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Abstract

We study the problem of object detection when training and
test objects are disjoint, i.e. no training examples of the tar-
get classes are available. Existing unseen object detection
approaches usually combine generic detection frameworks
with a single-path unseen classifier, by aligning object re-
gions with semantic class embeddings. In this paper, inspired
from human cognitive experience, we propose a simple but
effective dual-path detection model that further explores as-
sociative semantics to supplement the basic visual-semantic
knowledge transfer. We use a novel target-centric multiple-
association strategy to establish concept associations, to en-
sure that the predictor generalized to unseen domain can be
learned during training. In this way, through a reasonable
inference fusion mechanism, those two parallel reasoning
paths can strengthen the correlation between seen and un-
seen objects, thus improving detection performance. Experi-
ments show that our inductive method can significantly boost
the performance by 7.42% over inductive models, and even
5.25% over transductive models on MSCOCO dataset.

Introduction
Object detection has shown great success in the deep learn-
ing era, relying on a huge amount of training data with ac-
curate bounding box annotations (Ren et al. 2015; Redmon
et al. 2016; Lin et al. 2017; Liu et al. 2020). However, de-
tectors can hardly generalize to novel target domain where
the labeled data are scarce or none, since some objects are
hard to collect, e.g. endangered animals or constantly emerg-
ing new products. In contrast, humans exhibit a remarkable
ability of learning new concepts quickly, even without see-
ing any visual instance. To bridge this gap between state-of-
the-art detection and human-level intelligence, empowering
detectors with the capability of detecting novel classes has
become a key area of interest.

Zero-shot object detection (ZSD) is a recently-proposed
solution that aims to detect novel (unseen) objects with
no annotated samples during training (Bansal et al. 2018;
Demirel, Cinbis, and Ikizler-Cinbis 2018; Rahman, Khan,
and Porikli 2018; Rahman, Khan, and Barnes 2019; Li
et al. 2019; Rahman, Khan, and Porikli 2020; Li, Shao, and
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Figure 1: Existing ZSD models generally adopt single-path
label prediction for each RoI, realized by aligning RoI with
attributes (or text descriptions). Humans learn a previously
unseen concept by both inferring through auxiliary knowl-
edge (e.g. attributes) and associating and analogizing with
seen objects. Inspired from this, we propose a two-path rea-
soning mechanism for ZSD and employ inference fusion to
obtain the final results.

Wang 2020). In contrast with zero-shot recognition (Lam-
pert, Nickisch, and Harmeling 2013; Wang et al. 2016; Li
et al. 2017; Sung et al. 2018; Zablocki et al. 2019; Luo et al.
2020), it requires the model to not only recognize the object
types but also localize the targets among millions of poten-
tial regions of interest (RoIs). Current ZSD models gener-
ally assume the localization process is class-agnostic (Wang
et al. 2020), i.e. capable of proposing high-confidence re-
gions for unseen objects, and mainly focus on attaching a
zero-shot classifier within de facto detection networks. They
leverage shared semantic information (e.g. attributes, word
vectors, text descriptions) to enable the knowledge transfer
from seen objects to unseen ones. Specifically, it first learns
the visual-semantic mapping from visual features of RoIs to
class embeddings during training and then applies the map-
ping to test RoIs, whose labels are predicted by searching
the nearest neighbor class in the semantic embedding space.
Several studies (Zhao et al. 2020; Zhu, Wang, and Saligrama
2020) alternatively explore generative models to synthesize
unseen RoIs and then retrain a supervised unseen classifier.

Existing methods above generally adopt the basic knowl-
edge transfer mechanism that builds up the feature-label cor-
respondence merely from perceived visual features. For a
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target-domain RoI, a single-path label prediction is made
directly from all given concepts, without considering their
possible connections in the inference. Intuitively, when hu-
mans learn a previously unseen concept, they not only infer
directly through auxiliary knowledge (e.g. text descriptions,
attributes), but also make an empirical analysis by analogy
with past knowledge (e.g. seen objects) to assist the learn-
ing process (shown in Fig.1) (Anderson and Bower 2014).
For example, the first time we see a “leaf butterfly”, we can
match with specified attributes, and also concurrently draw
an analogy with objects seen in past (e.g. butterflies, dead
leaves, moths) to corroborate the former prediction results.

Inspired from above, we propose a novel dual-path ZSD
model that can automatically explores concept association
to supplement the basic visual-semantic knowledge transfer,
among which the establishment of analogy between con-
cepts is important. Considering target instances are absent
during training, we establish the analogy relationship in ad-
vance by using class embeddings, for which a novel target-
centric multi-association strategy is proposed. An analogy
predictor that is generalizable to unseen domain is then
trained on seen instances. Together with the basic visual-
semantic knowledge transfer, we have two parallel unseen
objects inference paths at the same time. We adopt an in-
ference fusion strategy to make full use of these comple-
mentary paths during testing. Obviously, such a dual-path
parallel reasoning mechanism strengthens the learning of
association relationships between seen and unseen objects,
and can effectively improve the model’s transferability. The
main contribution of this work can be summarized as fol-
lows.

• We propose a simple but effective dual-path ZSD method
that fuses both visual-semantic transfer and analogy asso-
ciation with previous knowledge to improve the model’s
generalization ability. It provides a generic, cognitively-
plausible solution that can be easily incorporated within
one-stage or two-stage detection networks.

• We propose a novel target-centric multi-association strat-
egy to establish the analogy relationships among con-
cepts, through which a generalizable association predictor
can be trained on seen objects. Without introducing extra
data or complex computation, both the generalization and
discrimination ability of our model can be boosted.

• We optimize the proposed model by a two-stage train-
ing strategy and test it with inference fusion mechanism.
Our experiments show that the proposed inductive model
can obtain a large performance gain. We achieve 7.42%
and 18.01% absolute boost in mAP and recall over induc-
tive models, even 5.25% and 7.58% over the transductive
competitor.

Related Work
Object Detection There have been significant develop-
ment in object detection over the last few years. The deep de-
tection frameworks are generally categorized into two types,
i.e. one-stage detectors (e.g. YOLO (Redmon et al. 2016),
SSD (Liu et al. 2016)) and two-stage detectors (e.g. R-CNN

series (Girshick 2015; Ren et al. 2015)). These models are
roughly composed of three components: proposing bound-
ing boxes, deciding which box contains objects, classifying
high-confidence boxes. The first two components are sort
of class-agnostic, which means they are capable of propos-
ing high-confidence boxes for previously unseen objects. We
mainly work on the classification component for ZSD prob-
lem. In this work, we detail the proposed approach based on
the two-stage Faster R-CNN framework.

Zero-Shot Recognition Zero-shot recognition (ZSR)
mimics the human ability to recognize objects without see-
ing any visual examples (Lampert, Nickisch, and Harmeling
2013). It uses semantic descriptions that provide relation-
ships among classes, e.g. attributes, word vectors, text de-
scriptions, to transfer knowledge from source domain with
abundant training data to target domain. A basic paradigm
for ZSR is to learn a direct visual-semantic alignment func-
tion. One can map visual feature space to semantic space or
vice versa, or map both spaces to a common latent space (Fu
et al. 2015; Akata et al. 2013; Wang et al. 2016; Kodirov,
Xiang, and Gong 2017; Liu et al. 2018), and then predict
class labels by fixed similarity metrics or data-driven metrics
(Sung et al. 2018). In our work, we adopt the basic visual-
semantic alignment approach in the detection network and
use a different target-centric strategy to define the concept
association for ZSD, which offers a semantic compensation
for the basic alignment.

Zero-Shot Object Detection Zero-shot object detection
(ZSD) is a newly-proposed problem and less explored than
ZSR. Due to the ill-posed nature and inherent complex-
ity, ZSD is far more challenging. We cannot simply copy
the standard problem setup of ZSR into ZSD, since multi-
ple objects instead of one primary object appear in a sin-
gle image. Contemporary models (Bansal et al. 2018; Rah-
man, Khan, and Barnes 2020; Li et al. 2019) exploit vari-
ous zero-shot classifiers in one-stage or two-stage detectors
and generally adopt single-path label prediction, e.g. SB and
DSES (Bansal et al. 2018) are built on RCNN (Szegedy et al.
2016). (Rahman, Khan, and Barnes 2019) provides a trans-
ductive solution to the domain shift problem suffered from
above inductive methods by using unlabeled test data dur-
ing training to iteratively update model parameters. Several
works also try to exploit specific associated concepts in the
detection process, e.g. (Rahman, Khan, and Barnes 2020)
applies related concepts from an external vocabulary to im-
prove class embeddings, (Li, Shao, and Wang 2020) uses
context to predict superclasses defined by WordNet and se-
lects the unseen class label from it. Differently, our inductive
method uses a dual-path reasoning mechanism that incor-
porates both visual-semantic knowledge transfer and novel
concept association into a detector.

Proposed Approach
The objective of our dual-path approach is to detect novel
objects, which have no samples during training. It combines
the basic visual-semantic knowledge transfer and analogy
association with previous knowledge to learn a new concept,
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Figure 2: Illustration of our unseen object detection framework, which combines Faster R-CNN with Dual-Path Inference
Fusion (DPIF) module, as shown in (a). It contains two parallel inference paths, basic visual-semantic knowledge transfer (V-S
mapping) and multi-associative semantic transfer (MAST), whose outputs are fused to make the final prediction.

where the former computes the alignment score between vi-
sual features and class embeddings and the latter explicitly
match instances with associative semantics. Inference fusion
is then performed to obtain the final semantically-enhanced
results. See Fig.2. More details will be described below.

Problem Settings
We start by giving a formal definition of zero-shot object de-
tection (ZSD) problem. Let C = S ∪T denote the whole ob-
ject class set, where S is the set ofCs source classes, T is the
set ofCt target classes and S∩T = ∅. Each class is provided
in advance with a m-dimensional semantic embedding, ac-
quired in a supervised (e.g. manual attributes) or unsuper-
vised manner (e.g. word2vec). We denote their class embed-
dings as {as

i}
Cs
i=1 and {a t

i}
Ct
i=1, respectively. In the training

stage, we have Ns labeled images from source classes. Each
image Ii is annotated with Ni bounding boxes and their as-
sociated labels, i.e. (bj , yj)

Ni
j=1, where bj ∈ R4 and yj ∈ S .

Similarly, we have Nt images in the test stage, where each
image has at least one instance from target classes. In the
standard setting, we need to locate and recognize every in-
stance from only unseen objects. While in the more chal-
lenging generalized setting, we need to detect all C classes.

Naive Approach We build the basic ZSD model on Faster
R-CNN framework, which contains the feature extraction
backbone (e.g. ResNet (He et al. 2016), VGG16 (Simonyan
and Zisserman 2014)) to learn image-level features X ∈
RH×W×d, the region proposal network (RPN), RoI pool-
ing and RoI feature extractor to extract proposal-level fea-
tures x i ∈ Rdv , and a box predictor to compute classifi-
cation score and predict the bounding box coordinates. The
key idea is to construct a zero-shot classifier from RoI fea-
tures and class embeddings, considering that the feature ex-
traction backbone and RPN are class-agnostic (Wang et al.
2020).

We employ the basic visual-semantic alignment strategy
to recognize RoIs. It projects the visual features x i and class

embeddings ac into a common latent space respectively by
functions fv(·) and fa(·), and compares them using a simi-
larity metric d. The classification score for x i is defined as:

ỹ i,c = p(yi = c|x i) =
exp(d(fv(x i), fa(ac)))∑Cs

j=1 exp(d(fv(x i), fa(aj)))
,

(1)
where we utilize cosine similarity for d in this paper, for that
it can bound and reduce the variance of neurons and result
in models of better generalization (Gidaris and Komodakis
2018). To make the model discriminative enough for classifi-
cation, we maximize the classification score of ground-truth
class and minimize the score of negative classes and use the
following cross-entropy loss for optimization,

Lcls = −
Cs∑
j=1

y i,j log ỹ i,j + (1− y i,j) log(1− ỹ i,j), (2)

where y i ∈ {0, 1}Cs is the ground-truth label vector of x i. It
contains only one element with value 1 indicating the class
it belongs to. While for localization, we use the same box
regressor as in Faster R-CNN to predict bounding box co-
ordinates, since it is class-agnostic and transferable enough.
The localization loss is denoted as Lloc (Ren et al. 2015).

The basic visual-semantic knowledge transfer is adopted
by current ZSD models, which recognize test RoIs by a
single-path label prediction in Eq.1. There is an implicit hy-
pothesis that the relational knowledge between different ob-
jects in the feature space is consistent with that in the seman-
tic space. However, visually similar objects may be seman-
tically different, e.g. “leaf butterfly” and “leaves” in Fig.1.
This visual-semantic gap will deteriorate the alignment in
ZSD.

Multi-Associative Semantic Transfer
Apart from matching with auxiliary knowledge (e.g. at-
tributes), humans can learn a new concept through associ-
ations and analogies of similar objects in past experiences.
This suggests that the association relationship can be another
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Figure 3: Illustration of target-centric associative meth-
ods. Circles and triangles denote target classes and source
classes, respectively. The boldness of lines indicates the
strength of semantic relationships.

powerful source of information in the context of ZSD. Thus,
we supplement the basic ZSD method above with another
learning path that explores concept association to better en-
able transfer knowledge. Then we employ an inference fu-
sion strategy taking advantage of these two paths to obtain
the final result.

Establishment of Concept Association The establish-
ment of concept association is important. Apart from being
intuitively plausible, it should enable two properties from a
model perspective, i.e. transferable and discriminative prop-
erty. Transferable property indicates that there are at least
one seen class related to an unseen one, so that the learn-
ing path trained from seen domain can be generalized to
the unseen domain. While discriminative property means the
predicted results should be discriminative enough to classify
unseen classes. Considering unseen objects are absent dur-
ing training, we use class embeddings to build up the class-
level associations between seen and unseen concepts.

A straightforward way is to perform k-means clustering
over the class embeddings of all C classes and use k clus-
ters to form concept association. Seen classes in each clus-
ter are assumed to be associated with the unseen ones that
may appear in the same cluster. However, this strategy has
two drawbacks. First, a cluster may not contain any un-
seen object. This means seen classes in this cluster are ex-
cluded from learning association predictor, thus weakening
the transferability. Second, a cluster may have at least two
unseen classes. In this case, more than two different unseen
classes will have the exact same association relationships,
where discriminative ability may be weakened. In order to
enable these two properties at the same time, we propose the
following simple but effective target-centric strategy.

Target-Centric Single-Association (TCSA) In TCSA, we
use the unseen class embeddings {a t

j}
Ct
j=1 as prototypes

and form the associative semantics around them. For each
seen object, we assume it is only related to the most sim-
ilar unseen one. Specifically, for i-th seen class, we com-
pute its similarity with each unseen class and then set
the association as a one-hot vector sc

i ∈ {0, 1}Ct , where
sc
i,argmaxj d(as

i ,a
t
j)

= 1.

Target-Centric Multi-Association (TCMA) We relax the
strict single-association hypothesis made above and assume
that each seen object can relate to multiple unseen ones with

different similarities, which is intuitively plausible and can
encode richer semantic relationships. For example in Fig.3
(b), “cup” is related to “bowl”, “toaster” and “sandwich” at
the same time. Specifically, for i-th seen class, we first se-
lect top-K elements from {d i,j : d(as

i ,a
t
j)}

Ct
j=1, to make

sure that there are at most K associated objects. Then, if
an element in the top-K list is still less than a threshold α,
it will be set to 0 as well. This constraint prevents ambigu-
ous associated concept from being exploited for knowledge
transfer in ZSD. The multi-association relationships are thus
encoded as follows:

sc
i,j =

{
d i,j , if d i,j ∈ top-K ∩ d i,j > α
0, otherwise (3)

Using sc
i formed by TCMA as supervision has the follow-

ing merits. First, it guarantees there is at least one seen ob-
ject during training that associates with a similar unseen
one. In some sense, association predictor can be regarded
as learning similar unseen class directly by using training
images from a group of related source semantics as their
pseudo-instances. It can thus alleviate the domain bias prob-
lem caused by lacking of test data and improve model’s gen-
eralization ability. Second, it ensures that the association re-
lationship for each unseen class is different, meeting the re-
quirement for discriminative property.

Learning Association Predictor After establishing the
concept association, we learn a generalizable association
predictor from seen instances. Assume i-th RoI comes from
the seen object yi, whose associative semantics are defined
as si = sc

yi
. We use an extra parallel conv layer on top

of RoI pooling to learn its visual features x i. Note the
same symbol x i is used to indicate i-th RoI in both two
paths, to avoid confusion. Our goal is to learn a predictor
fs : x i → si, which can be optimized by minimizing the
following cross-entropy loss.

Lap = −
Ct∑
j=1

si,j log s̃i,j + (1− si,j) log(1− s̃i,j) (4)

where s̃i = fs(x i). As shown in Fig.2, on the shared back-
bone, we use two parallel feature extractors to ensure that
RoI features in the visual-semantic knowledge transfer are
semantic-aligned, while in this branch are appropriate for
concept association.

Inference Fusion With the two-path learning, we can gen-
erate bounding box coordinates by the box regressor, the
classification score ỹ in the basic visual-semantic seman-
tic transfer and the association score s̃ after a forward pass
with a test RoI. We fuse ỹ with s̃ to get the semantically-
enhanced results, since they provide complementary infor-
mation. Specially, we first compute the association-guided
scores by multiplying s̃ with ground-truth concept associ-
ations S c among concepts. Then, we use these scores to
weigh ỹ element-wise to obtain the final result c.

c = (ScT s̃)� ỹ (5)
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Figure 4: Demonstration of inference fusion using concept
association S c. s̃ , ỹ and c are the predicted associative se-
mantics, classification score and final results respectively.

Fig.4 demonstrates the difference of inference fusion
when sc

i is formed by TCSA and TCMA. In the ideal
ZSD, where test RoIs come from unseen domain for sure,
ỹ ∈ RCt is computed using unseen class embeddings and
S c = [sc

1, ..., s
c
Ct
] only containCt unseen classes. In GZSD,

ỹ and S c contains all Cs + Ct classes. However, we find
that in all detection benchmarks, both seen and unseen ob-
jects would appear in a single test image in practical. If we
merely use unseen class embeddings to obtain the classifi-
cation scores as in ZSL for ZSD, test instances that actually
come from seen domain are inevitably misrecognized. The
detection performance is consequently degraded. We can-
not simply copy the experimental settings of ZSL into ZSD
problem, since the assumption that test samples are only
from unseen domain is impractical especially for large-scale
detection datasets. In view of this, we use class embeddings
of total classes to compute classification scores for both ZSD
and GZSD.

Two-Stage Model Training
The final loss objective of the proposed method aggregates
the classification loss Lcls, regression loss Lloc and the as-
sociation prediction loss Lap, i.e. L = Lcls+Lloc+λLap. λ
is the trade-off parameter, balancing the importance between
visual perception module and associative transfer module.
Instead of training this model in an end-to-end way, we
adopt a two-stage training strategy, inspired from (Wang
et al. 2020). In the first stage, we train the standard Faster R-
CNN model on all training classes. In the second stage, we
modify the classification branch to our proposed two parallel
reasoning branches with randomly initialized weights. We
fine-tune only the classification and association prediction
networks, while keeping the entire feature extractor and box
regression network fixed. We find that this two-stage fine-
tune strategy outperforms the end-to-end strategy by about
2.5 points in mAP on MSCOCO dataset.

Experiments
Experimental Settings
Datasets. We evaluate the proposed method with three
well-known detection benchmarks, Pascal VOC (Evering-
ham et al. 2010), MSCOCO (Lin et al. 2014) and Visual
Genome (Krishna et al. 2017). For Pascal VOC, we follow
the protocol in (Rahman, Khan, and Barnes 2020) and use 16

Methods Split ZSD GZSD
mAPs mAPt HM

SB 48/17 0.70 – – –
DSES 48/17 0.54 – – –

VSA-ZSD 48/17 10.01 35.92 4.12 7.39
VSA-ZSD 65/15 12.40 34.07 12.40 18.18
TL-ZSD∗ 65/15 14.57 28.79 14.05 18.80
DPIF-S 65/15 17.39 32.75 16.81 22.22
DPIF-M 65/15 19.82 29.82 19.46 23.55

SB 48/17 24.39 – – –
DSES 48/17 27.19 15.02 15.32 15.17

ZSD-Textual 48/17 34.30 – – –
VSA-ZSD 48/17 43.56 38.24 26.32 31.18

GTNet 48/17 44.60 42.50 30.40 35.45
VSA-ZSD 65/15 37.72 36.38 37.16 36.76
TL-ZSD∗ 65/15 48.15 54.14 37.16 44.07
DPIF-S 65/15 58.19 57.59 32.92 41.90
DPIF-M 65/15 55.73 56.68 38.70 46.00

Table 1: Comparison with state-of-the-arts on MSCOCO
dataset for ZSD and GZSD. We report both mAP (the upper
part) and recall@100 (the lower part). ∗ denotes the trans-
ductive method, while others are inductive. Numbers in bold
and underline denote the best and second best results.

classes as seen classes and the remaining 4 classes as unseen
ones (i.e. car, dog, sofa and train). For MSCOCO, we choose
the 65/15 source/target split (Rahman, Khan, and Barnes
2019) over the 48/17 source/target split (Bansal et al. 2018),
for it considers the desired diverse and rarity nature. Visual
Genome is a large-scale image dataset, composed of 105K
unique object classes, 108K images and 3.8M annotated
instances. We follow the protocol in (Bansal et al. 2018),
which chooses 478 classes as seen classes and the other 130
classes as unseen ones. For semantic embeddings, we use
the 64-dimensional semantic attributes for Pascal VOC and
l2 normalized 300-dimensional word2vec (Mikolov et al.
2013) for MSCOCO and Visual Genome.

Evaluation Metric and Settings. We use mean Average
Precision (mAP) with IoU = 0.5 and recall@100 as the
main evaluation metric, and conduct experiments under two
settings, i.e. standard setting and generalized setting. For
GZSD, we report both mAP of source classes (mAPs), mAP
of target classes (mAPt) and their harmonic-mean value
(HM).

Implementation Details. We use Resnet-50 as the feature
extraction backbone, for fair comparison. We use a fully-
connected (fc) layer as fv , an identity function as fa and
a fc-layer with sigmoid activation on top for fs. The RoI
feature extractor in both paths share the same architecture.
K and α in multi-associative construction are set to 5 and
0.1, respectively. K and α in TCMA are set to 5 and 0.1,
respectively.

In the training stage, we first train the standard Faster
R-CNN framework on the training set, where the fea-
ture extraction backbone is pre-trained on the 1K classes
in ILSVRC 2012 (Russakovsky et al. 2015) and Non-
Maximum Suppression (NMS) with a threshold of 0.7 is ap-
plied to RPN. Second, we freeze the parameters in feature
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Figure 5: Qualitative results of MSCOCO under both the standard setting (the top row) and the generalized setting (the bottom
row). The left (or right) figure in each pair of images is obtained by our proposed model without (or with) using concept
association. Red and green bounding boxes represent seen and unseen objects respectively.

method mAPs mAPt car dog sofa train
HRE 57.9 54.5 55.0 82.0 55.0 26.0

VSA-ZSD 63.5 62.1 63.7 87.2 53.2 44.1
DPIF 73.17 62.26 63.72 90.08 63.55 31.7

Table 2: Comparison on Pascal VOC for GZSD problem.
Each of the last four columns denotes AP of the specific
unseen class.

extraction backbone, RPN and box regressor and then train
our proposed model by minimizing Lcls + Lap. We use the
SGD optimizer (Bottou 2010) with a batch size of 14 in the
first step and a batch size of 18 in the second step, expo-
nential decay rates of 0.9 and 0.999, weight decay of 0.0001
and a learning rate of 0.01 to train our model. In the infer-
ence stage, we apply NMS with a threshold of 0.7 to RPN to
generate object proposals and NMS with a threshold of 0.3
on the predicted boxes to obtain the final detection results.
We implement our model using Pytorch. For MSCOCO, the
training stage takes about 20 hours with 2 TITAN V GPUs.
The inference stage takes about 0.14 seconds per test image.
The code is available https://github.com/Lppy/DPIF.

Comparison with State-of-the-arts
We compare the proposed method (denoted as DPIF) with
inductive state-of-the-arts, i.e. SB, DSES (Bansal et al.
2018), VSA-ZSD (Rahman, Khan, and Barnes 2020), ZSD-
Textual (Li et al. 2019) and GTNet (Zhao et al. 2020). To
fully evaluate the proposed model, we also compare with
a strong transductive competitor TL-ZSD (Rahman, Khan,
and Barnes 2019).

Quantitative Results Table. 1 reports both mAP and re-
call for ZSD and GZSD on MSCOCO dataset. From this
table, we highlight the following results. (1) The proposed
method with multiple-association (DPIF-M) improves the
detection performance (mAP) from DPIF-S, our model with
single-association and trained by using our two-stage strat-
egy. Although recall is declined slightly from 58.19% to
55.73%, mAP has improved significantly from 17.39% to
19.82% in ZSD. While in GZSD, the improvements are a
little higher. This validates the effectiveness of concept as-

Methods mAP recall
SB - 4.09

DSES - 4.75
LAB - 5.40

ZSD-Textual - 7.20
GTNet - 11.30
DPIF-S 1.66 15.89
DPIF-M 1.81 18.25

Table 3: Comparison with state-of-the-arts on the large-scale
Visual Genome. We report both mAP and recall@100.

sociation to mitigate the domain bias problem and thus im-
prove the zero-shot generalization capability. (2) The pro-
posed model performs best in both mAP and recall for ZSD
among all inductive single-path methods. It improves VSA-
ZSD by a large margin of 7.42%, even though the latter uses
the best reported detector RetinaNet in this area (Rahman,
Khan, and Barnes 2020). Amazingly, our method even beats
the transductive competitor by 5.25% improvement, which
uses test data during training. These results well verify the
efficacy of our proposed model. (3) Our model also achieves
the best in unseen prediction and HM value for GZSD. Even
though RoIs that come from target classes are distracted by
these source ones, their detection performances are still good
enough, declined by only 0.36% in terms of mAP. Compar-
ing with other methods that perform better on seen classes
while worse on unseen classes, our model can well balance
between seen and unseen domain. It achieves the purpose of
generalized zero-shot learning.

Fig.5 shows some qualitative detection results by the pro-
posed method on MSCOCO dataset. By using concept as-
sociation during training, our model is capable of correct-
ing some mis-classification and suppressing false positive
results. We can see that the visually-similar objects can be
distinguished to some extent. Thus, the association relation-
ships among objects act as a powerful complementary to the
basic ZSD model.

Results on Pascal VOC. To compare with current models,
we report mAP of both seen and unseen classes, AP of each
unseen class for GZSD in Table.2. We can see that our model
successfully outperforms the recent inductive models.
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training ZSD seen unseen HM

end-to-end 14.87 31.29 13.76 19.12
55.67 56.09 27.64 37.03

two-stage 17.39 32.75 16.81 22.22
58.19 57.59 32.92 41.90

Table 4: Comparison between our method using end-to-end
training and the proposed two-stage training strategy. The
first (second) row in each part denotes mAP (recall).

Results on Visual Genome. We also report the ZSD results
in terms of both recall@100 at IoU = 0.5 and mAP on the
large-scale Visual Genome in Table.3, for fair comparison.
The proposed method can achieve the best results. Compar-
ing with Table.1 and Table.2, we can see that the detection
performance is much lower than that on Pascal VOC and
MSCOCO. Because of the large number of object categories
and dense labeling, unseen objects are actually regarded as
background during training. Unseen instances in the test im-
ages thus tend to be neglected. This issue inevitably restricts
the development towards large-scale applications. Distin-
guishing between unseen objects and background remains
one of the biggest challenges in practical applications.

Ablation Studies
To study the effects of different components in our model,
we conduct a series of experiments on MSCOCO and report
mAP and recall@100.

Effect of Two-Stage Training Strategy We propose to
train our model using a two-stage training strategy, in-
spired from (Wang et al. 2020). To evaluate its effective-
ness, we give a performance comparison in Table.4 between
our method (DPIF-S) using two-stage training and end-to-
end training. End-to-end training denotes that after the fea-
ture extraction backbone is pre-trained on the 1K classes in
ILSVRC 2012 (Russakovsky et al. 2015), the whole network
is trained by minimizing the overall L. We can see that two-
stage training strategy can actually improve the detection
performance.

Effect of Associative Semantic Transfer Associations
among different concepts in the training stage plays an im-
portant role in our framework. It can enhance the model’s
transferability, when fused with the basic visual-semantic
knowledge transfer for ZSD. Because of the lack of labeled
data, we use class embeddings to build up the relationship in
advance and learn a generalizable predictor on training data.
To better enable the generalizable and discriminative proper-
ties, we employ target-centric single-associative (TCSA) or
multi-associative (TCMA) methods, rather than simply us-
ing k-clustering over class embeddings. Fig.6 (right) reports
the detection performance comparison for ZSD, when using
different semantic transfer respectively. For fair comparison,
k is set to Ct in k-clustering method. We observe that the
multi-association approach achieves the best, which encodes
richer semantic relationships, benefiting explicit knowledge
transfer. Although k-means offers comparable results with
single-association method when k is set to Ct, it needs to
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Figure 6: Left: mAP and recall on MSCOCO for ZSD
with different value of K in constructing multi-associative
semantics. Right: Comparison with the baseline and ours
that employs associative semantic transfer on MSCOCO for
ZSD. “k-means”, “TCSA” and “TCMA” denote that concept
associations are formed by k-means, TCSA and TCMA, re-
spectively.

Methods metric ZSD seen unsen HM

FL-80 mAP 10.36 36.69 10.33 16.12
recall 34.29 39.53 36.62 36.34

DPIF-S mAP 14.75 32.72 13.95 19.56
recall 54.43 57.33 28.76 38.30

DPIF-M mAP 16.89 29.33 16.36 21.00
recall 52.25 56.34 34.84 43.03

Table 5: mAP and recall with GloVe embeddings for both
ZSD and GZSD.

manually select a proper k.

Impact of Top-K. In multi-association semantic transfer,
we associate each source class with top-K unseen objects
based on their cosine similarities. Fig.6 (left) shows the im-
pact of different K on the detection performance of unseen
classes for ZSD in terms of mAP and recall. We can observe
that when K = 5, our model achieves the best. The perfor-
mance drops down if a source class is associated with too
many unseen objects, which is reasonable.

GloVe Embedding Our method can work equally with
other semantic embeddings apart from word2vec. Table.5
compares the results when using GloVe embeddings in the
model. We can observe the same trend as in Table.1. Our
model still can achieve the best.

Conclusion
In this paper, we proposed a simple but effective dual-path
zero-shot object detection (ZSD) model. It explores both
association relationships among concepts and basic visual-
semantic knowledge transfer to recognize RoIs. We devel-
oped a novel target-centric multi-association method to es-
tablish concept associations in advance and used seen in-
stances to learn a generalizable association predictor. These
two parallel reasoning paths can strengthen the model’s
transferability by a reasonable inference fusion mechanism.
The dual-path reasoning method is generic and can be pos-
sibly applied to recognition and segmentation of unseen ob-
jects. Extensive experiments show that our model yields
state-of-the-art performance for both standard and general-
ized settings on various benchmarks.
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