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Abstract

Building extraction from aerial or satellite images has been
an important research problem in remote sensing and com-
puter vision domains for decades. Compared with pixel-wise
semantic segmentation models that output raster building seg-
mentation map, polygonal building segmentation approaches
produce more realistic building polygons that are in the de-
sirable vector format for practical applications. Despite the
substantial efforts over recent years, state-of-the-art polyg-
onal building segmentation methods still suffer from sev-
eral limitations, e.g., (1) relying on a perfect segmentation
map to guarantee the vectorization quality; (2) requiring a
complex post-processing procedure; (3) generating inaccu-
rate vertices with a fixed quantity, a wrong sequential order,
self-intersections, etc. To tackle the above issues, in this pa-
per, we propose a polygonal building segmentation approach
and make the following contributions: (1) We design a multi-
task segmentation network for joint semantic and geometric
learning via three tasks, i.e., pixel-wise building segmenta-
tion, multi-class corner prediction, and edge orientation pre-
diction. (2) We propose a simple but effective vertex gener-
ation module for transforming the segmentation contour into
high-quality polygon vertices. (3) We further propose a poly-
gon refinement network that automatically moves the poly-
gon vertices into more accurate locations. Results on two pop-
ular building segmentation datasets demonstrate that our ap-
proach achieves significant improvements for both building
instance segmentation (with 2% F1-score gain) and polygon
vertex prediction (with 6% F1-score gain) compared with cur-
rent state-of-the-art methods.

Introduction
As a fundamental task for urban planning, disaster and envi-
ronmental management, geographical information updating,
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etc., extracting building footprints from aerial or satellite im-
ages has been an important and popular research problem
in both remote sensing and computer vision domains. Deep
convolutional neural networks based segmentation models
have become the state-of-the-art methods for building foot-
print extraction, which assign a semantic class to each pixel
of an image. However, the output raster building masks gen-
erated from these segmentation models are not in the desir-
able format of realistic building polygons (with linear edges
and specific angles). Complex post-processing procedures
are required for converting the segmentation predictions into
the vector building polygons for practical applications.

Motivated by this issue, many polygonal building seg-
mentation approaches have been proposed to generate
the vectorized outputs. Several studies proposed post-
processing methods for simplifying the building segmenta-
tion contours. In (Zhao et al. 2018), a multi-step boundary
regularization method was proposed to simplify the build-
ing instances predicted from Mask-RCNN. Li et al. (Li, La-
farge, and Marlet 2020) proposed a polygonal partition re-
finement method for vectorizing the output probability maps
of a U-Net based model. These methods not only require a
complex processing procedure, but also a perfect segmen-
tation map to ensure the quality of the polygonization re-
sults. To solve the above limitations, a generative adversarial
network based method was proposed in (Zorzi, Bittner, and
Fraundorfer 2020) for regularizing the building segmenta-
tion maps. Although producing visually pleasing building
polygons, the method consists of three separate networks
and requires heavy training procedures regarding the hybrid
losses of different network components.

The other category of polygonal segmentation method-
ologies directly predicts the polygon vertices of a building
instance, using deep neural networks with CNN-RNN or
GCN architectures. PolyMapper (Li, Wegner, and Lucchi
2019), a polygonal building segmentation approach, com-
bines CNN with LSTM model to predict a polygon vertex
at each time step. The method was extended from Polygon-
RNN (Castrejon et al. 2017), a semi-automatic polygonal
segmentation method, and outperformed several instance
segmentation methods (Mask-RCNN (He et al. 2017) and
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PANet (Liu et al. 2018)) on CrowdAI mapping challenge
dataset. However, despite its capability of producing desir-
able prediction for simple building polygons (with few ver-
tices and edges), the RNN-based methods usually have dif-
ficulty in correctly predicting vertices for complex build-
ing polygons, producing vertices with wrong sequential or-
der and self-intersections. Curve-GCN (Ling et al. 2019)
is another semi-automatic polygonal segmentation method,
which represents an object as a graph with a fixed number
of vertex, and predicts an offset for each vertex simultane-
ously. Although achieving promising segmentation results
for common datasets, the fixed vertex topology of Curve-
GCN results in over redundant vertices for simple buildings
and insufficient vertices for buildings with complex shapes.

In this work, we propose a novel polygonal building seg-
mentation approach to address the above challenges. Our
approach consists of three main components, i.e., a multi-
task segmentation network, a vertex generation module, and
a polygon refinement network, which can be summarized as
follows:
• In our multi-task segmentation network, we design two

additional tasks for leveraging extra geometric supervi-
sion for polygonal building segmentation, i.e., multi-class
corner prediction and edge orientation prediction, which
are trained jointly with the building semantic segmenta-
tion task.

• In the vertex generation module (VGM), we design a sim-
ple but effective method for transforming the building
segmentation contour into a set of valid vertices. Through
jointly utilizing the three types of outputs of the multi-
task network, our vertex generation module is not only
capable of filtering out redundant edges and vertices and
remaining valid ones (even short edges), but also robust
to imperfect building segmentation results.

• The polygon refinement network (PRN) further fine-tunes
the coordinate of each polygon vertex. PRN regards the
VGM generated vertices (with various topologies and
proper sequence) as initial nodes of a graph, which effec-
tively predicts a displacement for each node and produces
the final building polygons with more accurate vertices.
Our proposed approach is evaluated by two popular build-

ing extraction challenge datasets. Compared with current
state-of-the-art methods, our approach achieves much better
polygonal building instance segmentation results, improv-
ing the F1-score by 2% in terms of building segmentation
and 6% in terms of vertex prediction.

Related Work
Building Footprint Segmentation
As an important task in remote sensing and geographic in-
formation system domain, building footprint segmentation
has been extensively studied for decades. Traditional build-
ing segmentation approaches were based on shadow index,
edge regularity, or line fragment, etc. (Sun, Christoudias,
and Fua 2014). In recent years, pixel-wise semantic label-
ing models based on deep learning have become state-of-
the-art methods for building footprint segmentation. Seman-

tic segmentation and instance segmentation models have
been widely explored for building segmentation tasks (Li
et al. 2019). Among these models, U-Net based architectures
have achieved excellent performances in several building ex-
traction challenges such as CrowdAI (Mohanty 2018) and
SpaceNet (Van Etten, Lindenbaum, and Bacastow 2018).
On the other hand, several recent studies proposed active
contour based approaches for building segmentation (Cheng
et al. 2019; Marcos et al. 2018; Gur, Shaharabany, and Wolf
2020), and most of these approaches are designed for single
building extraction of which the input images have already
been cropped by ground truth bounding boxes.

Although pixel-wise segmentation and active contour
based methods obtain promising building extraction accu-
racies, there exist great discrepancy between the outputs of
these methods and the desired format of building polygons.
The building outlines obtained from these methods are of-
ten in a curved format, while the desired building polygons
have linear contours with a limited number of edges and ver-
tices. Substantial post-processing procedures are required
before the building segmentation predictions can be utilized
in practical applications.

Polygonal Instance Segmentation
Post-processing based Polygonization Post-processing
based polygonization methods have been widely used for
simplifying the segmentation contours of buildings or other
object types. Generally, semantic segmentation or instance
segmentation results are post-processed via traditional con-
tour simplification methods, such as Douglas-Peucker (Wu
and Marquez 2003), polyline decimation (Dyken, Dhlen,
and Sevaldrud 2009), etc. (Zhao et al. 2018) proposed a
multi-step boundary regularization method to regularize the
building instances predicted from Mask-RCNN and gener-
ate the simplified building polygons. In (Li, Lafarge, and
Marlet 2020), a polygonal partition refinement method was
proposed for vectorizing buildings and general objects from
segmentation maps. These methods usually require complex
procedures of multiple processing steps to generate the final
polygons. Their performance heavily depends on the qual-
ity of the segmentation map, which deteriorates seriously
when the segmentation map is not perfect. (Zorzi, Bittner,
and Fraundorfer 2020) designed an approach to regularize
the building segmentation maps via a generative adversarial
network, which requires a multi-stage training procedure for
optimizing different network components.

Deep Neural Network based Vertex Prediction Several
methodologies use deep neural networks to directly predict
vertices of a polygon. Polygon-RNN (Castrejon et al. 2017)
is a semi-automatic polygonal annotation method that di-
rectly predicts a polygon vertex at each time step using a
CNN-RNN architecture. It was further improved by (Acuna
et al. 2018) and extended for automatic building segmen-
tation task (Li, Wegner, and Lucchi 2019). These RNN-
based methods usually achieve desirable prediction results
for buildings with simple shapes. However, the sequential
manner of the recurrent model limits its capability of cor-
rectly predicting vertices for complex building polygons.
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Figure 1: An overview of our proposed method. Taking a remote sensing image as input, the multi-task segmentation network
outputs a building segmentation map, a corner prediction map and an edge orientation prediction map. The vertex generation
module converts the former three types of outputs into a set of polygon vertices. The polygon refinement network predicts a
displacement for each vertex and produces the final building polygons.

Several other vertex-based methods predict all vertices si-
multaneously in a regression manner. Initial vertices are se-
lected uniformly from a segmentation mask contour using
a given distance (Liang et al. 2020), or from an initializa-
tion with a fixed vertex quantity (Ling et al. 2019). These
methods usually generate over redundant vertices for build-
ings with simple shape and insufficient vertices for buildings
with complex contour.

Multi-task Learning
Multi-task learning has been proved as an effective strat-
egy for building footprint segmentation. A distance trans-
form prediction task was introduced in (Bischke et al. 2019)
to improve the building boundary prediction results. Simi-
larly, (Mahmud et al. 2020) proposed a multi-task learning
method for predicting building outlines and their heights via
jointly learning a modified signed distance function from
the building boundaries with other types of supervisions.
Several studies exploit orientation or direction related su-
pervisions for various segmentation tasks. In (Bischke et al.
2019), a direction map was jointly learned with other two
tasks for road boundary extraction. SegFix (Yuan et al. 2020)
also learned the direction away from the boundary pixel to
an interior pixel in order to refine the segmentation bound-
ary. A recent study introduced a frame field learning task
for polygonal building segmentation (Girard et al. 2020),
which defined the frame as two directions denoted by com-
plex numbers for each pixel.

Different from the above distance and direction prediction
tasks that were designed for improving the segmentation or
boundary prediction results, the edge orientation prediction
task in our approach is proposed for directly producing ac-
curate building vertices, which can be further refined by our
polygon refinement network.

Methods
Framework Overview
The overall framework of our proposed approach is demon-
strated in Figure 1, which consists of three main compo-
nents: (1) A multi-task segmentation network; (2) A ver-
tex generation module; (3) A polygon refinement network.
Taking a large-scale remote sensing image with multiple
building instances as input, the multi-task segmentation net-
work is designed for joint semantic and geometric learn-
ing of three tasks, i.e., pixel-wise building segmentation,
multi-class corner prediction, and edge orientation predic-
tion. Then the vertex generation module effectively utilizes
the three types of outputs of the multi-task network, and con-
verts the building segmentation contour into a set of valid
vertices. The polygon refinement network takes the output
vertices of the former component as the initial nodes of a
graph and predicts a displacement for each node, produc-
ing the final building polygons with more accurate vertices.
In the following, we first give the definitions of the corners
and edge orientations, which will be used in the multi-task
segmentation network. Then we introduce each of the three
main components of our proposed approach. The implemen-
tation details are described at the end of this section.

Representation of Corners and Edge Orientations
We design a multi-class corner prediction task and an edge
orientation prediction task to leverage extra geometric super-
vision for polygonal building segmentation. Different from
existing methods that simply classify each pixel into back-
ground or building corners, we define each pixel as one of
three types, i.e., background, convex corners and concave
corners, in order to avoid predicting multiple adjacent cor-
ners (connected by short edges) as one corner. If the interior
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angle of a polygon vertex is smaller than 180°, the vertex
will be defined as a convex corner (denoted by black circles
in Figure 1); otherwise it will be defined as a concave corner
(denoted by green circles in Figure 1).

The edge orientation is a beneficial property for polygo-
nal building segmentation in many aspects: (1) Orientation is
important information of real-world objects in remote sens-
ing images (Ding et al. 2019), especially for artificial objects
such as buildings and roads (Girard et al. 2020; Bischke et al.
2019); (2) It is an enumerable property that can be easily for-
mulated as a classification issue and learned via deep neural
networks; (3) It can be effectively utilized for converting the
semantic representation of a building instance into topology
representation. For each pixel on the building edges, its ori-
entation class is obtained via discretizing the orientation an-
gle of the edge into a class. For each pixel at the building
corners, its orientation class is randomly assigned with the
one of its neighbor pixel of an edge. For each pixel that is
not on any edges or corners, its orientation class is defined
as zero.

Multi-task Segmentation Network
Our multi-task segmentation network is based on Res-U-
Net architecture. The U-Net based models have achieved
promising performance in many building segmentation chal-
lenges and studies (Demir et al. 2018). The three tasks are
all formulated as pixel-wise classification issues and trained
jointly with the cross entropy loss (denoted by L) according
to formula 1:

L = −
N∑
i=1

C∑
c=1

yi,c × log(p(yi,c)) (1)

where C is the number of classes of the corresponding
task; N is the number of pixels of an image; yi,c is a bi-
nary indicator that equals 1 if c is the ground truth label of
pixel i or 0 in other cases; p(yi,c) is the predicted proba-
bility that pixel i belongs to class c. We use Lseg , Lcorner

and Lorient to denote the classification loss of building area
segmentation, multi-class corner prediction, and edge orien-
tation prediction tasks, respectively, and use λ1, λ2 and λ3
to denote the weight of each task. The total loss Ltotal of the
three tasks can be summarized as:

Ltotal = λ1Lseg + λ2Lcorner + λ3Lorient (2)

Vertex Generation Module
Based on the outputs of the multi-task segmentation net-
work, we design a vertex generation module (VGM) to
transform the raster segmentation masks into polygon ver-
tices. For each predicted building instance, the prediction of
the building segmentation task is converted to the mask con-
tour with a width of one pixel. We extract every pixel on the
mask contour through dense sampling in an anticlockwise
order, constituting a set of initial vertex candidates. Based on
the above predictions and two user defined thresholds, i.e.,
the corner probability threshold (Tcor) and the orientation
difference threshold (Tori), we define a corner criterion and

an edge orientation criterion for jointly selecting the valid
vertices from the initial vertex set.

For the corner criterion, the vertices with a corner pre-
diction probability smaller than Tcor are removed from the
initial vertex candidates. Then each group of adjacent ver-
tices are further converted into one valid vertex, i.e., the local
maximum of the corner prediction probability. Meanwhile,
in our edge orientation criterion, we calculate the absolute
difference of the orientation angle between two neighbour-
ing vertices for each initial vertex candidate. The vertices
with an absolute difference greater than Tori are selected as
the valid vertices. The valid vertices selected by the corner
criterion and the edge orientation criterion are combined into
a union vertex set and each group of adjacent vertices are
further merged into one vertex, constituting the final output
of the vertex generation module.

Polygon Refinement Network
Backbone and Vertex Embedding We adopt a variant of
ResNet50 (He et al. 2016) as the backbone of our polygon
refinement network (PRN). As shown in Figure 1, the Res-
Net backbone is served as an encoder for extracting features
from the input image with one building instance, producing
feature map that will be further used for vertex embedding.
Following (Acuna et al. 2018), we add a skip-connection
structure to up-sample and concatenate the feature maps of
four skip layers. The size of the final feature map for vertex
embedding is 1/2 of the original scale, which guarantees a
high resolution for accurately representing the vertex coor-
dinates and a proper receptive field for predicting the vertex
offsets in a balanced manner. The input dataset of our poly-
gon refinement network consists of the cropped images of
each building instance. Specifically, the large-scale remote
sensing images are cropped by bounding boxes correspond-
ing to each building instance and rescaled into the same size
(denoted by Hc ×Wc). The coordinates of building vertices
obtained from VGM are transformed accordingly for vertex
embedding on the final feature map of the backbone, which
are denoted by the red points on the cube above Vertex Em-
bedding in Figure 1. Each vertex is assigned with the fea-
tures extracted from the channel direction of the cube.

Propagation Model based on GGNN The polygon ver-
tices obtained from the above step can be regarded as nodes
of a graph, and every two neighboring vertices constitutes
an edge of the graph. Inspired by previous work (Acuna
et al. 2018), we adopt a gated graph neural network (Li et al.
2015) to learn the offset for each vertex, i.e., the relative dis-
placement between a predicted valid vertex (obtained from
VGM) and its nearest ground truth vertex. GGNN is capa-
ble of utilizing the extra information such as the feature of
each node (vertex) and the relation between each node of
the graph. The details of GGNN propagation model can be
found in (Li et al. 2015). After the propagation process, we
add two fully-connected layers which output a displacement
value for each vertex. The prediction of displacement value
is also formulated as a classification issue, and the whole
polygon refinement network is trained using the cross en-
tropy loss. In the coordinate transforming step, the output
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Figure 2: Examples of polygonal building segmentation results of our method. Our method produces vectorized outputs with
accurate vertices and edges, even for buildings with complex shapes.

displacement classes of PRN are converted to the displace-
ment coordinates, and added to the corresponding vertex co-
ordinates of VGM to obtain the final building polygons. In
this way, the GGNN-based PRN automatically moves the
polygon vertices to more accurate locations.

Implementation Details
In our multi-task segmentation network, we use entirely the
same Res-U-Net architecture (with ResNet101 as encoder)
and training strategies as those used in (Li, Lafarge, and
Marlet 2020) (for generating probability maps) for a fair
comparison. The original remote sensing images in the train-
ing dataset are randomly cropped into 256 × 256 pixels.
Accordingly, the test images are divided into 256 × 256
pixels with overlaps and the outputs are merged into large-
scale images of the original size. The weights of three tasks
(λ1, λ2, λ3) are all set as 1. For the vertex generation mod-
ule, the corner probability threshold Tcor is set as 0.5 and
the orientation difference threshold Tori is set as 20°. For
the polygon refinement network, each image cropped by the
bounding box is resized to 224× 224 pixels following (Ling
et al. 2019). For the ResNet-based backbone, the size of the
final feature map for vertex embedding is 112× 112× 256.
For the GGNN propagation model, the dimension sizes of
the two fully-connected layers and the output layer are 256,
256 and 15 × 15, indicating that the relative moving range
of each vertex is [-7,+7] pixels.

Results
Datasets
Following previous polygonal building segmentation stud-
ies (Zhao et al. 2018; Li, Wegner, and Lucchi 2019), we
evaluate our proposed method using two popular building
datasets: (1) CrowdAI mapping challenge dataset (Crow-
dAI) (Mohanty 2018). (2) SpaceNet building footprint
dataset (SpaceNet) (Van Etten, Lindenbaum, and Bacastow

2018). Both datasets provide the vertex coordinates of each
building polygon, which ensures an accurate evaluation of
vertex prediction. CrowdAI is a large-scale building foot-
print dataset. The training dataset consists of over 280,000
images with around 2,400,000 annotated building footprints,
and the test dataset contains over 60,000 images with around
515,000 buildings. The size of each image is 300× 300 pix-
els. The SpaceNet building dataset contains satellite images
and building footprints of several cities located in different
continents. We use all the annotated building instances of
Las Vegas in our experiment, which are accurately anno-
tated in a relatively unified standard compared with other
cities. The dataset of Las Vegas contains 3,851 images (in
650 × 650 pixels) and around 10,8000 building instances,
which are randomly divided into 3,081/385/385 images as
the training/validation/test datasets.

Evaluation Metrics

We use the official evaluation metrics of CrowdAI and
SpaceNet challenges following (Zhao et al. 2018; Li, Weg-
ner, and Lucchi 2019; Li, Lafarge, and Marlet 2020). Specif-
ically, for the CrowdAI dataset, we use the average precision
(AP) and average recall (AR) metrics under different IoU
thresholds, which are calculated in the same procedure as
(Li, Lafarge, and Marlet 2020; Girard et al. 2020). The met-
rics AP , AP50 and AP75 respectively denote the average
precision under the IoU threshold of 0.50 to 0.95 (with a step
of 0.05), 0.5, and 0.75 (similarly for AR, AR50 and AR75).
We also report the F1-score calculated from the above three
cases. For the SpaceNet dataset, we report the F1-score un-
der the IoU threshold of 0.5 following (Zhao et al. 2018;
Demir et al. 2018). We additionally evaluate the vertex pre-
diction results following (Liang et al. 2019; Nauata and Fu-
rukawa 2020). The precision, recall, and F1-score between
the predicted and the annotated vertex set are calculated un-
der the distance thresholds of 3 and 5 pixels.
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Figure 3: Qualitative comparison with state-of-the-art. The top figures show the results of ASIP (Li, Lafarge, and Marlet 2020)
and the bottom figures show the results of our method. The building polygons predicted by our method have more accurate
vertices in terms of locations, quantities, and angles.

Method AP AP50 AP75 AR AR50 AR75 F1 F150 F175
Mask-RCNN (He et al. 2017) 41.9 67.5 48.8 47.6 70.8 55.5 44.6 69.1 51.9

PANet (Liu et al. 2018) 50.7 73.9 62.6 54.4 74.5 65.2 52.5 74.2 63.9
PolyMapper (Li et al. 2019) 55.7 86.0 65.1 62.1 88.6 71.4 58.7 87.3 68.1

FrameField (Girard et al. 2020) 50.5 76.6 59.3 55.3 78.1 64.0 52.8 77.3 61.6
ASIP (Li et al. 2020) 65.8 87.6 73.4 78.7 94.3 86.1 71.7 90.8 79.2

Ours 73.8 92.0 81.9 72.6 90.5 80.7 73.2 91.2 81.3

Table 1. Quantitative comparison on CrowdAI dataset. Our method improves the F1-score of current state-of-the-art by 1.5%,
0.4%, and 2.1% under different IoU thresholds.

Method U-Net Mask-RCNN Zhao et al. Ours
F1-score 88.5 88.1 87.9 89.4

Table 2. Comparison with state-of-the-art on Vegas dataset.

Comparison with State-of-the-art
We compare our approach with several state-of-the-art meth-
ods on CrowdAI and Vegas datasets, including pixel-wise
segmentation methods (producing raster results) and polyg-
onal building segmentation methods (producing vectorized
results). For CrowdAI, our method is compared with two
pixel-wise segmentation methods (Mask-RCNN (He et al.
2017) and PANet (Liu et al. 2018)) and three polygonal seg-
mentation methods (PolyMapper (Li, Wegner, and Lucchi
2019), FrameField (Girard et al. 2020), and ASIP (Li, La-
farge, and Marlet 2020)). The input probability maps and
parameter setting of ASIP are the same as those used in
(Li, Lafarge, and Marlet 2020) for a fair comparison. For

the Vegas dataset, our method is compared with U-Net (the
winning solution of SpaceNet Building Detection Challenge
Round2) (Demir et al. 2018), Mask-RCNN (He et al. 2017),
and Mask-RCNN with regularization (Zhao et al. 2018).

Table 1 and Table 2 list the quantitative comparison of dif-
ferent methods. Our method achieves the highest F1-score
among four methods on the Vegas dataset. For the Crow-
dAI dataset, our method obtains the highest precision and
F1-scores and the second highest recall among six methods.
The superiority of our method is more remarkable when the
IoU threshold is high, indicating the more precise polygon
prediction results of our method. The decrease in recall com-
pared with ASIP is partly due to the failure cases on small
buildings. In Table 3, We further compare the vertex predic-
tion scores of our method with ASIP (the best among five
comparison methods on the CrowdAI dataset). Our algo-
rithm significantly outperforms ASIP on vertex prediction
scores, achieving an F1-score gain of over 6%. Figure 2
shows some examples of the qualitative results obtained by
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P3px R3px F13px P5px R5px F15px
ASIP 51.13 73.55 60.32 69.25 89.27 78.00
Ours 64.25 69.90 66.96 83.81 85.85 84.82

Table 3. Comparison of our method and ASIP in terms of
vertex prediction scores. Our algorithm achieves the F1-
score gain of 6.64% and 6.82% compared with ASIP.

P3px R3px F13px P5px R5px F15px
Baseline 51.67 50.24 50.94 76.66 74.31 75.47
+ VGM 56.71 52.53 54.54 81.54 75.22 78.25
+ PRN 69.50 61.70 65.37 86.54 76.56 81.24

Table 4. Results of ablation study on Vegas dataset in terms
of vertex prediction scores.

our approach. Figure 3 provides a qualitative comparison of
the predictions of ASIP (Li, Lafarge, and Marlet 2020) and
our method. Results demonstrate that our method is capable
of producing building polygons with accurate vertices and
edges (even short ones). The predicted building polygons of
our method have more accurate vertex quantity and angles
compared with ASIP.

Ablation Study and Failure Case Analysis
We conduct an ablation study to further evaluate the effect of
each component of our approach. Table 4 lists the vertex pre-
diction scores of Vegas dataset at different stages. The first
row shows the evaluation results of the building segmenta-
tion task of the multi-task model (denoted by Baseline). As
the outputs at this stage are in a raster format, we employ
the Douglas-Peucker algorithm (Wu and Marquez 2003) (a
popular contour simplification method) to convert the raster
building segmentation results into polygon vertices. The sec-
ond and the third rows show the evaluation results of the ver-
tex generation module and the polygon refinement network
(the final output). Figure 4 provides a qualitative comparison
of the prediction results at different stages. We also demon-
strate the visualized outputs of our multi-task segmentation
network in the first row of Figure 4.

Results demonstrate that the vertex generation module
produces much better vertex predictions compared with
the building segmentation results that are simplified by
Douglas-Peucker. Through effectively utilizing the corner
and edge orientation predictions, the vertex generation mod-
ule is capable of filtering out invalid vertices and remain-
ing valid vertices with accurate quantity, and much more ro-
bust to poor building segmentation results compared with
Douglas-Peucker. The polygon refinement network further
improves the vertex prediction F1-scores by adjusting the
vertices to more accurate locations. Figure 5 shows three
typical examples of failure cases of our proposed method.
Our method has difficulties in producing accurate polygons
for buildings that are seriously sheltered by trees (left),
buildings with multiple extremely short edges (middle), and
high-rise buildings with serious parallax effect (right), which
should be explored and solved in our future work.

Baseline + VGM + PRN

Segmentation Corner Edge orientation

Figure 4: The visualized outputs of our multi-task network
(the first row) and a qualitative comparison of the prediction
results at different stages of our approach (the second row).

Figure 5: Three typical examples of failure cases of our pro-
posed method. Our method fails to produce accurate poly-
gons for buildings that are seriously sheltered by trees (left),
buildings with multiple extremely short edges (middle), and
high-rise buildings with serious parallax effect (right).

Conclusion
In this paper, we have presented a novel building segmen-
tation approach that is capable of producing vector building
polygons from remote sensing images. Qualitative and quan-
titative evaluations on two popular building segmentation
datasets demonstrate that our proposed approach achieves
significant improvements over state-of-the-art methods. The
effect of each component of our approach is also verified
in the ablation study. We believe that this paper motivates
novel ideas for predicting vectorized object representations
and provides effective solutions for practical applications in
Geographic Information Systems. In our future work, we
would like to explore novel methods for more complex ap-
plication scenarios, such as producing the vectorized roof
and footprint polygons for highrise and dense buildings.
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