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Abstract

Zero-Shot Learning (ZSL) aims to recognize images belong-
ing to unseen classes that are unavailable in the training
process, while Generalized Zero-Shot Learning (GZSL) is a
more realistic variant that both seen and unseen classes ap-
pear during testing. Most GZSL approaches achieve knowl-
edge transfer based on the features of samples that inevitably
contain information irrelevant to recognition, bringing nega-
tive influence for the performance. In this work, we propose a
novel method, dubbed Disentangled-VAE, which aims to dis-
entangle category-distilling factors and category-dispersing
factors from visual as well as semantic features, respectively.
In addition, a batch re-combining strategy on latent features
is introduced to guide the disentanglement, encouraging the
distilling latent features to be more discriminative for recog-
nition. Extensive experiments demonstrate that our method
outperforms the state-of-the-art approaches on four challeng-
ing benchmark datasets.

Introduction
Benefiting from the fast development of deep learning (Le-
Cun, Bengio, and Hinton 2015; Ju et al. 2020b,a; Yang
et al. 2020), supervised image classification (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016; Chang et al.
2020) has achieved remarkable success. However, the suc-
cess is principally owed to abundant labeled data, which is
costly or even impossible to acquire in most cases. Thus,
Zero-Shot Learning (ZSL) (Palatucci et al. 2009; Larochelle,
Erhan, and Bengio 2008) is proposed to tackle the problem
above. In ZSL setting, the classes covered by the training im-
ages are referred to as the seen classes, while other classes
are referred to as unseen classes, whose images are not avail-
able during training. Compared to ZSL that only unseen
classes appear in the testing phase, Generalized Zero-Shot
Learning (GZSL) is a more realistic and challenging variant
of ZSL, that is, testing images can come from both seen and
unseen classes.

Due to its promising application, GZSL has received ex-
tensive attention. Methods for GZSL can be roughly divided
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Figure 1: Illustration of the overall concept of our method.
Distilling latent factors (in terms of rhombuses) and dispers-
ing latent factors (in terms of triangles) are disentangled
from paired visual and semantic features of seen classes.
Classifier (in terms of ovalities) is trained using only the
distilling latent features of both seen and semantic-part of
unseen classes.

into three categories based on the space where the classi-
fication is conducted: (1) semantic-space (Lampert, Nick-
isch, and Harmeling 2009; Frome et al. 2013), (2) visual-
space (Kumar Verma et al. 2018; Xian et al. 2018b; Felix
et al. 2018), and (3) common-space (Schonfeld et al. 2019).
Semantic-space based methods learn a mapping from vi-
sual space to semantic space on seen classes and generalize
the learned mapping to unseen classes. Visual-space based
methods formalize GZSL as a missing data problem and
generate unseen images or image features to augment data.
Common-space based methods embed visual features and
semantic features into a common latent space.

Most GZSL approaches (Xian, Schiele, and Akata 2017;
Kumar Verma et al. 2018; Xian et al. 2018b; Felix et al.
2018; Schonfeld et al. 2019; Wei et al. 2019; Wei, Deng,
and Yang 2020; Zhao et al. 2018; Min et al. 2020) achieve
knowledge transfer based on overall representations of sam-
ples. The visual and semantic features inevitably contain in-
formation that is irrelevant to classification and influences
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the classification results in a negative way. Concretely, vi-
sual features are extracted from pre-trained image classifi-
cation model, e.g., ResNet (He et al. 2016), obtained from
the entire image, while semantic features are per-class at-
tributes or sentence embeddings extracted from sentences
annotated per image averaged per class (Reed et al. 2016).
Thus, a simple yet effective solution to improve the classi-
fication performance is to decouple the irrelevant features
from the discriminative features.

Figure 1 illustrates the motivation of our method. In or-
der to exclude the classification-irrelevant information, we
present Disentangled-VAE to disentangle category-distilling
factors and category-dispersing factors from visual features
as well as semantic features respectively.

To be specific, category-distilling factors, corresponding
to the discriminative part of features, are used for recon-
struction as well as classification, while category-dispersing
factors contain more irrelevant information for classifica-
tion and are only used for reconstruction. In addition, con-
sidering that the category-dispersing factors disentangled
from different samples contain few discriminative informa-
tion, we frame a batch re-combining strategy on latent fea-
tures to guide the disentanglement. Specifically, we shuf-
fle the category-dispersing latent features in a batch and re-
combine them with the category-distilling ones. A classifi-
cation loss is employed to maintain the category discrim-
inability of the recombined latent features.

Our key contributions can be summarized as follows:

• We propose Disentangled-VAE for GZSL to dis-
entangle category-distilling factors and category-
dispersing factors from visual as well as semantic
features, respectively. To the best of our knowledge,
this is the first attempt to solve GZSL problem using
disentangled representation learning.

• We introduce a batch re-combining strategy on la-
tent features, which guides the disentanglement to
obtain the category-distilling features for more ac-
curate recognition.

• Extensive experimental results show that our method
outperforms the state-of-the-art methods on four
benchmark datasets.

Related Work
Zero-Shot Learning
ZSL has the ability to transfer knowledge to solve the prob-
lem of image classification even if the testing categories are
not incorporated with training set. In ZSL, the instances of
unseen classes are mapped into visual space only with se-
mantic descriptions. However, the practical application of
conventional ZSL methods is very poor due to mechanical
setting that test samples are only sampled from the unseen
classes. To address the disadvantages of ZSL, GZSL is more
available since it not only learns information which can be
adapted to unseen classes but also apply to the testing data
from seen classes.

Inchoate ZSL methods usually established the rigid cor-
respondence between original visual features and primitive

label such as DAP (Lampert, Nickisch, and Harmeling 2009)
and IAP (Lampert, Nickisch, and Harmeling 2013). Subse-
quently, more and more approaches aim to learn a mapping
function to project from visual space to semantic space by
each class attributes (Romera-Paredes and Torr 2015; Socher
et al. 2013), or from semantic space to visual space (Zhang,
Xiang, and Gong 2017). In addition to the model learning
one-to-one mapping, other approaches also map visual and
semantic features into a common space (Akata et al. 2015b;
Sung et al. 2018).

One major drawback of all the methods mentioned above
is that the training phase is conducted under the data of the
seen classes, which leads to the over-fitting of seen class
samples in the test phase even if samples have not been
shown in the training phase in the GZSL setting. After that,
generative methods can generate seen class and unseen class
samples so that the prediction will not be biased towards the
seen classes. According to category description or attribute,
Generative Adversarial Networks (GAN) (Goodfellow et al.
2014) and Variational Auto-Encoder (VAE) (Kingma and
Welling 2013) are used to generate visual features that ap-
proximate the original data, and the generated visual features
and original features were combined to train the classifier to
reduce the deviation problem of the classifier (Xian et al.
2018b). Felix et al. set L2 normalization via calculating Eu-
clidean distance to constrain the features of reconstruction to
ensure the high quality of the generated samples (Felix et al.
2018). Not only can GAN be used to generate unseen classes
samples, but also VAE has the ability to solve the problem of
inadequate unseen classes samples. Schonfeld et al. utilized
double-deck VAE structure to reconstruct the visual and se-
mantic features respectively, and used cross-modal recon-
struction to establish the deep relationship between visual
and semantic space to align them (Schonfeld et al. 2019).

Nonetheless, none of the methods mentioned above take
into account the fact that the features of each category are
redundant in the classification process, which is called cat-
egory redundancy. Category redundancy information exists
not only in visual space, but also in semantic space, which
only influences the classification results. Therefore, we pro-
pose Disentangled-VAE model to extract category-distilling
features which is sensitive for classification.

Disentangled Representation
With the advance of deep generative models, many efforts
have been made on disentangled representations. Higgins
et al. set a heavier weight on KL divergence for better disen-
tanglement (Higgins et al. 2016). Kim and Mnih derived a
Total Correlation (TC) from the KL divergence and empha-
sized this TC term as the key point in disentangled repre-
sentation learning (Kim and Mnih 2018). Tran, Yin, and Liu
proposed a framework to separate the information of pos-
ture and character identity for face recognition (Tran, Yin,
and Liu 2017). Jiang et al. disentangled the content infor-
mation and style information of images in order to generate
the style transfered images (Jiang et al. 2020). Zhu et al.
proposed a Self-Supervised Sequential VAE model which
was use to disentangle the time-varying variables and time-
invariant variables of video and audio sequences (Zhu et al.
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Figure 2: The framework of our Disentangled-VAE method. The proposed model consists of two parallel VAEs with two
branches each: one for visual features, the other for semantic features. Distilling latent factors and dispersing latent factors
are disentangled from visual as well as semantic features and only distilling ones will be used for classification. We accom-
plish disentanglement based on three kinds of loss functions, namely: (1) Variational Auto-Encoder loss LV AE , (2) Shuffling
classification loss LSC , and (3) Modality alignment loss LMA.

2020). Meanwhile, more and more image-to-image transla-
tion models (Almahairi et al. 2018; Huang et al. 2018; Lee
et al. 2018) also used the idea of decoupling, which separate
the original features into domain-invariant content features
and domain-specific attribute vectors to improve the perfor-
mance.

Based on the effectiveness of the methods mentioned
above, we propose a framework which consists of double-
deck VAE structure for disentangling the visual and seman-
tic features so that the input features can be more discrimi-
native in the process of classification.

Methodology
In this section, we first present the definition of GZSL. Then
we briefly introduce VAE, the basic building block of our
model. Next the proposed method is explained in detail. Fi-
nally, the training and inference process of our method is
summarized at the end of the section.

Problem Definition
Denote X ⊆ Rd1 as the visual space and C ⊆ Rd2 as
the semantic space. Y S = {ysi |i = 1, 2, . . . , Ns} and
Y U = {yuj |j = 1, 2, . . . , Nu} is referred to as the set of
seen categories and the set of unseen categories. In addition,
seen and unseen categories are disjoint, i.e., Y S ∩ Y U = ∅.

Given training examples {(x, ys, c)|x ∈ X, ys ∈ Y S , c ∈

C} of seen classes and auxiliary data {(yu, c)|yu ∈ Y U , c ∈
C} of unseen classes, ZSL aims to learn a classifer fZSL :
X → Y U that can recognize a testing instance x ∈ X be-
longing to the unseen classes whose instances are not avail-
able during training. GZSL is a more realistic and challeng-
ing variant of ZSL, aiming to learn a classifier fGZSL :
X → Y S ∪ Y U .

Variational Auto-Encoder
Auto-Encoder (AE) learns the latent representation of input
by minimizing reconstruction error while VAE is the varia-
tional counterpart of AE. Assuming a specific prior p(z) on
the latent space and parameterizing p(x|z) as well as q(z|x)
with deep neural networks, one can get parameters φ and θ
by optimizing objective below:

max
φ,θ

Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z)), (1)

where the first term can be seen as the reconstruction er-
ror, similar to classical AE. The second term is the KL-
divergence between distributions q(z|x) and p(z), constrain-
ing the encoder distribution to match the factorized prior,
e.g., Gaussian distribution.

In order to obtain a differentiable estimator of the varia-
tional lower bound, a trick called reparameterization is used:

z = µφ(x) + σφ(x)� ε, (2)

1968



where µφ(x) and σφ(x) are the outputs of encoders, repre-
senting the mean and variance of the posterior distributions.
� is the element-wise product and ε ∼ N (0, 1) is an auxil-
iary noise variable.

Disentangled-VAE
Just like any other machine learning task, the performance of
GZSL is heavily dependent on the data representation. How-
ever, representations of most exsiting GZSL approaches are
evolved from overall features of instances, extracted from
pre-trained model or hand-annotated. These features in-
evitably contain information irrelevant to classification and
eventually bring negative influence to classification. There-
fore, designing models that can exclude irrelevant informa-
tion to mitigate its negative impact is a keypoint to improve
the classification performance of GZSL.

In order to exclude the irrelevant information, we present
Disentangled-VAE to disentangle category-distilling factors
and category-dispersing factors from visual features as well
as semantic features, as illustrated in Figure 2. Differing
from vanilla VAE that parameterize encoder distribution
q(z|x) using neural network, our objective is to learn the
encoder distribution q(zt, zp|x), where zt and zp represent
category-distilling factors and category-dispersing factors,
respectively.

To this end, we build a model with two parallel VAEs and
each with two branches. The visual encoder Ev and seman-
tic encoder Es map the input visual features x and semantic
features c to the corresponding ditilling latent features ztv ,
zts and dispersing latent features zpv , zps , respectively. In ad-
dition, the visual decoder Dv and semantic decoder Ds are
employed for construction and classifiers Fv as well as Fs
are utilized for better disentanglement.

Variational Auto-Encoder loss. Our model consists of
two VAEs: one for visual feature and the other for seman-
tic feature. The Variational Auto-Encoder loss constrains
the encoder distributions of distilling branch and dispersing
branch to match the factorized priors, respectively. In the
meantime, it guarantees that the input features can be recon-
structed from distilling latent features and dispersing latent
features by minimizing reconstruction error.

Denote encoder distrubutions of visual modality as
qφ(z

t
v|x) and qφ(zpv |x), belonging to distilling branch and

dispersing branch respectively. Denote decoder distribution
of visual modality as pθ(x|ztv, zpv). The priors p(ztv) and
p(zpv) are both standard Gaussian distributions. Loss func-
tion of visual VAE is:

LvV AE =− Eqφ(ztv,zpv |x)[log pθ(x|z
t
v, z

p
v)]

+DKL(qφ(z
t
v|x)||p(ztv))

+ αDKL(qφ(z
p
v |x)||p(zpv)),

(3)

where the first term is reconstruction error. The second and
third term are the KL-divergence between encoder distribu-
tions and priors for distilling and dispersing branch, respec-
tively. α is the weighting factor. Noting that dispersing la-
tent features are redundant for classification but indispens-
able for reconstruction, we use the sum of ztv and zpv for
reconstruction.

Similarly, loss function of semantic VAE is:

LsV AE =− Eqφ(zts,zps |c)[log pθ(c|z
t
s, z

p
s )]

+DKL(qφ(z
t
s|c)||p(zts))

+ αDKL(qφ(z
p
s |c)||p(zps )).

(4)

The final VAE loss is combined as:

LV AE = LvV AE + LsV AE . (5)

Shuffling classification loss. Considering that the differ-
ent category-dispelling factors contain few discriminative
information and do not change the classification results, we
add two auxiliary classifiers to guide the disentanglement,
each for a modality.

Denote ZTm = {ztm,1, ztm,2, . . . , ztm,N} and ZPm =

{zpm,1, z
p
m,2, . . . , z

p
m,N} as sets of distilling and dispersing

latent features in a batch, respectively. N is the batch size
and m ∈ {v, s} represents different modality. We shuffle
ZPm and get Z̃Pm = {z̃pm,1, z̃

p
m,2, . . . , z̃

p
m,N}. Shuffling clas-

sification loss below is employed for better disentanglement:

LSC =
∑
m

N∑
i=1

− Fm(ztm,i + zpm,i)[yi]

− Fm(ztm,i + z̃pm,i)[yi],

(6)

where the first and the second term is the negative log like-
lihood loss of original and re-combined latent features, re-
spectively. Fm is the classifiers we add that output the log-
likelihood of belonging to all classes. yi ∈ {0, 1, . . . , N−1}
is the label of ith latent features in the batch and N is the
number of classes.

Modality alignment loss. Aligning visual and seman-
tic features in the latent space is of great importance for
GZSL, which guarantees the generalization from seen to
unseen classes. We employ cross-reconstruction loss and
distribution-distance loss for modality alignment. The cross-
reconstruction loss is denoted as :

LCR = |x−Dv(Es(c))|+ |c−Ds(Ev(x))|, (7)

where the first term is the cross-reconstruction error from
semantic modality to visual modality and the second term
inversely. Ev, Es and Dv, Ds are encoders and decoders of
corresponding modality. Note that the outputs of our en-
coders consist of two parts, Es(c) = (zts, z

p
s ) for example,

meaning that we reconstruct inputs based on both distilling
and dispersing latent features.

The distribution-distance loss is:

LDD =(||µtv − µts||22 + ||σtv
1
2 − σts

1
2 ||2Frobenius)

1
2

+ (||µpv − µps ||22 + ||σpv
1
2 − σps

1
2 ||2Frobenius)

1
2 ,

(8)

where the first term is the distribution distance between dis-
tilling branches of two modalities and the second term for
dispersing branches. µ and σ are the mean and variance of
the posterior distributions which are the outputs of encoders.

The final modality alignment loss is:

LMA = LCR + βLDD, (9)
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where β is the weighting coefficient of the distribution dis-
tance loss.

Overall loss function. As a summary, the overall loss for
our Disentangled-VAE method is expressed as follows:

L = LV AE + γLSC + λLMA, (10)

where LV AE is the basic VAE loss, LSC is the shuffling
classification loss to guide the disentanglement, and LMA is
the modality alignment loss to align the latent visual and se-
mantic representation. γ and λ are the weighting coefficients
of shuffling classification loss and modality alignment, re-
spectively.

Training and Inference
Given visual features extracted from pre-trained model and
semantic features hand-annotated , we solve GZSL problem
in three steps: (1) Training Disentangled-VAE, (2) Training
classifier, and (3) Inference.

Specifically, paired visual and semantic features of seen
classes are employed to train the Disentangled-VAE model
based on equation (10). Once trained, Disentangled-VAE is
able to disentangle distilling and dispersing latent factors
from features that belong to seen classes as well as unseen
classes. Different from most GZSL methods that train classi-
fiers based on overall features, our classifier is trained using
only the distilling latent features of both seen and semantic-
part of unseen classes. During inference, visual features x of
images extracted from pre-trained model are firstly mapped
to the distilling latent features zt using the learned visual en-
coder Ev . The final classification results are obtained from
zt based on the learned classifier. Note that images can come
from both unseen and seen classes.

Experiments
In this section, all datasets and evaluation protocol are intro-
duced in detail. In addition, we present the the implemen-
tation details as well as the comparison of experimental re-
sults with other state-of-the-art methods. Eventually, abla-
tion study proves the effectiveness our method.

Datasets and Evaluation Protocol
We evaluate our model on four popular datasets: Caltech-
UCSD-Birds 200-2011 dataset (CUB) (Welinder et al.
2010), Animals with Attributes 1 (AWA1) (Lampert, Nick-
isch, and Harmeling 2009) and 2 (AWA2) (Xian et al.
2018a), SUN Attribute dataset (SUN) (Patterson and Hays
2012). The CUB dataset contains a total of 200 bird species,
150 of which are seen and 50 of which are unseen. Since
there are subtle differences between the categories of birds,
it is necessary for the learning model to extract more dis-
criminative features. AWA1 and AWA2 are datasets which
are commonly used for animal classification, consisting of
40 seen classes and 10 unseen classes. SUN is a large
scenario-style dataset with 645 seen classes and 72 unseen
classes. The detailed information of each dataset is summa-
rized in Table 1. To avoid violating the zero-shot setting,
we adopt the typical training splits proposed by (Xian et al.
2018a) for training split so that test samples can be disjoint

Dataset d1 d2 Ns Nu Xa

CUB 2048 312 150 50 11788
AWA1 2048 85 40 10 40475
AWA2 2048 85 40 10 37322
SUN 2048 102 645 72 15339

Table 1: Datasets used in our experiments and their statistics,
in terms of dimensionality of visual features d1, dimension-
ality of semantic features d2, number of seen classes Ns,
number of unseen classes Nu and number of all instances
Xa.

from training samples which ResNet-101 is trained with on
each dataset.

In addition to datasets setting, the evaluation protocol is
shown as following:
• U : the average accuracy of per-class on test images from

unseen classes, which represents the capacity of classify-
ing unseen classes samples.

• S : the average accuracy of per-class on test images from
seen classes, which is used to represent the capacity of
classifying seen classes samples.

• H : the harmonic mean value, which is formulated as

H =
2× U × S
U + S

. (11)

Implementation Details
Following the setting in other methods (Xian et al. 2018b;
Schonfeld et al. 2019), we utilize a pre-trained ResNet-101
to extract visual features which are represented as 2048-
dimensional vectors. Semantic features are per-class at-
tributes annotated by humen. The encoder Ev and Es, de-
coder Dv and Ds consist of multilayer perceptron (MLP)
with two hidden layers. We utilize 1560, 1660 hidden units
for encoder Ev and 1450, 660 hidden units for encoder Es.
The size of latent feature is implemented as 64 in the whole
datasets. Due to final classification being trained in the latent
space, we set the same size as latent feature for classifier.
Our approach is implemented with PyTorch(Paszke et al.
2019) and optimized by ADAM optimizer (Kingma and Ba
2014). In addition, we set learning rate as 0.00015, batch
size as 50 and epochs as 150. After the process of training
VAE model is complete, the final classifier will be trained
with category-distilling variables. Due to the difference be-
tween each dataset, the proportion of seen classes samples
and unseen classes samples is different and inspired the re-
sults of many experiments we have made, we use a fixed
dataset with 200 samples per seen class and 400 samples
per unseen class in CUB dataset, 200, 460 in AWA1 dataset,
200, 480 in AWA2 dataset, and 200, 410 in SUN dataset.

Comparison with State-of-the-Art Methods
Baseline models We compare our model with fifteen
state-of-the-art methods. Among them, the typical GZSL
methods ALE (Akata et al. 2015a), DeViSE (Frome et al.
2013), ReViSE (Hubert Tsai, Huang, and Salakhutdinov
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CUB AWA1 AWA2 SUNModel
U S H U S H U S H U S H

ALE 23.7 62.8 34.4 16.8 76.1 27.5 14.0 81.8 23.9 21.8 33.1 26.3
DeViSE 23.8 53.0 32.8 13.4 68.7 22.4 17.1 74.7 27.8 16.9 27.4 20.9
ReViSE 37.6 28.3 32.8 46.1 37.1 41.1 46.4 39.7 42.8 24.3 20.1 22.0
DEM 19.6 57.9 29.2 32.8 84.7 47.3 30.5 86.4 45.1 19.6 57.9 29.2

SP-AEN 34.7 70.6 46.6 - - - 23.3 90.9 37.1 24.9 38.6 30.3
cycle-CLSWGAN 59.3 47.9 53.0 63.4 59.6 59.8 - - - 33.8 47.2 39.4

f-CLSWGAN 57.7 43.7 49.7 61.4 57.9 59.6 53.8 68.2 60.2 36.6 42.6 39.4
LiGAN 46.5 57.9 51.6 52.6 76.3 62.3 54.3 68.5 60.6 42.9 37.8 40.2

f-VAEGAN-D2 60.1 48.4 53.6 70.6 57.6 63.5 - - - 38.0 45.1 41.3
CADA-VAE 51.6 53.5 52.4 57.3 72.8 64.1 55.8 75.0 63.9 47.2 35.7 40.6

DASCN 59.0 45.9 51.6 68.0 59.3 63.4 - - - 38.5 42.4 40.3
LsrGAN 59.1 48.1 53.0 74.6 54.6 63.0 74.6 54.6 63.0 37.7 44.8 40.9

OCD 59.9 44.8 51.3 - - - 73.4 59.5 65.7 42.9 44.8 43.8
E-PGN 57.2 48.5 52.5 86.3 52.6 65.3 83.6 48.0 61.0 - - -
DAZLE 42.0 65.3 51.1 - - - 25.7 82.5 39.2 25.7 82.5 25.8

Our model 51.1 58.2 54.4 60.7 72.9 66.2 56.9 80.2 66.6 36.6 47.6 41.4

Table 2: Performance of GZSL on four classification benchmarks. U and S are the recognition accuracies tested on seen and
unseen classes, respectively. H is the harmonic mean of U and S in GZSL setting.(Top one performance is highlighted)

CUB AWA1 AWA2 SUNModel
U S H U S H U S H U S H

Base model 51.6 53.5 52.4 57.3 72.8 64.1 55.8 75.0 63.9 47.2 35.7 40.6
+dis 50.0 58.0 53.7 57.6 73.0 65.0 56.1 78.9 65.6 46.4 36.9 41.1

+dis+re 51.1 58.2 54.4 60.7 72.9 66.2 56.9 80.2 66.6 36.6 47.6 41.4

Table 3: Ablation study on four datasets. dis and re represent the disentanglement and batch re-combining strategy, respectively.

2017), DEM (Zhang, Xiang, and Gong 2017) and SP-AEN
(Chen et al. 2018) aim to learn a linear or nonlinear map-
ping function to find the relation between semantic space
and visual space. In addition to the idea of projection, the
generative methods are designed to generate synthetic un-
seen class samples by using VAE or GAN to approximate the
distribution of class visual samples as the function of class
semantic descriptions such as f-CLSWGAN (Xian et al.
2018b), cycle-CLSWGAN (Felix et al. 2018), LiGAN (Li
et al. 2019), f-VAEGAN-D2 (Xian et al. 2019), DASCN (Ni,
Zhang, and Xie 2019), CADA-VAE (Schonfeld et al. 2019),
OCD (Keshari, Singh, and Vatsa 2020), DAZLE (Huynh
and Elhamifar 2020), E-PGN (Yu et al. 2020) and LsrGAN
(Vyas, Venkateswara, and Panchanathan 2020).

Results Table 2 represents the results of the comparing
approaches and our method, which significantly indicates
that our proposed method is superior to the state-of-the-art
methods mentioned in the table. Or rather, in our method,
the value of H can reach 54.4% on CUB dataset, 66.2%
on AWA1, 66.6% on AWA2, and 41.4% on SUN. Specif-
ically compared with the original CADA-VAE model, our
method increases the H value of our model from 52.4% to
54.4% on CUB dataset, from 64.1% to 66.2% on AWA1,
from 63.9% to 66.6% on AWA2, and from 40.6% to 41.4%
on SUN. The reason why our method performs better is that
our model separates the discriminative features of classifi-
cation before inputting to the classifier, which enables the

classifier to learn the difference between categories better.
The performance boost is attributed to the effectiveness of
our model which transfers the knowledge from seen classes
and excavates category-distilling visual features of the un-
seen classes.

Ablation Study
Effectiveness of disentanglement and batch re-
combining strategy. In order to prove that the effec-
tiveness of our model depends on the disentanglement
of the features and the batch re-combining strategy. We
make an ablation study to verify the importance of these
two componets separately. The results of our model with
different modules are presented in Table 3.

By ablation experiments results, we can see that after
adding the disentanglement we proposed to the basic model,
compared with the basic model, the H value has increased
from 52.4% to 53.7% on CUB dataset, and from 64.1% to
65.0% on AWA1, from 63.9% to 66.6% on AWA2, from
40.6% to 41.1% on SUN, which shows that the model can
extract features with better discrimination, which is called
category-distilling feature, for classification after the disen-
tanglement operation. After adding the batch re-combining
strategy we proposed, our model has improved from 53.7%
to 54.4% on CUB dataset, from 65.0% to 66.2% on AWA1,
and from 65.6% to 66.6% on AWA2, and on SUN the
episode has increased from 41.1% to 41.4%. This phe-
nomenon shows that the batch re-combining strategy as an
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(a) CUB (b) AWA1 (c) AWA2 (d) SUN

Figure 3: The influence of the weighting coefficient α. We measure the harmonic mean accuracy (H) on CUB, AWA1, AWA2,
and SUN.

CUB AWA1 AWA2 SUNLatent Features
U S H U S H U S H U S H

zp 43.4 53.1 47.7 44.9 68.2 54.1 42.3 68.8 52.4 35.7 30.5 32.9
zp + zt 49.6 56.8 52.9 62.4 65.8 64.1 54.8 78.8 64.8 42.5 36.0 39.0
zt 51.1 58.2 54.4 60.7 72.9 66.2 56.9 80.2 66.6 36.6 47.6 41.4

Table 4: Discriminability of different latent features on CUB, AWA1, AWA2, and SUN. zp and zt represent the dispersing and
distilling latent features, respectively. U , S, and H are the average accuracy of unseen classes, the average accuracy of seen
classes and the harmonic mean accuracy, respectively.

auxiliary operation can effectively guide disentanglement to
extract better category-distilling features.

Choice of weighting coefficient α. α is the weighting co-
efficient of the KL-divergence for the dispersing branch,
same for both visual VAE and semantic VAE. When α in-
creases, the encoder distributions of dispersing branch will
be forced to better match the factorized unit Gaussian priors
and the weight of reconstruction that the dispersing branch
contributes to will decline correspondingly.

In this experiment, we vary α from 1 to 20 on CUB, from
1 to 20 on AWA1, from 1 to 25 on AWA2, and from 1 to
16 on SUN. The harmonic mean accuracies increase until
they achieve their peak accuracies at α = 10, 14, 18, 8 for
different datasets, as shown in Figure 3. We conclude from
this experiment that a tradeoff between reconstruction er-
ror and KL-divergence of dispersing branch is gained when
α = 10, 14, 18, 8 on CUB, AWA1, AWA2, and SUN, respec-
tively. In fact, the main difference of the constraint on dif-
ferent latent features is the weighting coefficient except the
batch re-combining strategy. As shown in the experiment,
optimal performance is achieved when the weighting coef-
ficient of dispersing branch α is greater than one and the
weighting coefficient of distilling branch is set to one. We
can also conclude that dipersing latent features better match
the factorized prior than the distilling ones, while distilling
latent features contribute more to reconstruction than dis-
persing ones.

Discriminability of different latent features. To investi-
gate what is encoded in distilling and dispersing latent fea-
tures, we add classifiers on the learned latent features to ob-
tain the discriminability of different features. Intuitively, the

distilling latent features are supposed to be more discrimi-
native than the dispersing ones. We report the accuracy for
different latent features on CUB, AWA1, AWA2, and SUN.

We can obviously observe in Table 4 that the dispersing
latent features are less discriminative as expected and the
accuracy increases with the addition of the distilling latent
features, achieving almost the same results as CADA-VAE
where similar overall latent features are used for classifica-
tion. The distilling latent features are proved to be the best
latent features for classification, whose discriminability sur-
pass others by a large margin. We can conclude from this ex-
periment that the dispersing latent features are less discrimi-
native due to the inclusion of irrelevant information and our
method can successfully disentangle category-ditilling latent
features from the overall features for more accurate classifi-
cation.

Conclusion
In this work, we propose Disentangled-VAE to excavate
category-distilling information for Generalized Zero-Shot
Learning. The proposed model can separate the latent
features into category-distilling features for classification
as well as reconstruction and category-dispersing features
only for reconstruction. In addition, we design a batch re-
combining strategy as an auxiliary operation for better dis-
entanglement. The training process provides us with an en-
coder to encode discriminative features for classification
from testing features in the latent space, where a linear soft-
max classifier can be trained to easily recognize different
categories. We further prove the necessity of the auxiliary
operation through ablation experiments and verify the effec-
tiveness of our method on four benchmark datasets.
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