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Abstract

Although the recent image-based 3D object detection meth-
ods using Pseudo-LiDAR representation have shown great
capabilities, a notable gap in efficiency and accuracy still
exist compared with LiDAR-based methods. Besides, over-
reliance on the stand-alone depth estimator, requiring a large
number of pixel-wise annotations in the training stage and
more computation in the inferencing stage, limits the scal-
ing application in the real world. In this paper, we propose
an efficient and accurate 3D object detection method from
stereo images, named RTS3D. Different from the 3D occu-
pancy space in the Pseudo-LiDAR similar methods, we de-
sign a novel 4D feature-consistent embedding (FCE) space
as the intermediate representation of the 3D scene with-
out depth supervision. The FCE space encodes the object’s
structural and semantic information by exploring the multi-
scale feature consistency warped from stereo pair. Further-
more, a semantic-guided RBF (Radial Basis Function) and
a structure-aware attention module are devised to reduce the
influence of FCE space noise without instance mask supervi-
sion. Experiments on the KITTI benchmark show that RTS3D
is the first true real-time system (FPS>24) for stereo image
3D detection meanwhile achieves 10% improvement in av-
erage precision comparing with the previous state-of-the-art
method.

Introduction
3D object detection serves as an important role in many
applications, such as augmented reality, robotics, and au-
tonomous driving. Although recently developed LiDAR-
based detection algorithms (Shi et al. 2020; He et al. 2020)
show some excellent performance, the high price, low ser-
vice life, and discordant appearance of the LiDAR system
restrict its further development in practical applications. Al-
ternatively, the solutions relying on cameras are very com-
petitive for its low-cost, low-power consumption, and high
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Figure 1: Comparisons between occupancy space and pro-
posed FCE space: (a) execute a depth generator to encode
the structure of the object in a 3D occupancy space, and use
instance mask to reduce the influence of noise in non-target
areas. By contrast, our proposed RTS3D, as shown in (b), en-
code the structure of the object by estimate the consistency
between warped left and right images for each 3D locations,
and explicitly model the semantic cues for noise filtering,
yielding superior accuracy and efficiency without additional
label supervision.

flexibility in development. Therefore, it is grabbing much
more attention in computer communities recently (Chen
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et al. 2020; Sun et al. 2020; Li, Chen, and Shen 2019).
Image-based methods have two main tasks: 1) to find an

appropriate and effective representation to recover the geo-
metric structure of a 3D scene, and 2) to eliminate the in-
terference of non-target areas. For the first task, Wang et
al. have proposed a Pseudo-LiDAR representation (Wang
et al. 2019), which expand 3D object detection from the 2D
frontal view space to the 3D occupancy space. Recent meth-
ods try to tackle the second task by designing an instance-
level Pseudo-LiDAR generator (Pon et al. 2019; Xu et al.
2020; Sun et al. 2020), which only estimate the depth map of
the objects of interest. However, all these approaches heavily
rely on extra sub-networks to perform CAD model genera-
tion (Sun et al. 2020), instance segmentation (Xu et al. 2020)
or depth map estimation (Sun et al. 2020; Wang et al. 2019;
Xu et al. 2020), as shown in Fig. 1 a. The additional pixel-
wise labels for supervised learning required in these sub-
networks become the biggest obstacle in collecting labor-
intensive annotations, make it impractical in many real ap-
plication scenarios. Moreover, reliance on stand-alone sub-
networks makes an inherent disconnection in transmitting
gradient while consuming plenty of computing resources in
the training and inferring stages, limiting upper-bound of
the detection accuracy and speed. Here, we tackle these two
tasks without relying on additional labels while achieving
true real-time detection with competitive accuracy against
the state-of-the-art method.

The main contribution of our approach is a novel 4D inter-
mediate representation of 3D object structure, named FCE
space. This is different from the previous 3D occupancy
space in Pseudo-LiDAR similar methods that represent ob-
ject structure by estimating whether a location is occupied
or not, as shown in Fig. 1 a). Here, we encode the structure
of underlying objects by the feature consistency between
warped left and right images for each 3D locations in la-
tent space, as shown in Fig. 1 b. The rationalization behind
the proposed representation comes from a typical assump-
tion that the intensity of light projected onto the stereo im-
age from the visible surface of a 3D object should be more
consistent than from the non-object surface. The same as-
sumption is also used in the plane-sweeping method (Collins
1996) to estimate the depth map, thus proving that the con-
sistency space can encode structural information. We aim to
establish such a consistency space and directly detect objects
on it.

However, establishing FCE space is complex in the com-
putation of the entire camera visual range, and this unsuper-
vised space contains an enormous amount of noise due to
the interference of non-Lambert properties, the textureless
region, and nontarget surface.

We address these issues in four steps. First, we only com-
pute feature consistency in the latent space of the target ob-
ject. The initial latent space is predicted by monocular 3D
detection at a high speed. Later it would be iteratively refined
by the detection results of FCE space. Second, we com-
pute the consistency from the multi-scale feature to make it
more reliable in textureless and reflective regions. Predicting
the required consistency only need local neighborhood, so
a very simple convolutional neural network(e.g. ResNet18

(He et al. 2016)) is adopted to extract the multi-scale fea-
tures. Third, we propose to encode the semantic information
in an RBF to reduce the interference of the nontarget surface.
This semantic-guided RBF explicitly modeling the semantic
cues to 3D space is easier to converge than implicit learning
possible relationships. Fourth, we propose a structure-aware
attention (StrAA) module to further filter the spatial noise
and capture local structure at a smaller computational cost
than 3D CNN and PointNet++(Qi et al. 2017b).

To summarize, Our contributions are as follows: 1.) An
image-based 3D object detection approach predicts the 3D
box of objects more efficiently and accurately. 2.) A novel
intermediate representation of object structure that bridges
the performance gap between LiDAR-based and image-
based methods without additional label supervision. 3.) A
semantic-guided RBF and a StrAA module to reduce the in-
terference of noise and optimize the characterization of lo-
cal structure in the FCE space. 4.) Evaluation on the popular
KITTI dataset shows that the proposed method is the first
true real-time 3D detection approach using only images and
achieves comparable detection accuracy against the other
competitors.

Related Work
Monocular 3D Object Detection. Due to the lack of depth,
3D object detection is difficult given only a monocular
image. A common theme of these methods is to employ
sub-networks to generate extra 2.5D feature, such as depth
map(Xu and Chen 2018; Ma et al. 2019), object mask(Chen
et al. 2016), or CAD model(Chabot et al. 2017). Recent
monocular-only works attempt to apply the geometry con-
strain as the post-processing (Mousavian et al. 2017; Li
et al. 2020) or embedding knowledge to aid in detection.
These methods explicitly model the relationship between
3D location and 2D feature, which enables them to be im-
proved in both accuracy and running speed. However, their
promised accuracy still not good enough comparing stereo
approaches.
Stereo-based 3D Object Detection. Like monocular ap-
proaches, stereo methods can also be roughly divided into
two ways by the type of training data. One is Pseudo-LiDAR
similar pipeline. These methods (Wang et al. 2019; You et al.
2019; Chen et al. 2020) first use a SOTA disparity predic-
tion with stereo processing to generate a depth map follow-
ing to convert this depth map to occupancy space. Then ap-
ply a LiDAR-based framework (Shi, Wang, and Li 2019;
Qi et al. 2017a) to detect object. In order to save compu-
tation and avoid streaking noise caused by non-target re-
gions, the recent method aims to detect object only in poten-
tial area by introducing the instance mask (Sun et al. 2020;
Pon et al. 2019; Xu et al. 2020; Dong et al. 2020). Intu-
itively, these methods containing more prior information,
from extra-label supervision, would certainly improve the
performance of detection. However, reliance on additional
sub-networks and labels also leads to more time consump-
tion and labor-intensive work. Another one, therefore, tries
to fully explore the potency of stereo images. Stereo R-CNN
(Li, Chen, and Shen 2019) associate left and right 2D box
to generate rough 3D box that are later refined by dense
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Figure 2: Overview of RTS3D architecture. Stereo images are first passed through a simple siamese network to generate the
multi-scale feature. In parallel, a coarse latent space is predicted by fast monocular 3D detection and then is split to a regular
grid. The FCE space is generated by warping the left and right multi-scale features to each location in latent space after the
semantic-guided RBF. The 3D detector estimates the 3D box from the FCE space as the final output or generates a more refined
hidden space for the next iteration.

3D box alignment. TLNet (Qin, Wang, and Lu 2019) enu-
merate a multitude of 3D anchors and then construct object-
level correspondences to filter out dreadful proposals. How-
ever, these methods perform a lower accuracy and running
speed comparing with the Pseudo-liDAR similar methods.
By comparison, the proposed method has the fastest run-
ning and achieve a competitive accuracy comparing with the
Pseudo-liDAR without extra labels help.

Proposed Method
Given a stereo pair (IL, IR), the goal is to estimate
the 3D property of object typical represented by B =
(X,Y, Z,W,H,L, θ), which denotes the 3D center posi-
tion, width, height, length, and horizontal orientation respec-
tively. Fig. 2 shows an overview of the proposed framework.
It comprises four stages: 1) A very fast monocular 3D detec-
tor is leveraged to obtain initial latent space. 2) Multi-scale
features are back-projected onto the grid of initial latent
space to construct FCE space 3) A semantic-guided RBF
and structure-aware attention module reduce the influence
of FCE space noise and optimize the characterization of lo-
cal structure. 4) A variant of the PointNet to predict the final
3D box with its confidence or generate more specific latent
space for the next iteration.

Latent Space Generation. Instead of creating an entire
viewable FCE space, we only computer the feature consis-
tency in latent space containing the object of interest. Ben-
efiting from the recent development of monocular 3D de-
tection, we propose to employ an efficient one of them to
generate an initial coarse cuboid Bt0 as the guidance of la-

tent space. Later this coarse cuboid can be iteratively refined
as Bt+1 by the detection results of established FCE space.
Here, we choose two monocular 3D object detection frame-
works for the trade-off between speed and accuracy: KM3D-
Net and CenterNet (Zhou, Wang, and Krähenbühl 2019).
Both structures are one-stage 3D detectors and do not rely
on extra annotation for the training.

Multi-scale Texture Cues Generation. Inspired by tradi-
tional stereo matching methods (Zhang et al. 2014), which
process the correspondence by texture cues across multi-
ple scales, we generate the consistency of a 3D location
from pair images by extracting the hierarchical contextual
information of low-level features. To ensure the real-time
performance,the simple convolutional encoding structures,
ResNet18(He et al. 2016), is adopted to output the multi-
feature {F s

l r}Ss with the downsampling stride s = 2, 4, 8.
However, relying heavily on texture cues will unavoidably
introduce noise from non-target objects, such as the ground
or other objects. To overcome this issue, we add one high-
level feature output with downsampling stride /32 to predict
semantic cues. Nevertheless, without the instance mask and
depth map annotation supervision, implicit fusion of this in-
formation makes the model difficult to converge. We, there-
fore, design a semantic-guided RBF to explicitly encode two
cues for noise filtering.

Building the Feature-Consistency Embedding Space.
Given the latent space, texture cues and semantic cues on ob-
ject of interest, we convert them to the FCE space to encode
geometric structure. We first split the latent space to regu-
lar grid with resolution ratio resl, which represent the latent
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space as G = {gi = [xi, yi, zi] ∈ R3}i=1...resl×resl×resl.
After that, we project a voxel gi into feature space xsi =
[usi , v

s
i , 1]T by using camera intrinsics K, extrinsic param-

eters T , consisting of a rotation matrix R and a translation
matrix t of the left and right camera, and coordinate affine
transformation hs of the original image into the multi-scale
features:

l rxsi = hsKl r

R3×3
l r t1×3

l r

0T 1

 gi (1)

where l r indicates it belongs to the left or right image.
The purpose of introducing affine transformation matrix hs
without uniform zooming parameters factor is to reduce the
quantization error caused by different downsampling stride
of original image scaling. Then the consistency of the 3D
voxel gi from the left and right image can be defined as:

Cs
i = f

(
F̂l(

lxi), F̂r( rxi)
)
, F̂l = Cat

[
F̂ s
l · · ·

]8
s=2

(2)

Here, Cat means concatenation. Note that the projected co-
ordinates xis are continuous values and the feature vectors
are all integer coordinates. We, therefore, use the differen-
tiable bilinear sampling mechanism F̂ inspired by spatial
transformer networks (Jaderberg et al. 2015). f is a pair
function of measures distance that represents the similar-
ity of two signals. There are many existing choices for f ,
such as absolute difference, gaussian distance, cosine corre-
lation, and concatenation. However, The first three methods
are difficult to encode semantic cues and the uncertainty of
each dimension. Concatenation implicitly encodes the un-
certainty, but it is difficult to learn without the supervision
of depth maps. We propose a novel semantic-guided RBF to
explore pair signal relationship by combine texture cues and
semantic cues:

Ĉs
i = RBF (F̂l(

lxi)− F̂r( rxi)|αi) (3)

RBF denotes Radial Basis Function with parameters α
that is normally the variance of a multi-scale feature in
a given coordinate of voxel. Here, we consider αi =
1
2

(
F̂ 32
l ( lx32i ) + F̂ 32

r ( rx32i )
)

in the form of learnable pa-
rameters from semantic cues. By doing this, α will be re-
duced in unreliable channels and non-target location in the
image feature.

3D Bounding Box Prediction. After generating the FCE
space in the grid form, the common solution is to employ 3D
convolution networks (3DCNNs) to extract local features for
the estimation of 3D bounding. However, we set a very small
resolution (min resl = 10 in our experiments) for the trade-
off between accuracy and speed. This makes it difficult to
determine the size of the 3D convolution kernel. For exam-
ple, a large convolution kernel will introduce a lot of padding
noise, while a small convolution kernel will increase compu-
tation but it is not obvious to extract local features. Here, we
design a variant of Point-Net (Qi et al. 2016) with a StrAA
module for 3D box prediction and confidence estimation, as
shown in Fig.3
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Figure 3: Overview of the proposed 3D object detector.

Structure-aware attention module. We first map the con-
sistency of each voxel in FCE space to higher-dimensional
vectorGh ∈ R1024×resl×resl×resl by point-wise multi-layer
perceptron (MLP). Although the semantic-guided RBF can
reduce the interference of non-target area noise, the FCE
space still has a lot of spatial noise because the vehicle is
a typical Non-Lambert. To address this issue, we present
a StrAA module to reduce the interference of unstructured
spatial noise. Many recent LiDAR-based methods (Beltran
et al. 2018) can detect 3D objects on a bird‘s eye view
(BEV), indicating that the top view contains the structural
information needed for detection. Therefore, to determine
if a particular point belongs to the structure of the object,
we can search the boundary of the object on BEV from the
average value of the height direction. Specifically, StrAA
first compute the average of Gh in the height dimension
as Ga ∈ R1024×resl×resl, and then apply a standard 2D
convolution with 3 × 3 kernel size and sigmoid to cap-
ture local structures. The output Gm ∈ R1024×resl×resl

also can be regard as the attention map, inspired by self-
attention (Vaswani et al. 2017). We obtain the final output
Ga ∈ R1024×resl×resl×resl by element-wise multiplication
and summation. The overall process can be summarized as:

Ga = σ
(
Conv3×3 (Avg(Gh, dim = 2))

)
⊗Gh +Gh

(4)
where ⊗ denotes element-wise multiplication. During mul-
tiplication, the attention map Gm are broadcasted (copied)
along the object hight dimension. After StrAA module, the
Ga are fed into the symmetric function following (Qi et al.
2016) to predict 3D box and its confidence.
Losses for box prediction. The box prediction head re-
turns for each latent space with residual regression ∆B =
(∆X,∆Y,∆Z,∆W,∆H,∆L,∆θ) and its confidence PB .
Although these regression terms are independent, they are
intrinsically related to the final box prediction. To sidestep-
ping the issue of finding a proper weighting of each re-
gression terms, we follow the disentangling transforma-
tion (Simonelli et al. 2019) to decompose ∆B into 3 groups
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Method Extra Time IoU > 0.5 [val] IoU > 0.7 [val/test]
Easy Moderate Hard Easy Moderate Hard

3DOP Mask - 46.0 34.6 30.1 6.6 / - 5.1 / - 4.1 / -
MLF Depth - - 47.4 - - / - 9.8 / - - / -

RT3DStereo Depth+Mask 92ms - - - - / 28.5 - / 24.1 - / 20.32
PL: F-PointNet Depth+Flow 670ms 89.5 75.5 66.3 59.4 / 39.7 39.8 / 26.7 33.5 / 22.3

PL: AVOD Depth+Flow 510ms 88.5 76.4 61.2 61.9 / 55.40 45.3 / 37.17 39.0 / 31.37
PL++: AVOD Depth+Flow 500ms 89.0 77.8 69.1 63.2 / - 46.8 / - 39.8 / -

PL++: P-RCNN Depth+Flow 510ms 88.0 73.7 67.8 62.3 / - 44.9 / - 41.6 / -
OC-Stereo Depth+Mask 350ms 89.65 80.03 70.34 64.07 / 55.15 48.34 / 37.60 40.39 / 30.25
ZoomNet Depth+Mask - 90.44 79.82 70.47 62.96 / 55.98 50.47 / 38.64 43.63 / 30.97

Disp R-CNN Depth+Mask+CAD 425ms 90.47 79.76 69.71 64.29 / 59.58 47.73 / 39.34 40.11 / 31.99
TL-Net None - 59.51 43.71 37.99 18.15 / - 14.26 / - 13.72 / -

Stereo RCNN None 417ms 85.84 66.28 57.24 54.11 / 49.23 36.69 / 34.05 31.07 / 28.39
Ours(iter=0) None 30.2ms 89.46 77.30 62.36 60.33 / 54.12 44.48 / 34.59 37.99 / 28.91

Ours None 39.4ms 90.34 79.67 70.29 64.76 / 58.51 46.70 / 37.38 39.27 / 31.12
(iter=1) (-0.13) (-0.36) (-0.18) (+0.47)/(-1.01) (-3.77)/(-1.96) (-4.36)/(-0.87)

Table 1: Comparison 3D detection methods for car category, evaluated by metric AP3D on val / test set on KITTI. Mask
means instance mask or segmantic mask.

(dimensions φ1, position φ2, and orientation φ3) and unify
the loss by the distance Ldis of eight corners and one center
between prediction and ground-truth. In short, the unify loss
is computed as:

Ldis(φ,−φ) =
1

9

9∑
j=1

‖π(∆B(φ,−φ) +Bini), π(Bgt)‖2

Lreg =
3∑

m=1

Ldis(φm, φ
gt
−m)

(5)
Here, π : R7 → R3×9 transform property of box to 3D
coordinate of its eight corners and one center. φm denotes
the sub-vector corresponding to the mth group, and φgt−m
denotes the sub-vector in ground truth corresponding to all
but the mth group.

The confidence classification loss Lcls aims to sort the
quality of the target box. The label can be defined as:

p̂ =

{
1 IoU3D > 0.75
0 IoU3D < 0.25

2IoU3D − 0.5 otherwise
(6)

where IoU3D is the 3D intersection over union between pre-
diction ∆B + Bini and ground-truth Bgt. We then use the
cross entropy loss to supervise the the predicted confidence.
The overall training objective is:

L = Lreg + ω(t)Lcls (7)

Since the early training was unstable and the IoU3D was
generally small, the time function ω(t) = exp[−5(1 −
t/100)2] was used to balance the weight of the two losses.

Experimental
Implementation Details
We evaluate the proposed approach on the KITTI 3D detec-
tion benchmark, which consists of 7481 training stereo im-
ages and 7518 test stereo images. We follow the protocol in

(Wang et al. 2019; Sun et al. 2020; Pon et al. 2019) to split
the training set as train set (3712 images) and val set re-
spectively, and comprehensively compare proposed method
with others on val set as well as test set. We report two of-
ficial evaluation metrics in KITTI: average precision for 3D
detection (AP3D) and bird’s eye view detection (APBEV ).
We train our model on the machine E5-2678 CPU with two
2080Ti GPUs and apply Adam optimizer with an initial
learning rate of 0.000125. We then train our model for 90
epochs and reduce the learning rate of 10× at 80 epochs. Fi-
nally, train set training takes 13 hours and the overall train-
ing set consumes 27 hours.

Establishing the FCE space needs the guidance of a coarse
3D box generated by the monocular-based methods. How-
ever, aligning the coarse 3D box to the ground truth is diffi-
cult. We, therefore, disturb the ground truth and then let our
model predict this noise. We empirical set uniform noise in
range L = [−1.5, 1.5], W = [−1.5, 1.5], H = [−1.5, 1.5],
θ = [−0.6, 0.6], X = [−2, 2], y = [−0.8, 0.8] and Z =
[−3, 3]. 4.

Comparison with Other Methods
To fully evaluate the performance of the proposed method,
we conduct our experiments in three regimes: easy, mod-
erate, and hard, according to the occlusion and truncation
levels. In addition to average precision, we also provide a
comparison of runtime that is very important to the safety of
autonomous driving or mobile robots. The results are shown
in Table.1 and Table. 2, we default use KM3D-Net to gener-
ate the initial latent space. We can observe that our RTS3D is
the fastest running speed while our accuracy outperforms all
image-only methods. Specifically, without extra labels help-
ing, RTS3D is 10 times faster than the existing SOTA work
Stereo RCNN while achieves 10% improvement in AP3D

andAPBEV for the moderate setting accuracy. Among other
methods, the fastest is RT3DStereo, which requires depth
and semantic masks for detection, while RTS3D only con-
sumes 1/3 of its runtime, and the accuracy in the easy set
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Method Accelerator FPS IoU > 0.5 [val] IoU > 0.7 [val/test]
Easy Moderate Hard Easy Moderate Hard

3DOP - - 55.0 41.3 34.6 12.6 / - 9.5 / - 7.6 / -
MLF - - - 53.7 - - / - 19.5 / - - / -

RT3DStereo TITAN X 11.0 25.19 18.20 15.52 - / 59.32 - / 49.48 - / 43.16
PL: F-PointNet - 1.5 89.8 77.6 68.2 72.8 / 55.0 51.8 / 38.7 44.0 / 32.9

PL: AVOD - 1.5 76.8 65.1 56.6 60.7 / - 39.2 / - 37.0 / -
PL++: AVOD - 2.0 89.0 77.5 68.7 74.9 / 66.83 56.8 / 47.20 49.0 / 40.30
PL++: PIXOR - 2.0 89.9 75.2 67.3 79.7 / 70.7 61.1 / 48.3 54.5 / 41.0

PL++: P-RCNN - 2.0 88.4 76.6 69.0 73.4 / - 56.0 / - 52.7 / -
OC-Stereo Titan Xp 2.9 90.01 80.63 71.06 77.66 / 68.89 65.95 / 51.47 51.20 / 42.97
ZoomNet - - 90.62 88.40 71.44 78.68 / 72.94 66.19 / 54.91 57.60 / 44.14

Disp R-CNN - 2.4 90.67 80.45 71.03 77.63 / 74.07 64.38 / 52.34 50.68 / 43.77
TL-Net - - 62.46 45.99 41.92 29.22 / - 21.88 / - 18.83 / -

Stereo RCNN - 2.4 87.13 74.11 58.93 68.50 / 61.67 48.30 / 43.87 41.47 / 36.44
Ours(iter=0) 2080Ti 33.1 89.88 78.05 69.17 73.43 / 66.79 56.52 / 45.22 48.29 / 38.48

Ours 2080Ti 25.4 90.58 80.72 71.41 77.50 /(72.17) 58.65 / 51.79 50.14 / 43.19
(iter=1) (-0.09) (-7.68) (-0.03) (-1.18)/ (-1.9) (-7.54)/(-3.13) (-7.14)/(-0.95)

Table 2: Comparison 3D detection methods for car category, evaluated by metric APBEV on val / test set on KITTI.
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Figure 4: Overview of the proposed 3D object detector. In BEV, Ground truth boxes are in green, stereo predicted boxes in blue
and monocular predicted boxes in gray.

is increased by 105%. Moreover, compared with Pseudo-
LiDAR, Pseudo-LiDAR++, DispRCNN, ZoomNet, and OC-
Stereo, each of them needs to establish a 3D occupancy
space or instance occupancy space with the help of a depth
map, instance mask, or other labels, we can still obtain com-
petitive detection accuracy but with minimal time consump-
tion. We visualize some qualitative results of object detec-
tion in Fig.

Running-time Analysis

In the case of a resolution resl = 20, our RTS3D takes
5.6ms for the multi-scale feature extraction from left and
right image, 21ms for the latent space generation, 7.6ms
for the FCE space building, and 1.6ms for the 3D detec-
tion from the FCE space. The latent space generation and
the multi-scale feature extraction can be executed in parallel
and therefore the overall runtime is 30.2ms with iteration=1,
Note that these are the mean runtime over the val set and can

vary accordingly the number of the objects in stereo images.

Ablation Study

In this section, we perform comprehensive ablation experi-
ments to validate the contributions of different components
in our approach. All experiments are conducted on the train
split and evaluated on the val split with the car category.
If not specified, resl for all experiments is set to 10 and
interation for 1.
Feature-Consistency Embedding Space VS Occupancy
Space. For comparing the FCE space and occupancy space,
we first generate the 3D occupancy space by using the
PSMNet (Chang and Chen 2018). We train the PSMNet on
KITTI stereo ground truth to generate depth maps and trans-
form this depth maps to 3D points cloud like most previous
Pseudo-LiDAR similar works do (Wang et al. 2019; You
et al. 2019). We then use 3D points in the latent space to
train our 3D detectors. In this case, the StrAA module is not
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suitable for dealing with irregular point clouds. We, there-
fore, removed the StrAA module in all tests for a fair com-
parison. In addition, for the fairness of the time comparison
experiment, The number of the input point cloud are sam-
pled (Vitter 1984) to 1000 which is the same number as the
voxel of our FCE space. The results are shown in Table 3.
Only PSMNet alone is more computationally intensive than
all pipeline of our method and it also need the supervision
of ground truth that is usually generated by expensive Li-
DAR system. Finally, using our FCE space obtains strong
improvement in both accuracy and running speed.

Config Runtime Set AP0.7
bev AP0.7

3d

Occupancy Space 418.4ms
Easy 52.46 34.93
Mode 38.87 23.53
Hard 33.27 21.15

FCE Space 39.4ms
Easy 74.12 60.80
Mode 56.08 43.54
Hard 47.33 35.70

FCE Space with StrAA 39.4ms
Easy 76.29 62.92
Mode 57.58 45.18
Hard 48.99 38.13

Table 3: Comparisons of feature-consistency embedding
space and occupancy space.

Config Method AP0.7
bev AP0.7

3d

Channel-reducing

C-MLP 15.74 11.21
Cosine Correlation 36.38 21.73

Gaussion 38.87 23.53
RBF with MLP 39.39 21.15

Channel-keeping
C-MLP 20.62 13.03

Absolute Difference 53.08 39.54
RBF 57.18 45.18

Table 4: Ablative analysis of the different methods for gener-
ating the feature-consistency space. Only the moderate sets
are reported.C-MLP is short for Concatenation with MLP

en Structure-Aware Attention Module. We further evalu-
ate the effect of the proposed StrAA module. The results are
shown in Table 3. Without bells and whistles, we already
outperform most of the image-based methods in both accu-
racy and running speed. StrAA module further enhances our
method performance by several points in a slight computa-
tion increasing.
Semantic-guided RBF. Table 4 compares different types of
generating feature-consistency space. With semantic-guided
RBF, the proposed method obtains a better detection accu-
racy than the absolute difference. In channel-keeping meth-
ods, concatenation has the worst results. A possible rea-
son is that the implicit model is difficult to learn effec-
tive knowledge without point-wise supervision. Channel-
reducing methods average the channel for forcing the model
to predict the occupancy of a point. All these methods have
a poor performance, which also demonstrates the advantage

Config Data Set AP0.5
bev AP0.5

3d

CenterNet

Mono
Easy 27.22 13.53
Mode 22.91 10.37
Hard 19.52 10.56

Stero
Easy 90.03 89.32
Mode 77.69 78.18
Hard 70.39 68.13

KMNet

Mono
Easy 53.77 47.23
Mode 40.58 34.12
Hard 34.79 31.51

Stero
Easy 90.44 90.27
Mode 79.98 78.27
Hard 70.75 69.06

Table 5: Ablative analysis of different methods to generate
initial latent space.

of learning from the original image feature space.
Resolution of Feature-Consistency Embedding Space.
We examine the accuracy and running speed of our method
with respect to the resolution of the FCE space. The results
are shown in Fig. 5. We observe that the accuracy will in-
crease as the resolution of the FCE space increase until it
reaches 20. A larger resolution will bring more details, but
a small batchsize will also cause training instability. It is
worth noting that even with a very small resolution, we still
obtain a relatively good detection accuracy and have ex-
tremely fast running speed.
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Figure 5: Comparison of different resolutions with their run-
time.

Different Monocular 3D Detectors. We compare the im-
pact of different monocular detectors on the generation of
initial latent space. As shown in Table 5, even if the accuracy
of the monocular detection method varies greatly, the final
stereo accuracy is similar. This is likely due to two reasons.
First, we use the iterative method to continuously modify
this initial latent space. Second, RTS3D is trained on pseudo
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data, so it is not sensitive to the initial latent space generated
by different monocular methods.

60.06
62.92 62.37 61.77

43.54 45.18 45.42 45.58

37.01 38.13 38.58 38.79

0

10

20

30

40

50

60

70

0

10

20

30

40

50

60

70

0 1 2 3
Iteration

R
u

n
ti

m
e

 \
m

s

Figure 6: Ablative Analysis of Iterations.

Ablative Analysis of Iterations. We also compare the ef-
fects of different iterations on accuracy and runtime, as
shown in Fig. 6. When iterations exceed 1, the effect is not
significantly improved, but the running time will be greatly
increased. Therefore, the number of iterations in our experi-
ment is default set as 1 for the best speed-accuracy trade-off.

Conclusion and Discussion
We present a novel framework to perform faster and more
accurate 3D object detection using stereo images. We de-
sign a novel 3D intermediate representation space which
can encode the structural and semantic information of object
without relying on additional annotation. We then propose a
semantic-guided RBF and structure-aware attention module
for reducing the influence of space noise. Extensive experi-
ments show that our model achieves an unprecedented run-
ning speed while competing with the most advanced meth-
ods for accuracy.

Exploring the intermediate representation of a 3D scene
has always been a meaningful thing. Pseudo-LiDAR trans-
forms a front-view image with estimated depth map to
3D occupancy representation, bridging the gap between the
LiDAR- and image-based detection accuracy. We propose a
4D feature-consistency representation to further bridge this
gap and greatly improve the detection speed. We believe that
the rapid progress in speed can not only greatly ensure the
safety of autonomous driving, but also can further enhance
accuracy in additional ways. One of the most straightfor-
ward methods conceivable is to smooth the detection results
between adjacent frames. This is what we will do in future
work.
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