017) 109.02 0.0742 0.0889
(Sadoughi and Busso 2017) 103.34 0.0721 0.0793
(Taylor et al. 2017) 89.59 0.0699 −
(Cudeiro et al. 2019) 91.22 0.0713 −
(Sadoughi and Busso 2019) 89.29 0.0694 −
Ours w/o GAN 89.21 0.0693 0.1879
Ours 87.24 0.0684 0.2655

Table 1: Quantitative evaluattion Gmou and Gupp.

SSIM↑ FID↓ VMAF↑ CPBD↑

ID1

pix2pix 0.9466 0.1279 62.75 0.1233
pix2pixHD 0.9455 0.02711 65.42 0.2517

DVPR 0.9371 0.02508 57.75 0.2607
Ours 0.9490 0.01452 66.68 0.2682

ID2

pix2pix 0.9026 0.04360 60.32 0.1083
pix2pixHD 0.8998 0.01883 60.37 0.2572

DVPR 0.9031 0.009456 62.27 0.2859
Ours 0.9042 0.003252 63.76 0.2860

ID3

pix2pix 0.9509 0.04631 72.15 0.2467
pix2pixHD 0.9499 0.005940 74.64 0.3615

DVPR 0.9513 0.005232 71.12 0.3642
Ours 0.9514 0.003262 74.76 0.3661

Table 2: Quantitative evaluation of Gvid.

comparison. Our approach is able to produce higher quality
of images, especially on teeth and eyes regions.

Ablation Study
We perform an ablation study to evaluate other components
of our framework, results are shown in Figure 13. We re-
move or replace several submodules to construct the input of
Gvid. The first condition removes Gldmk and directly input
animation parameters to Gvid (w/o LDMK). Due to the lack
of explicit geometry constraint, the output contains some
twisted and jittered face regions. The second condition uses
Gldmk but removes the mouth style mapping (w/o MM).
The speaker in the output video opens his mouth smaller
than in the reference video for pronunciation, preserving the
mismatched style of the actress of the Mocap dataset. The
third condition additionally replaces the sparse landmarks
with dense 3D face mesh (dense). The visual quality of the
output is visually indifferent with that of our method, indi-

GroundTruth pix2pix pix2pixHD DVPR Ours

Figure 12: Comparison of Gvid and the state-of-the-arts.

Ours w/o LDMK Ours w/o MM Ours fullDense

Figure 13: Results of different conditions.

GroundTruth L1 L1+Ladv Full

Figure 14: Results from different loss terms of Gvid.

cating that the sparse geometry constraint is good enough
for Gvid. Figure 14 shows another ablation study to evaluate
the effectiveness of each loss terms in Gvid. All loss terms
contribute to the visual quality.

User Study
We further conduct an online user study to evaluate the
quality of the output videos. We compare our method with
groundtruth videos (GT), ours with extracted mupp and
mhed from reference videos instead of generated (Ours w/o
E&H), DVP, Wav2Lip. We generate 5 sentences of the same
speaker in the same resolution for each method, to obtain
5 × 5 = 25 video clips. The audios are extracted from the
reference video. 60 participants are asked to rate the realism
of each video clip. Results are listed in Table 3 (60×5 = 300
ratings for each method). Only 91% of GT are judged as
real, indicating that participants are overcritical when try-
ing to detect synthesized videos. Even with the comparison
of real videos, our results are judged as real in 52% of the
cases. our method outperforms all compared methods signif-
icantly (p < 0.001) in both mean score and ’judged as real’
proportion. Results of ’Ours w/o E&H’ contain expression
and head motion that do not match the speech sentiment and
rhythm. The difference between ’Ours’ and ’Ours w/o E&H’
validates the effectiveness of our generated emotional upper
face expressions and rhythmic head motions. The main rea-
son of lower scores of DVP and Wav2Lip may be the arti-
facts in the inner mouth.

Limitations
Our work has several limitations. The proposed method
takes advantage of a high-quality Mocap dataset. Our ap-
proach is restricted to produce speakers uttering in English
or Chinese, because we have only captured Mocap datasets
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1 2 3 4 5 Mean ’real’(4+5)
GT 0% 1% 8% 37% 54% 4.45 91.3%

Wav2Lip 11% 29% 28% 30% 3% 2.85 32.3%
DVP 11% 29% 42% 17% 1% 2.67 18.0%

Ours w/o E&H 3% 22% 43% 26% 7% 3.13 33.0%
Ours 1% 9% 38% 37% 15% 3.56 51.7%

Table 3: Results of the user study. Participants are asked to
rate the videos by 1-completely fake, 2-fake, 3-uncertain, 4-
real, 5-completely real. Percentage numbers are rounded.

（a） （b） （c） （d）

Figure 15: Failure cases from extreme parameters, including
(a) upper facial expression; (b) mouth expression; (c) head
rotation; (d) head translation.

of the two languages. The amount of Mocap data is also in-
sufficient to capture more detailed correspondences of mo-
tions and semantic and syntactic structures of text input. In
the near future, we will record Mocap data of more lan-
guages and release them for the research purpose. Our ren-
dering network cannot tackle with dynamic background and
complex upper torso movements, such as shrugging, swing-
ing arms, hunching back, extreme head poses an so on. The
generated videos will degenerate if the expected expression
or head motion is beyond the scope of the reference video.
The effect of emotion is ignored on the generated lip and
head animations. Figure 15 shows some failure cases. In the
future, we will be devoted to addressing the above problems.

Conclusion
This paper presents a text-based talking-head video gener-
ation framework. The synthesized video displays the emo-
tional full facial expressions, rhythmic head motions, the
upper torso movements, and the background. The genera-
tion framework can be adapted to a new speaker with 5
minutes of his/her reference video. Our method is evalu-
ated through a series of experiments, including qualitative
evaluation and quantitative evaluation. The evaluation re-
sults show that our method can generate high-quality photo-
realistic talking-head videos and outperforms the state-of-
the-art. To the best of our knowledge, our work is the first
to produce full talking-head videos with emotional facial
expressions and rhythmic head movements from the time-
aligned text representation.

Ethical Consideration
To ensure proper use, we firmly require that any result cre-
ated using our algorithm must be marked as synthetic with
watermarks. As part of our responsibility, for the positive
applications, we intend to share our dataset and source code
so that it can not only encourage efforts in detecting manip-

ulated video content but also prevent the abuse. Our text-
based talking head generation work can contribute to many
positive applications, and we encourage further discussions
and researches regarding the fair use of synthetic content.

Appendix
3DMM Fitting
We select Nk = 30 keyframes and aim to find the optimal
variable set X = (s,mhed

1 , e1, ...,m
hed
Nk

, eNk
), where mhed

k
and ek are the pose and expression parameters of the k-th
keyframe. We focus on the Nl = 68 facial landmark consis-
tency by minimizing the following energy function:

F (X) =

Nk∑
k=1

(

Nl∑
i=1

Dis(pk,i, P (U(s, ek)(i),mhed
k ))

+λe ‖ek‖22) + λs ‖s‖22 ,

(12)

where pk,i is the coordinate of the i-th landmark detected
from the k-th keyframe (Baltrusaitis et al. 2018), and U (i)

is the i-th 3D landmark on mesh U . P (U (i),mhed
k ) projects

U (i) with pose mhed
k into image coordinates. Dis(·, ·) mea-

sures the distance of the projected mesh landmark and the
detected image landmark. The regularization weights are set
to λe = 10−4 and λs = 10−4. We employ the Levenberg-
Marquard algorithm for the optimization.

Network Structure and Training
The size of V ph is 41 × 128, where 41 is the number of
phonemes and 128 is the phoneme embedding size. The row
vectors of Eph ∈ RT×128 are picked up from V ph accord-
ing to the phoneme indexes. The size of V txt is 1859× 128,
where 1859 means 1858 words and one ’unknown’ flag for
all other words, and 128 is the word embedding size. The
size of V emo is 4 × 128. Each row of V emo represents
an emotion embedding. Nrend

face and Nrend
mask share the first

3 residual blocks. The top layer of Nrend
face /Nrend

clr is acti-
vated by tanh and that of Nrend

mask is done by sigmoid. The
loss weights are set to λmou = 50, λupp = 100, α = 10,
β = 100, and γ = 100. We use the Adam (Kingma and Ba
2014) optimizer for all networks. For training Gmou, Gupp

and Ghed, we set β1 = 0.5, β2 = 0.99, ε = 10−8, batch size
of 32, and set the initial learning rate as 0.0005 for the gener-
ators and 0.00001 for the discriminators. The learning rates
of Gmou stay fixed in the first 400 epoches and linearly de-
cay to zero within another 400 epoches. The learning rates
of Gupp and Ghed keep unchanged in the first 50 epoches
and linearly decay to zero within another 50 epoches. We
randomly select 1 ∼ 3 words as ’unknown’ in each sentence
to improve the performance from limited training data. For
training Gvid, we set β1 = 0.5, β2 = 0.999, ε = 10−8,
batch size of 3, and initial learning rate of 0.0002 with linear
decay to 0.0001 within 50 epochs.
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Fried, O.; Tewari, A.; Zollhöfer, M.; Finkelstein, A.; Shecht-
man, E.; Goldman, D. B.; Genova, K.; Jin, Z.; Theobalt, C.;
and Agrawala, M. 2019. Text-based editing of talking-head
video. TOG 38(4): 1–14.
Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.;
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NeurIPS, 2672–2680.
Greenwood, D.; Matthews, I.; and Laycock, S. D. 2018.
Joint Learning of Facial Expression and Head Pose from
Speech. In Interspeech, 2484–2488.
Ha, S.; Kersner, M.; Kim, B.; Seo, S.; and Kim, D. 2020.
MarioNETte: Few-shot Face Reenactment Preserving Iden-
tity of Unseen Targets. In AAAI, volume 34, 10893–10900.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In NeurIPS, 6626–
6637.
Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.
Isola, P.; Zhu, J.; Zhou, T.; and Efros, A. A. 2017. Image-to-
image translation with conditional adversarial networks. In
CVPR, 1125–1134.

Johnson, J.; Alahi, A.; and Fei-Fei, L. 2016. Perceptual
losses for real-time style transfer and super-resolution. In
ECCV, 694–711. Springer.

Karras, T.; Aila, T.; Laine, S.; Herva, A.; and Lehtinen, J.
2017. Audio-driven facial animation by joint end-to-end
learning of pose and emotion. TOG 36(4): 94.
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