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Abstract
Unsupervised domain adaption (UDA) is a promising solu-
tion to enhance the generalization ability of a model from a
source domain to a target domain without manually annotat-
ing labels for the target data. Recent works in cross-domain
object detection mostly resort to adversarial feature adap-
tation to match the marginal distributions of two domains.
However, perfect feature alignment is hard to achieve and
what’s more is likely to cause negative transfer due to the
high complexity of object detection. In this paper, we take
a different approach to reduce the domain gap by a self-
training paradigm, which regards the pseudo-labels as ground
truth to fully exploit the unlabeled target data. In order to
generate more informative pseudo labels, we further propose
a category dictionary guided (CDG) UDA model for cross-
domain object detection, which learns category-specific dic-
tionaries from the source domain to represent the candidate
boxes in target domain. The representation residual can be
used for not only pseudo label assignment but also quality
(e.g., IoU) estimation of the candidate box. Compared with
decision boundary based classifiers such as softmax, the pro-
posed CDG scheme can select more informative and reliable
pseudo-boxes. Experimental results on benchmark datasets
show that the proposed CDG significantly exceeds the state-
of-the-arts in cross-domain object detection.

Introduction
Object detection is a fundamental computer vision task,
aiming to detect object labels and locations in an image.
The detection performance has gone through a continuous
growth due to the rapid development of deep learning tech-
niques (Simonyan and Zisserman 2014; He et al. 2016) and
large scale datasets (Lin et al. 2014; Deng et al. 2009) in
recent years. It is often assumed that training data and test
data follow the same distribution, which however may not
be true in real world environments. Factors such as illumina-
tion, viewpoints, weather condition and cameras can cause
domain shifts between the source data and target data. A
state-of-the-art detector trained on the source data may de-
grade drastically when applied to the target data. One pos-
sible solution is to annotate new data and retrain the model.
Unfortunately, annotating labels at the box level is expensive
and time-consuming. Another promising solution is domain
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adaptation (DA), which aims to minimize the gap between
the two domains and learn a shared discriminative model for
both domains (Ganin and Lempitsky 2014; Long et al. 2016;
Tzeng et al. 2017; Xie et al. 2018; Lee et al. 2019; Xu et al.
2019). In this paper, we focus on the challenging unsuper-
vised domain adaptation (UDA) problem, where no labels
are available for target domain.

Many previous UDA methods minimize the domain shift
by performing feature alignment to learn domain-invariant
features. Following this line of research, most cross-domain
object detection methods attempt to address domain adapta-
tion by minimizing the domain discrepancy at different lev-
els, such as appearance level (Inoue et al. 2018) and fea-
ture level (Cai et al. 2019; Khodabandeh et al. 2019; Saito
et al. 2019; Zhu et al. 2019). Compared with classification
and segmentation, feature alignment for detection is much
harder given the complex combinations of various objects
and different scene layouts between the two domains. Bru-
tally enforcing global feature alignment may cause negative
transfer and hurt the discrimination ability of the final detec-
tor. In addition, learning domain-invariant features ignores
the domain-specific knowledge of target data, which is of
particular importance for detection as the target domain has
its special characteristics that cannot be well encoded in the
aligned feature space.

Another line of research focuses on learning domain spe-
cific knowledge by fully exploiting the target data. The do-
main specific knowledge has been explored in classifica-
tion (Zou et al. 2019) and segmentation (Zou et al. 2018;
Zhang et al. 2019) by utilizing a self-training paradigm on
the pseudo-labeled target data annotated by the knowledge
from source domain (e.g., the model trained on source data).
Self-training is one of the powerful ways for domain adap-
tation since it can achieve class-wise adaptation. In this line
of research, how to generate high quality pseudo labels is
critical to the final performance as error-prone labels may
mislead the detector training. It is required that the assigned
pseudo boxes should be reliable and informative. The clas-
sifier used in the detector, e.g., softmax classifier, is not ef-
fective to assign labels for detection because there exists an
inconsistency between the classification score and the IoU
of a candidate target box when the classifier is trained on
source data. More specifically, it is hard to distinguish high
quality boxes from low quality ones as a high score does not
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necessarily mean a good IoU box, and vice-versa. Also, the
pseudo boxes assigned by softmax classifier are not infor-
mative enough as these boxes have already been predicted
with high probabilities by the same classifier. Instead of us-
ing the decision-boundary based classifier, some researchers
have proposed to use clustering (Kang et al. 2019; Sener
et al. 2016) or label propagation (Zhang et al. 2020) to assign
pseudo labels in the domain adaption for classification. Al-
though these assigners have proved their effectiveness, it is
impractical to apply them on detection due to the unafford-
able memory and computation cost as there are thousands of
proposals for each image.

In order to address aforementioned problem, we propose
a category dictionary guided (CDG) UDA model to select
more reliable and informative pseudo boxes for detection.
Specifically, we first learn a dictionary of representative
atoms for each category using the source domain features,
and use the learned dictionaries to represent each candi-
date box in the target domain in a collaborative representa-
tion manner (Zhang, Yang, and Feng 2011). Then we assign
pseudo-labels to these boxes according to their represen-
tation residuals w.r.t. each category. One good property of
CDG is that the representation residual can not only be used
for label assignment but also be used to indicate the quality
(e.g., IoU) of the candidate box. By regarding pseudo-boxes
as ground truth, we propose a residual weighted self-training
pipeline on the target data by assigning different weights to
pseudo-boxes based on their representation residuals.

Related Work
Many advanced computer vision models (He et al. 2016;
Krizhevsky, Sutskever, and Hinton 2012; Ren et al. 2015;
Long, Shelhamer, and Darrell 2015) are based on deep neu-
ral networks trained on large scale datasets (Lin et al. 2014;
Deng et al. 2009). A domain gap may impair the model’s
performance on a shifted target data. To address this issue,
a variety of domain adaptation methods have been proposed
in the fields of classification (Zou et al. 2019; Ganin and
Lempitsky 2014; Long et al. 2016), segmentation (Zou et al.
2018; Zhang et al. 2019; Xie et al. 2018; Wu et al. 2018;
Murez et al. 2018) as well as detection (Kim et al. 2019b;
Chen et al. 2020; He and Zhang 2019; Zheng et al. 2020).
Generally speaking, there are three lines of research of UDA
in object detection: style transfer (Kim et al. 2019a), feature
alignment (Wu et al. 2019; Xu et al. 2020; Li et al. 2020) and
self-training (Zou et al. 2018, 2019). In addition, our work
is related to dictionary learning for image representation and
classification.

Style Transfer. Style transfer aims to narrow down the
domain gap in pixel-wise features such as color and tex-
ture (Inoue et al. 2018). CycleGAN (Zhu et al. 2017) is
employed to convert the images in the source domain to
domain-transferred images that have similar low level styles
to the target data. Style transfer is often combined with other
UDA methods for cross-domain object detection.

Feature Alignment. Early works in feature alignment
mainly utilize adversarial loss to align the visual fea-
tures (He and Zhang 2019). Later, it was thought that dif-
ferent from classification, object detection focuses more on

local areas that contain objects of interest. Based on this
observation, researchers attempted to minimize the domain
discrepancy at the instance level after the RoIAlign (He et al.
2017) or combine local alignment with global alignment to
ensure a stronger adaptation (Saito et al. 2019). Recently,
weighted adversarial learning has been proposed to assign
different adaptation weights to different areas or instances
by assuming that not all samples or regions are equally trans-
ferable (Chen et al. 2020). The weighed adaptation can al-
leviate the negative transfer caused by brute alignment of
features in different domains.

The aforementioned feature alignment methods are class-
agnostic, i.e., the adapted model by global image-level align-
ment cannot distinguish the objects belonging to different
classes. Following the recent work in classification (Kang
et al. 2019), class-specific alignment methods have also been
explored in object detection (Zheng et al. 2020). It should be
noted that category-specific feature alignment also requires
a pseudo-label for each sample.

Self-training. Assigning pseudo-labels to target domain
samples can help the detector to explore domain specific
knowledge directly. Kim et al. (Kim et al. 2019a) employed
a high threshold to choose reliable pseudo boxes and pro-
posed a weak negative mining operation to reduce the effect
of false negatives. In (RoyChowdhury et al. 2019), easy
pseudo boxes are obtained from high-confidence predic-
tions by some detectors and hard boxes are selected from a
tracker. In (Khodabandeh et al. 2019), a robust self-training
scheme was proposed to deal with noisy labels by introduc-
ing an auxiliary classifier. Different from the above meth-
ods, where the pseudo-boxes are all determined by the cat-
egory scores predicted by the original softmax based classi-
fier, we propose a category dictionary guided model to gen-
erate pseudo labels from the perspective of feature represen-
tation, which can not only reflect the class confidence (for
classification) but also the quality of the box (for regression).

Dictionary Learning. Dictionary learning (DL) aims to
learn an effective data representation model from training
data, which can be used for classification tasks by exploit-
ing the class label information. Some DL methods (Gu et al.
2014; Mairal et al. 2009) learn a shared dictionary for all
classes and the discrimination capability is imposed on the
coding coefficients, while some DL methods (Yang et al.
2010; Cai et al. 2016) learn a structured dictionary to pro-
mote discrimination between classes. Our model adopts the
latter strategy, and we learn a sub-dictionary for each class
by minimizing the representation residual.

Proposed Method
In this work, we address the UDA problem for object detec-
tion by a self-training manner. Suppose we have access to a
set of source images xs with labels ys and box annotations
bs. Meanwhile, there is a set of unlabeled target images xt
drawn from a different distribution from xs. Our goal is to
learn a detector that can behave well on the target data.

The framework of our proposed CDG-UDA model is
shown in Fig. 1. Fig. 1 (a) shows the pipeline of self-training,
where images from two domains are fed to Faster RCNN to
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Figure 1: Illustration of the proposed category dictionary guided UDA (CDG-UDA) model for object detection. (a) The archi-
tecture of the CDG-UDA. The green parts describe the target data flow while the yellow parts show the source domain data flow.
(b) The pseudo label generation and assignment process (best viewed in color). Each ellipse represents the learned dictionary
for a category.

learn a shared discriminative detector. Source data are su-
pervised by the ground-truth (GT) while target data are su-
pervised by the weighted pseudo GT boxes generated by the
process shown in Fig. 1 (b). In the following, we introduce
the major components of our CDG framework in detail.

Dictionary Learning (DL) for Pattern Classification
Given a feaure matrix Xk ∈ Rl×n extracted from category
k in the source domain, where each column of Xk is the
`2 normalized feature vector of a sample in category k, we
learn a dictionary Dk ∈ Rl×m for category k by solving the
following `1 sparse optimization problem:

min
Dk,Ak

(||Xk −DkAk||2F + λ1||Ak||1) s.t. dTj dj = 1,

(1)
where l is the feature dimension, n is the total number of
samples, m is the number of atoms in Dk, Ak ∈ Rm×n is
the sparse coefficient matrix, λ1 is a regularization param-
eter, and each atom dj in Dk is constrained to have `2 unit
length. Eq. 1 can be solved by alternative minimization al-
gorithms such as the one in (Kim et al. 2007).

By learning a dictionary for each category, we obtain a
whole dictionary D = [D1, . . . , DK ] for all the K cate-
gories. Given a test sample x, we adopt the `2-regularized
collaborative representation (Zhang, Yang, and Feng 2011)
scheme to encode it over D:

p∗ = argminp ||x−Dp||22 + λ2||p||22, (2)

where λ2 is a regularization parameter, p = [p1, . . . , pK ]
is the coding coefficient vector and pk is the associated
sub-vector for category k. Eq. 2 has a closed-form so-
lution (Zhang, Yang, and Feng 2011): p∗ = (DTD +
λ2I)

−1DTx. We can then calculate the representation resid-
ual of x by each category: rk = ||x −Dkp

∗
k||22, and sample

x can be classified to the category which has the smallest
residual rk.

Category Dictionary Guided Pseudo-box
Generation
The DL described in Section 3.1 is traditionally employed
for image classification. In this section, we adapt it to cross-
domain object detection and use it for pseudo-box genera-
tion. We learn a dictionary Dk for each category k in the
source domain so that Dk can approximate each sample be-
longing to category k as a linear combination of all its atoms.
The features we use to learn Dk are extracted from the last
fully connected layer in the detection head since it is close to
the final classifier. For foreground categories, we consider all
the GT boxes as the proposals in the second stage of Faster
RCNN and extract their features to learn the dictionary. For
the background category, we randomly generate some boxes
whose maximum IoU with all GT boxes fall into the interval
(0, 0.1]. This enables us to extract background features from
the areas close to the GT boxes.

In classification (Kang et al. 2019) and segmenta-
tion (Zhang et al. 2019), it has been demonstrated that de-
signing an extra annotator independent of the softmax clas-
sifier can select better pseudo labels and thus lead to better
performance. Different from these works, where the proto-
type of each category is simply obtained by calculating the
centroid of all sample features, in our method a more rep-
resentative dictionary is learned for each category, and all
dictionaries are used together to encode the candidate box
for classification as well as quality estimation.

Candidate Box Representation. A detector trained from
source data first forwards each target image to generate can-
didate boxes. The features of these boxes are extacted from
the last layer of the detection head. Then we encode the fea-
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Figure 2: Example pseudo boxes on the foggy cityscapes dataset (Cordts et al. 2016). From top row to bottom row: GT boxes, pseudo boxes
selected by CDG and softmax, respectively. Different colored boxes represent different categories.

ture x of each candidate by the dictionary D as in Eq. 2 and
calculate the representation residual rk for each category.

The residual rk measures how well the sample x can be
represented by the kth category. Each candidate box can be
seen as a combination of foreground and background, as
shown in Fig. 1(b). Since the dictionary for each foreground
category is learned by candidate boxes whose IoUs are 1, the
feature x of a box that has a higher IoU is likely to have a
smaller rk, and vice versa. This means that rk can roughly
indicate how much content in the candidate box belongs to
the background and how much belongs to the foreground.

It should be noted that the representation residual is dif-
ferent from the classification score predicted by a decision
boundary based classifier trained by manually defined pos-
itive samples (IoU larger than 0.5) and negatives samples
(IoU smaller than 0.5). The representation based pseudo
box selection process with dictionary D is independent of
the boundary based softmax classifier and can provide addi-
tional information to the detector.

Pseudo Label Assignment. For each candidate box x in
target image, we have a representation residual vector r =
[r1, . . . , rK ]. We assign the pseudo label to x based on not
only the minimal representation residual among r, but also a
threshold θ to filter out unreliable candidate boxes. A pseudo
GT box is assigned to category k∗ when the following two
conditions are met:{

k∗ = argmink rk

rk − rk∗ > θ, ∀k 6= k∗,
(3)

The first condition selects the most representative (i.e.,
smallest residual) category for candidate box x, while the
second condition ensures that the representation residual rk∗

is sufficiently smaller than rk for other categories. This can

remove many uncertain candidate boxes which can be simi-
larly represented by several categories.

Our CDG method can generate more reliable and infor-
mative pseudo boxes than the softmax classifier. Here by
‘reliable and informative’, we mean that a pseudo box is
positive but is hard to be detected by the detector. Fig. 2
shows some examples of selected pseudo boxes on the foggy
cityscapes (Cordts et al. 2016) dataset. The first row shows
the ground truth. The second and third row show the pseudo
boxes selected by CDG and softmax classifier, respectively.
One can see that CDG can select more positive boxes and as-
sign them with trustable labels, especially for small objects
far from the camera, such as ‘bike’ and ‘car’. These boxes
are informative for the current detector as it cannot detect
them with high confidence.

The classification schemes between dictionary learning
and softmax are different. The former classifies one exam-
ple by considering how well it can be represented by sev-
eral dictionaries while the latter classifies one example by
measuring the distance between the sample and the decision
boundary. There may exist some boxes (near the decision
boundary) that are ambiguous for the original classifier but
can well be classified by the learned dictionary. These boxes
are difficult for current detector which uses softmax and can
provide extra knowledge for the detector to learn.

Residual Weighted Self-training
As we discussed in the section of candidate box representa-
tion, the representation residual rk∗ can indicate how much
content in the candidate box belongs to background and
foreground. In other words, rk∗ can reflect the quality or
IoU of a candidate box. We calculate the IoUs of all candi-
date boxes in the target dataset (the Watercolor dataset (Kim
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Figure 3: The softmax classification scores (blue) and representa-
tion residuals by CDG (green) vs. IoU of the candidate boxes. The
results are calculated on the Watercolor (Kim et al. 2019a) dataset.

et al. 2019a) is used), and plot their relationships with the
scores predicted by softmax and representation residuals by
CDG in Fig. 3. We can see that there is indeed a nearly lin-
ear correlation between rk∗ and IoU. In contrast, the soft-
max scores can be either over-confident or under-confident
for different IoUs.

The observations in Fig. 3 motivate us to make use of
the selected pseudo boxes for model training. A high qual-
ity pseudo box (smaller rk∗ ) should contribute more to the
loss, and vice versa. So, we propose a residual weighted self-
training scheme, whose loss function is defined as:

L = µ
(
Ls
cls + Ls

reg

)
+

M∑
j=1

wj

(
Lt
cls

(
I, ytj

)
+ Lt

reg

(
I, btj

))
,

(4)
where Ls

cls and Ls
reg are the classification and regression

losses in source domain, and Lt
cls and Lt

reg are those in tar-
get domain; µ is a parameter to balance source and target
losses; M is the number of assigned pseudo-boxes for the
input image I; ytj is the label of pseudo GT box btj ; and wj

is the training weight assigned to pseudo GT box btj , and it
is designed as follows:

wj = 1− s

rmax − rmin
(rj − rmin) , (5)

where s ≥ 0 is a hyper-parameter, rj is the representation
residual for btj (determined by Eq. 3), and rmax and rmin are
the maximum and minimum representation residuals among
all the pseudo boxes in the target data. The function in Eq. 5
ensures that wj increases linearly with the decrease of rj ,
i.e., a higher quality pseudo box will have a higher weight.

Experiments
Experiments Setup
Following the common self-training pipeline (Zhang et al.
2019), an initialized model is first utilized to generate
pseudo-labels by CDG and then the detector is re-trained on
both source data and target data by regarding pseudo-labels
as ground truth using a standard training pipeline for detec-
tion. In order to get higher quality of pseudo labels, the ini-
tialized model for multi-class datasets is trained from both

source data and target data by a global feature alignment
method (Tzeng et al. 2017). We utilize a stage-wise training
scheme where self-training is performed for several stages
and in each stage the pseudo-labels are re-generated by the
model in the last stage.

We evaluate our CDG-UDA model on three bench-
marks, including Sim10k (Johnson-Roberson et al. 2016)
to Citycapes (Cordts et al. 2016), Cityscapes to Foggy
Cityscapes (Cordts et al. 2016) and Pascal VOC (Evering-
ham et al. 2010) to Watercolor (Inoue et al. 2018), to demon-
strate its effectiveness on adapting both dissimilar and simi-
lar domains. Our model is based on one most typical detec-
tor Faster RCNN (Ren et al. 2015) with RoIAlign (He et al.
2017). The shorter side of the input image is resized to 600.
During the stage-wise training, we set the initial learning
rate as 0.001 and train the model for 20 epochs. The learn-
ing rate is decayed by a factor 10 at the 10th epoch and 15th
epoch, respectively. Batch size is set as 1 and SGD is used
as the optimizer. For evaluation metric, we report the mean
average precision (mAP) at threshold 0.5.

For the parameters associated with DL, we just simply
follow the common settings (Zhang, Yang, and Feng 2011)
to set λ1, λ2 as 0.01 and 0.1. Form, we choose 64 for Water-
color and 192 for other datasets. We find that the model per-
formance is robust to the value of m. Then we mainly have
three parameters µ, s and θ. We set µ to 2 for all datasets. For
s, we set it to 0.4 and 0.5 for Watercolor and other datasets,
respectively. As θ controls the number of selected pseudo-
labels, it varies among different datasets. Specifically, we set
it as 0.1 on Sim10k and Foggy Cityscapes. Due to the fact
that Watercolor has a severe class imbalance problem (‘per-
son’ occupies the majority of dataset), the initialized classi-
fiers for different categories are also imbalanced. Given this
observation, we set θ to 0.2 for ‘person’ and a higher value
0.5 for all the other categories.

Comparison with State-of-the-arts
Multi-class Normal to Foggy Adaptation. In this task,
Citycapes (Cordts et al. 2016) servers as the source do-
main, which contains of 2,975 images from 8 classes. The
Foggy Cityscapes (Cordts et al. 2016) is selected as the tar-
get domain, which has 2,975 images for training and 500
images for testing. On this task, the majority of the com-
petitive methods are based on feature alignment. Note that
feature alignment on multi-class datasets is very challenging
because of the imbalance of classes. Class-agnostic feature
alignment is hard to guarantee that samples from different
categories in the target domain can be properly separated.

MTOR (Cai et al. 2019) treats UDA for detection as a
semi-supervised problem and enforces consistency regular-
ization on object relations. NL (Khodabandeh et al. 2019)
addresses domain adaptation from the perspective of robust
learning from noisy labels. MA (He and Zhang 2019) per-
forms feature alignment on multiple levels of feature maps.
SW (Saito et al. 2019) and HTCN (Chen et al. 2020) assign
different weights to hardly transferrable and easily trans-
ferrable features. GPA (Xu et al. 2020) applies category-
wise feature adaptation.

The results by competing methods are showed in Table 1.
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Method B Bus Bicycle Car Motorcycle Person Rider Train Truck mAP
NL (Khodabandeh et al. 2019) V 35.1 42.15 49.17 30.07 45.25 26.97 26.85 36.03 36.45

MTOR (Cai et al. 2019) R 30.6 41.4 44 21.9 38.6 40.6 28.3 35.6 35.1
SW (Saito et al. 2019) V 36.2 35.3 43.5 30 29.9 42.3 32.6 24.5 34.3

MA (He and Zhang 2019) R 28.2 39.5 43.9 23.8 39.9 33.3 29.2 33.9 34
CF (Zheng et al. 2020) V 43.2 37.4 52.1 34.7 34 46.9 29.9 30.8 38.6

HTCN (Chen et al. 2020) V 33.2 47.5 47.9 31.6 47.4 40.9 32.3 37.1 39.8
PD (Wu et al. 2019) V 33.12 43.41 49.63 21.98 45.75 32.04 29.59 37.08 36.57
GPA (Xu et al. 2020) R 32.9 46.7 54.1 24.7 45.7 41.1 32.4 38.7 39.5

Ours V 47.5 38.9 53.1 38.3 38 47.4 41.1 34.2 42.3

Table 1: Results of different methods on ‘Cityscape to Foggy’.‘B,V,R’ means ‘Backbone’,‘VGG’ and ‘Resnet’, respectively.

Method Bike Bird Car Cat Dog Person mAP
SW (Saito et al. 2019) 82.3 55.9 46.5 32.7 35.5 66.7 53.3
DM (Kim et al. 2019c) - - - - - - 52

WST+BSR (Kim et al. 2019a) 75.6 45.8 49.3 34.1 30.1 64.1 49.9
PD (Wu et al. 2019) 95.8 54.3 48.3 42.4 35.1 65.8 56.9

Ours 97.7 53.1 52.1 47.3 38.7 68.9 59.7

Table 2: Results of different methods on ‘VOC to Watercolor’

Method B Source only mAP
NL (Khodabandeh et al. 2019) V 31.08 42.6

MTOR (Cai et al. 2019) R 39.4 46.6
SW (Saito et al. 2019) V 34.6 42.3

MA (He and Zhang 2019) R 30.1 41.2
CF (Zheng et al. 2020) V 35 43.8

HTCN (Chen et al. 2020) V 34.6 42.5
Ours V 34.9 48.8

Table 3: Results of different methods on ‘Sim10k to
Cityscapes’. ‘B’ means backbone.

For the employed backbone network,“V” means VGG16
and “R” means ResNet101. Our CDG method with VGG16
backbone achieves an mAP of 42.3, outperforming the sec-
ond best model HTCN by 2.5 points. It is worth mentioning
that the recent feature alignment methods for cross-domain
object detection is becoming more and more complex in or-
der to address the various challenges discussed in the intro-
duction section. In contrast, our model is much simpler and
it achieves the leading performance.

Realistic to Artistic Adaptation. In this experiment, we
use Pascal VOC2007 trainval and VOC2012 trainval as the
source domain, and Watercolor as the target domain. Pascal
VOC (Everingham et al. 2010) is a real world image dataset
which consists of a total of 16,551 images from 20 cate-
gories. Watercolor (Inoue et al. 2018) is an artistic dataset
that has 6 common classes with VOC. It has 1,000 images
for training and another 1,000 images for testing. For fair
comparison, we follow the settings in competing papers (Wu
et al. 2019; Saito et al. 2019; Kim et al. 2019c) and use
ResNet101 as our backbone.

The results on this task are shown in Table 2. The Water-

color dataset has serious class imbalance, where categories
like ‘car’, ‘cat’ and ‘dog’ have much fewer images than other
categories. In this case, perfect category-wise feature align-
ment is very hard to achieve. However, our proposed CDG
can significantly improve the performance of these rare cat-
egories, as can be seen in Table 2. Overall, CDG achieves
an mAP of 59.7, outperforming the second best method
PD (Wu et al. 2019) by 2.8 points.

Synthetic to Real Adaptation. We then evaluate CDG’s
adaptation performance from synthetic images to real im-
ages. Sim10k is used as the source dataset, which com-
prises 10,000 synthetic images collected from the computer
game Grand Theft Auto (GTA). All these images are used
for training. Cityscape is used as the target dataset, which
contains 2,975 training images and 500 test images captured
from real city streets. Following previous works (Chen et al.
2020; Zheng et al. 2020), in this task we only focus on the
category ‘car’.

The results are shown in Table 3. It can be seen that our
model outperforms the comparison methods using the same
VGG16 backbone by a large margin. It also performs better
than MTOR (Chen et al. 2020) which utilizes ResNet101 as
the backbone. This demonstrates that exploiting the target
domain knowledge by the pseudo labels in a self-training
manner can achieve better domain adaptation results.

Ablation Study
Component Analysis. In this section, we conduct ablation
studies to investigate the effect of some elements in our
CDG-UDA method on the final performance. The ‘VOC to
Watercolor’ setting is used and the results of different vari-
ants of CDG-UDA are shown in Table 4. Here, ‘Source only’
means that the model is trained only on source data.

The method ‘Softmax’ uses softmax classifier as the an-
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Method Bike Bird Car Cat Dog Person mAP
Source only 86.6 39.4 37 23.2 20.7 56.2 43.9

Softmax 89.8 52.3 53 40.1 31.6 65.3 55.3
CDG-stage 1 95.9 51.7 53 41.2 40.8 65.8 58

CDG-weighted-stage 1 97 53.7 51.1 43.5 39.7 66 58.5
CDG-stage 2 99.9 51.1 52.3 42.9 40.3 69 59.3

CDG-weighted-stage 2 97.7 53.1 52.1 47.3 38.7 68.9 59.7

Table 4: Result of ablation study on ‘VOC to Watercolor’

notator for pseudo box generation, while the method ‘CDG-
stage 1’ applies our CDG based self-training (all weights wj

are fixed to 1) for only one stage. One can see that ‘CDG-
stage 1’ outperforms ‘softmax’ by 2.7 points, which demon-
strates that the proposed CDG is more effective than the soft-
max based classifier. When we apply self-training for two
stages, the method ‘CDG-stage 2’ improves the mAP over
‘CDG-stage 1’ by 1.3 points. We found that further increas-
ing the training stages will not bring extra improvement.

By assigning different weights to the pseudo boxes based
on their representation residuals, method ‘CDG-weighted-
stage 1’ improves the performance of ‘CDG-stage 1’ by 0.5
point, while ‘CDG-weighted-stage 2’ (i.e., the default CDG
method) improves ‘CDG-stage 2’ by 0.4 point. This vali-
dates that the weighed self-training can consistently bring
extra performance gains at each training stage.

Hyper-parameters Sensitivity. In this section, we give a
more detailed ablation study for three hyper-parameters in
the residual weighted self-training including s, µ and θ.
s determines the weight assignment function for each

pseudo-box in the self-training process. A large s means
pseudo-boxes with large residuals will be assigned to
smaller weights. If s is 0, all weights wj are fixed to 1. Ex-
periments on Watercolor in the first stage are conducted to
investigate its influence on the model’s performance by set-
ting different values for s. The results are shown in Table 5.
It can seen that a high or low value of s can degrade the per-
formance and the peak accuracy is achieved when s is 0.4.

s 0 0.1 0.2 0.3 0.4 0.5 0.6
mAP 58.0 58.1 58.1 58.3 58.5 58.3 58.2

Table 5: Sensitivity of s on ‘VOC to Watercolor’.

In the residual weighted self-training, µ is a parameter
to balance the loss between the source data and target data.
We set different values for µ in the first training stage on
Watercolor dataset. The results are shown in Table 6. We
can see that the setting of µ can significantly influence the
accuracy of the final detector. If the model is only trained on
the pseudo-labeled target data (µ = 0), the mAP is not high,
which is because the error labels may mislead the detector
training. When the model is trained on both domains (µ >
0), the source data can provide more precious supervision
signals preventing the detector from being misguided by the
pseudo-labeled target data. However, a larger µ can make the
gradients dominated by the source data as a result of which,

the detector cannot learn domain specific knowledge from
the target domain.

µ 0 1 2 3
mAP 55.9 57.0 58.0 55.9

Table 6: Sensitivity of µ on ‘VOC to Watercolor’.

θ controls the number of pseudo labels selected from
the target data for self-training. A small θ can select more
pseudo boxes with more noises while a relatively large θ can
select fewer pseudo boxes with fewer noises. We provide the
sensitive analysis for θ on ‘Sim10k to Cityscape’ in Table 7.
We can see that the mode achieves its highest performance
when θ is 0.1. We also observe that Watercolor has a differ-
ent optimal θ (0.2 for ‘person’ and 0.5 for others) with other
two datasets, the reason of which is that some classes in Wa-
tercolor have very few instances (no more than 50) for some
classes like ‘bird’, ‘cat’ and ‘dog’ that a small θ will bring
too many false positives.

θ 0 0.1 0.2 0.3
mAP 48.5 48.8 46.3 45.7

Table 7: Sensitivity of µ on ‘Sim10k to Foggy Cityscapes’.

Conclusion

In this paper, we proposed a novel category dictionary
guided (CDG) unsupervised domain adaptation (UDA)
model for cross-domain object detection. The CDG-UDA
model explores the domain specific knowledge by learn-
ing category-specific dictionaries to generate more reliable
and informative pseudo boxes. Meanwhile, the representa-
tion residuals by the dictionaries are also good indicators of
pseudo box qualities. A residual weighted stage-wise self-
training scheme was consequently proposed to alleviate the
effect of low-quality labels and train a more robust cross-
domain detector. The experiments on three different datasets
demonstrated the superiority of our proposed CDG model to
the popular feature alignment models. Our method indicated
a new and promising direction for future research of cross-
domain object detection.
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