
SD-Pose: Semantic Decomposition for Cross-Domain 6D Object Pose Estimation

Zhigang Li,1 Yinlin Hu,2 Mathieu Salzmann,2,3 and Xiangyang Ji 1*

1 Tsinghua University
2 EPFL

3 ClearSpace SA
lzg15@mails.tsinghua.edu.cn, yinlin.hu@epfl.ch, mathieu.salzmann@epfl.ch, xyji@tsinghua.edu.cn

Abstract

The current leading 6D object pose estimation methods rely
heavily on annotated real data, which is highly costly to ac-
quire. To overcome this, many works have proposed to in-
troduce computer-generated synthetic data. However, bridg-
ing the gap between the synthetic and real data remains a
severe problem. Images depicting different levels of real-
ism/semantics usually have different transferability between
the synthetic and real domains. Inspired by this observation,
we introduce an approach, SD-Pose, that explicitly decom-
poses the input image into multi-level semantic representa-
tions and then combines the merits of each representation to
bridge the domain gap. Our comprehensive analyses and ex-
periments show that our semantic decomposition strategy can
fully utilize the different domain similarities of different rep-
resentations, thus allowing us to outperform the state of the
art on modern 6D object pose datasets without accessing any
real data during training.

Introduction
Accurately estimating the rotation and translation of a 3D
object from a single RGB image is a fundamental problem in
computer vision. It has broad applications in the real world,
such as augmented reality, mobile robotics, and autonomous
navigation. As such, this task has attracted continuous atten-
tion in the research community.

While much progress has been made (Kehl et al. 2017;
Sundermeyer et al. 2018; Peng et al. 2019; Li, Wang, and Ji
2019), the current leading approaches are data-hungry and
rely heavily on annotated real-world data, which are costly
to obtain, because 6D object pose annotations have to be
done in the 3D space. A straightforward solution to this
problem consists of exploiting virtual environments. In prin-
ciple, given the 3D object model, one can generate large
amounts of synthetic data with perfect pose annotations.
However, this typically results in a significant domain gap
between the synthetic and real images, limiting the perfor-
mance of methods trained on such synthetic data.

To this date, this problem is mainly alleviated by either
employing a physically-based renderer (Hodan et al. 2019)
or resorting to domain randomization techniques (Kehl et al.
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Figure 1: a) A single input image can be decomposed into di-
verse representations, thus constructing a hierarchical repre-
sentation with different semantic levels. b) Traditional RGB-
based pose estimation only uses the raw RGB representa-
tion. Here, φ and θ are functions represented by some neural
networks. c) By contrast, we leverage the different proper-
ties of the diverse semantic representations so as to bridge
the domain gap between the synthetic and real data and pro-
duce high-quality 6D object pose estimates when only syn-
thetic data is available during training.

2017; Sundermeyer et al. 2018) . Nevertheless, to achieve
reasonable accuracy, these methods still require having ac-
cess to some annotated real images. In short, accurate pose
estimation without any annotated real-world data remains an
open problem, for which a solution is urgently needed.

In this paper, we address this by observing that different
semantic representations of an image have different levels of
transferability between the synthetic and real domains. In-
spired by this, we propose to explicitly decompose the input
image to multi-level semantic representations, as shown in
Fig. 1. We then propose to fuse the features extracted from
these individual semantic representations so as to jointly
leverage their complementary transferability power.

Our contributions can be summarized as follows:

• We propose a novel pose estimation approach, SD-Pose,
which effectively leverages the domain transferability
benefits of diverse representations for cross-domain 6D
object pose estimation.

• Our SD-Pose relies on the following novel components:
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I. We introduce a siamese pose estimation module, Cross-
semantic Coordinates Net (CCNet), which efficiently han-
dles multiple representations with siamese training; II.
We propose an adaptive feature fusion module, Context-
aware Aggregation Net (CANet), able to integrate the
contributions of each representation adaptively; III. We
introduce a learnable ensemble module, Coordinates En-
semble Net (CENet), which improves the performance by
ensembling the diverse semantic representations.

As evidenced by our experiments, SD-Pose outperforms
the state of the arts on both the LineMOD and Occluded-
LineMOD datasets without accessing any real data during
training.

Related Work
Object Pose Estimation
We focus on estimating object pose from a single RGB
image without depth (Wang et al. 2020a; He et al. 2020).
Traditionally, this task was regarded as a geometric prob-
lem, which can be solved with a two-stage pipeline: I. fea-
tures matching between the 2D image and the 3D object
model; II. geometric verification of the matched features via
a Perspective-n-Point (PnP) algorithm. While traditional ap-
proaches handle textured objects well, they do not generalize
to poorly-textured ones.

Recently, the advent of deep learning has brought a leap
forward in this field. In this context, some methods still fol-
low the traditional strategy. Concretely, a deep neural net-
work is trained to build 2D-3D correspondences by either a)
detecting pre-defined semantic keypoints in the input image
(Pavlakos et al. 2017; Rad and Lepetit 2017; Tekin, Sinha,
and Fua 2018; Hu et al. 2018; Peng et al. 2019; Song, Song,
and Huang 2020; Hu et al. 2020), or b) predicting the cor-
responding 3D coordinates of each pixel belonging to the
object (Hodan, Barath, and Matas 2020). For a), one so-
lution consists of detecting the semantic keypoints on the
object surface from the image (Peng et al. 2019; Pavlakos
et al. 2017). However, the need for distinct semantic key-
points across object categories limits the generality of this
approach. To overcome this, other methods estimate the lo-
cation of the 8 corners of the 3D object bounding box (Rad
and Lepetit 2017; Tekin, Sinha, and Fua 2018; Hu et al.
2018). In this case, however, the detection is usually less ac-
curate since the keypoints are far from the object. For b), be-
cause the resulting correspondences are dense, the pose must
be obtained via a RANSAC-based procedure, which signif-
icantly reduces speed. Another strategy (Kendall, Grimes,
and Cipolla 2015; Kendall and Cipolla 2017; Brahmbhatt
et al. 2018; Kehl et al. 2017; Su et al. 2015; Tulsiani and Ma-
lik 2015; Massa, Marlet, and Aubry 2016) consists of train-
ing the deep model to estimate the pose directly from the
image, so as to fully exploit the power of end-to-end learn-
ing. While the resulting models trained apply easily to vari-
ous objects, they yield limited performance because the ro-
tation R ∈ SO(3) is challenging to regress. The limitations
of such pose regression approaches were analyzed in (Sat-
tler et al. 2019), showing that there is still a long way before
pose regression becomes practical.

Domain Adaptation
In this paragraph, we focus on the domain adaptation tech-
niques that were developed in the context of 6D object pose
estimation, so as to better leverage synthetic data.

SSD6D (Kehl et al. 2017) is an early explorer of predict-
ing the object pose with synthetic-only data. They estimated
the rotation by training a classifier based on the SSD (Liu
et al. 2016) detector, while the translation was calculated
from the 2D bounding box. However, their performance is
not remarkable. To reduce the domain gap, some works (Ho-
dan et al. 2019) proposed to generate realistic images using
a well-designed pipeline exploiting physically-based render-
ing. The generation of such plausible synthetic data, how-
ever, remains cumbersome and labor intensive. To overcome
this, other methods (Sundermeyer et al. 2018; Wang et al.
2019) resort to domain randomization. Concretely, a series
of data augmentation and randomization techniques are in-
troduced to help a model trained in a synthetic-only scenario
to perform well in the real world. AAE (Sundermeyer et al.
2018) trained an augmented autoencoder for pose retrieval.
While they utilized a series of domain randomization tech-
niques to help bridge the domain gap, the performance is
still inferior. DPOD follows the coordinate-based approach
to solve the pose from dense 2D-3D correspondences via the
RANSAC-style PnP algorithm, and it constitutes the state of
the art for pose estimation in the synthetic-only case cur-
rently.

While domain randomization improves pose accuracy
compared to naive training on synthetic data, the result-
ing performance remains far from satisfying. In (Rambach
et al. 2018), a single-channel sketch representation was
leveraged instead of RGB for better object pose estimation,
showing that a suitable representation offers the promise to
improve performance. However, the sacrificed information
(e.g., color) in the sketch makes the approach ill-suited to,
e.g., color-dominant cases. More generally, in principle, any
approach based on partial information may fail in certain
circumstances. To circumvent the need for annotated real
data, some works (Georgakis et al. 2019; Rad et al. 2018;
Wang et al. 2020b) have proposed to leverage unlabeled real
RGB-D data to bridge the synthetic-real domain gap. Self6D
(Wang et al. 2020b) proposed a self-supervised approach to
improve the pose estimation performance via refining the
initially estimated pose by comparing the rendered RGB and
depth with the observed ones. However, it fails to obtain re-
markable results. Others (Georgakis et al. 2019; Rad et al.
2018) rely on the consistency between RGB and depth to
improve the performance. Concretely, the depth and RGB
models were trained to extract features from the correspond-
ing modality, respectively. Then, an RGB-to-depth feature
mapping (Rad et al. 2018) or an RGB-depth consistency loss
(Georgakis et al. 2019) were applied by taking advantage of
the consistency between RGB and depth. Benefiting from
the small domain gap of depth, these methods were able to
improve the domain transferability of the RGB model. Nev-
ertheless, while these methods do not require real pose anno-
tations, they cannot handle the situations where real-world
depth training data are not available. In this paper, we intro-
duce an RGB-based pose estimation approach that does not
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Figure 2: The framework of our SD-Pose. We first use a 2D detector to zoom in on the object, from which the multi-level
semantic representations are distilled. Then, we employ FNet to extract semantic features, which can be further adaptively
fused by CANet. All features are fed to CNet to predict the coordinates & confidence maps, from which the pose can be solved
via PnP & RANSAC. The CENet is proposed for ensembling to achieve a better estimation.

require access to any real-world data during training. To this
end, we leverage diverse semantic representations distilled
from RGB to bridge the domain gap.

Method
Let us now first present our analysis of multi-level semantic
representations. Based on this analysis, we then introduce
our SD-Pose approach.

Multi-Level Semantic Representations (MSR)
Given an RGB image, various semantic representations
IMSR (gray, hue, sketch, edge, mask, etc.) can be extracted
to construct a multi-level semantic representation structure,
as shown in Fig. 2. In particular, we sort the resulting rep-
resentations according to the amount of information they
carry, from high to low. We then express the resulting hi-
erarchical MSR as

IMSR = {Igray, Isketch, Iedge, · · · , Imask} . (1)

Domain Transferability. In MSR, from RGB to mask, as
the amount of information decreases, so does the synthetic-
real domain gap. For example, (Rambach et al. 2018) has
shown that a single-channel sketch has better domain trans-
ferability than the RGB image. Here, we conduct further
analysis by comparing Irgb with Imask in MSR. Given an
object in a certain pose, the RGB image in the synthetic
and real domains differ in terms of color, texture, brightness,
contrast,... By contrast, the mask should be the same in both
domains, even in the presence of occlusion. In theory, the
highly-distilled semantic representations in MSR can help
to narrow the domain gap. To evidence this, in Table 1,
we compare RGB and mask on the LineMOD dataset (see

details in the supplementary material). Given the ground-
truth mask at test time, the mask-based approach achieves
dramatically better results than RGB-based one (accuracy
94.3% vs. 46.3%). We also generate a synthetic test set to
perform this comparison without a domain gap. While the
RGB-based model improves significantly in this case (from
46.3% to 83.5%), it remains inferior to the mask-based one
(94.3%), showing that highly-distilled semantic representa-
tions may also reduce the learning difficulty.
Robustness. While high-level semantic representations in
MSR help to narrow the domain gap, they can also be less
robust due to the sparse information they contain. For exam-
ple, for mask-based pose estimation, when we use a mask
obtained with MaskRCNN, which contains segmentation er-
rors, the performance drops significantly. Additionally, the
lost information in such highly abstract representations may
also contain critical clues of the pose. For instance, since the
mask only reflects the 2D projected shape, it is insufficient
for objects with symmetric shape but asymmetric (unam-
biguous) texture. Therefore, a single highly-distilled modal-
ity is not suitable for pose estimation. We, therefore, propose
to exploit multi-level semantic representations, ranging from
low to high in MSR, to improve and robustify pose estima-
tion.

Pose Estimation based on Semantic Decomposition
Here, we introduce our pose estimation approach combining
multiple semantic representations to improve accuracy.
Overview. We adopt a detection-based framework, which
first locates the object in 2D in the image and then estimates
the 6D pose from the detected region. For pose estimation,
we leverage coordinates-based approaches (Li, Wang, and Ji
2019; Park, Patten, and Vincze 2019), which have proven to
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Test Data Ape Bv. Cam. Can Cat Dril. Duck Eggb. Glue Hol. Iron Lamp Ph. Avg
RGB-real 7.0 70.1 31.6 70.2 28.5 39.0 37.3 68.1 91.2 12.7 68.3 38.8 38.8 46.3
RGB-syn 21.4 96.8 95.0 98.5 79.2 98.1 73.4 100 99.7 36.7 99.0 95.2 92.2 83.5

Mask-gt 60.8 98.6 99.1 97.6 98.6 98.7 82.1 100 95.9 97.0 99.4 98.6 99.3 94.3
Mask-det 6.9 39.9 23.5 18.8 0.0 66.8 9.9 53.8 48.4 22.9 45.2 72.5 40.9 34.6

Table 1: RGB vs. Mask on the LineMOD dataset (ADD metric, higher is better). We only use synthetic RGB/mask data during
training. For testing, RGB-real and RGB-syn represent the official real test data and our generated synthetic test data, respec-
tively. Mask-gt and Mask-det are the ground-truth mask from synthetic data and the detected mask (using MaskRCNN (He
et al. 2017)) from real data, respectively.

be robust to occlusion. Given an input I, the model is trained
to recognize the pixels P belonging to the object and then
estimate the corresponding 3D coordinates C for these pix-
els. This yields dense 2D-3D correspondences between P
and C, from which the pose can be obtained by RANSAC-
based PnP algorithm. Our work then differs from existing
approaches in that we aim for our model to learn to com-
bine the strengths of multiple semantic representations. To
this end, we propose a semantic decomposition pose estima-
tion approach (SD-Pose), which consists of three modules: I.
Cross-semantic Coordinates Net (CCNet); II. Context-aware
Aggregation Net (CANet); and III. Coordinates Ensemble
Net (CENet). First, diverse semantic representations are fed
to CCNet to extract features for each of them. These indi-
vidual features are then adaptively fused by CCNet into an
integrated feature map that combines the power of each rep-
resentation. This integrated feature map can be directly used
to predict the coordinates & confidence maps, from which
the pose can be obtained by PnP+RANSAC. Nevertheless,
we further introduce CENet to ensemble the different repre-
sentations and produce better pose estimates.
Detection. We employ MaskRCNN (He et al. 2017) for
detection and introduce the zoom-in operation of (Li, Wang,
and Ji 2019) to scale the object patch to a unified resolution.
Compared with (Rambach et al. 2018; Zakharov et al. 2019)
that directly estimate the object pose from the whole im-
age, our detection and zooming in operations significantly
reduce the learning difficulty not only for small objects in
the image, but also particularly when using multiple seman-
tic representations, since dealing with a zoomed-in object
facilitate extracting unified-style representations from RGB,
as illustrated by Fig. 3.

We emphasize the superiority of extracting multi-level
semantic representations from the zoomed-in local object
patch. By contrast, (Rambach et al. 2018) extracted a sketch
from the whole image with a pre-defined filter. However, the
arbitrary object size in the image makes the filtered sketch
have diverse styles. Thanks to our zooming in operation,
we obtain semantic representations that have a unified style,
which greatly reduces the learning difficulty.
Semantic Representations Distillation. After zooming in
on the object, we need to extract semantic representations
from the local image patch for pose estimation, which is
achieved by filtering out the redundant information from
RGB for each representation. In this process, we leverage
traditional algorithms (e.g., hand-crafted filters) instead of

50×50𝐼𝑛𝑝𝑢𝑡 200×200 400×400

Figure 3: The sketch generated from the same filter varies
dramatically for different resolutions, which greatly in-
creases the learning difficulty. We circumvent this by resiz-
ing all detected objects to a uniform resolution (256 × 256)
before pose estimation.

learning-based ones to circumvent the subjective process
and ensure the data’s authenticity. Thus, the mask in MSR is
unused since extracting semantic object mask needs to learn
the prior-knowledge of the object. Ultimately, in addition to
Irgb, our semantic representations include Igray , Isketch,
Iedge, all of which can directly be obtained from the RGB
image.
Cross-semantic Coordinates Net (CCNet). To deal with
these diverse semantic representations, an intuitive solution
consists of introducing an individual model for each one.
This, however, makes the system less efficient and precludes
any interactions across the different representations. Instead,
to efficiently handle the semantic representations, we intro-
duce Cross-semantic Coordinates Net (CCNet), which con-
sists of two modules, FNet and CNet, which we describe
in detail below. CCNet is trained in a siamese manner across
the different representations, that is, a single CCNet can han-
dle multiple representations. The multiple supervision sig-
nals, and the shared parameters and optimization process in
CCNet also enable transferring information across the rep-
resentations, making training more effective.

The FNet module consists of a 34-layers residual network
for feature extraction. To enable FNet to be trained across
semantic representations, we use a unified format for all rep-
resentations, i.e., hin × win × 3, obtained by repeating the
channel when necessary. We set hin = win = 256. The
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CNet module then serves to predict the coordinate & confi-
dence maps from the features extracted by FNet. We adopt
a classification-based training strategy. Concretely, for the
coordinate maps, CNet outputs 3 heatmap volumes, each of
which representing an axis and having size hout × wout ×
nbin, where nbin is the number of bins used to discretize the
axis range. We set hout = wout = nbin = 64. For the confi-
dence maps, CNet predicts a heatmap of size hout×wout×2,
where binary classification is performed at each position.

To train our model, we use the masked cross-entropy loss
for the coordinate maps, which only calculates the cross-
entropy on the object foreground region. For the confidence
maps, we compute the binary cross-entropy on the whole
region. This can be expressed as

`(M, C) = τ ·
nc∑
j=1

`ce(M̃ ◦ Cj ,M̃ ◦ C̃j) + η · `ce(M,M̃) ,

(2)
where ∗̃ and ∗ represent the ground truth and the prediction,
respectively; M and C represent the confidence maps and
coordinates maps, respectively; nc = 3 is the number of
coordinate axes; ◦ is the Hadamard product; and `ce is the
cross-entropy loss.

The complete CCNet loss then sums this loss over the
different semantic representations and further includes a fu-
sion loss computed on the predictions from the fused fea-
tures, which we discuss in more detail below. Altogether,
this yields the CCNet loss function

LCC = `(Mfuse, Cfuse) +
∑

i∈IMSR

`(Mi, Ci) , (3)

where ∗fuse and ∗i represent the predictions from fused
branch and other semantic branches respectively.
Context-aware Aggregation Net (CANet). Inspired by
attention mechanisms (Bahdanau, Cho, and Bengio 2015;
Vaswani et al. 2017), we propose Context-aware Aggrega-
tion Net (CANet) to fuse the multiple semantic features and
combine the benefits of each modality. Given an input sam-
ple, the choice of the most appropriate semantic represen-
tation can easily be affected by many factors (e.g., object,
pose, blur, lighting, etc.). Thus, the model should be able to
learn the importance of each representation according to the
input. Our CANet achieves this by regressing a score si for
each representation, which we use to fuse them as

Ffuse =
∑

i∈IMSR

si · Fi . (4)

During inference, we concatenate the semantic features and
feed them to the CANet, which consists of a sequence
of convolutional layers and several linear layers to predict
the scores. For training, since ground-truth supervision for
CANet is unavailable, we follow the attention mechanism to
embed the CANet into the CCNet and thus implicitly train it
in an end-to-end fashion.
Coordinates Ensemble Net (CENet). Since each feature
from FNet or CANet yields a candidate coordinate & confi-
dence map, we rely on an ensembling process to fuse them
all into a refined prediction. In contrast to traditional en-
semble approaches, we propose Coordinates Ensemble Net

(CENet) to integrate all the candidates to achieve better re-
sults. Specifically, all candidates are stacked and fed into
CENet, and a sequence of convolutions are applied to com-
bine and refine them. We write the CENet loss as

Lensemble = `(Mensemble, Censemble) , (5)

where ` is defined in Eq. 2.

Training
Our SD-Pose is trained end-to-end. That is, all modules, in-
cluding CCNet, CANet and CENet, are optimized jointly.
We apply the coordinate & confidence loss to each output
from CANet and CENet. This yields the overall loss

Ltotal = LCC + Lensemble . (6)

Data Preparation
Dataset. We conduct our experiments on both the
LineMOD and Occluded-LineMOD dataset. LineMOD
(Hinterstoisser et al. 2012) is the de facto standard bench-
mark for 6D pose estimation of textureless objects in clut-
tered scenes. It comprises 13 texture-less objects for evalu-
ation. Each object appears in about 1000 test images cov-
ering the upper view hemisphere at different scales on a
cluttered desk. The Occluded-LineMOD dataset was pro-
posed by (Krull et al. 2015), and shares the same images as
LineMOD. 8 heavily occluded objects in one video sequence
are annotated for testing purposes. We follow (Brachmann
et al. 2016; Li et al. 2018) to split the dataset. Concretely, the
test set consists of all occluded images. For both LineMOD
and Occluded-LineMOD, we only use synthetic data for
training.
Synthetic Training Data. We employ the widely used
OpenGL-based renderer (Kehl et al. 2017; Sundermeyer
et al. 2018; Li et al. 2018) to generate synthetic data. It
is lightweight and can achieve real-time rendering, while
the generated synthetic images present an evident domain
gap with the real data. Additionally, we utilize Blender for
physically-based rendering to generate high-quality realistic
synthetic images to evaluate our approach in the situation
that the synthetic-real domain gap is narrow. In this con-
text, we designed a series of settings (e.g., lighting, shadow,
ground plane, etc.) to generate realistically rendered data.
For either case, during rendering, we randomly generate
10000 synthetic images for each object according to the pose
distribution of the training set. Concretely, during render-
ing, the rotation is uniformly sampled from the angle range
of the training set, and the translation is randomly gener-
ated according to the mean and variance calculated from the
training set. For Occluded-LineMOD, we randomly chose 3-
8 objects to render one image to introduce occlusions among
the objects. During training, for all synthetic images, the
background is randomly replaced with indoor images from
the PASCAL VOC2012 dataset.

Experiments
Metrics
To evaluate performance, we report three common metrics:
5cm 5◦, Proj. 2D, and ADD. For 5cm 5◦, a pose is correct
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Row Methods 5cm 5◦ ADD 2D Proj.Syn Inp Fus Ens
1 Op RGB - - 37.6 46.3 57.3
2 Op MSR Con 7 46.7 53.2 64.1
3 Op MSR Ada 7 48.0 54.5 66.7
4 Op MSR Ada 3 52.5 56.3 70.3

5 Bl RGB - - 71.5 63.2 83.8
6 Bl MSR Con 7 72.1 64.1 84.8
7 Bl MSR Ada 7 72.8 65.3 85.9
8 Bl MSR Ada 3 73.3 67.3 86.1

Table 2: Ablation study on the input type (Inp), the syn-
thetic data type (Syn), CANet and CENet on the LineMOD
dataset. Op: OpenGL-based; Bl: Blender-based; MSR:
multi-level semantic representations; Con: feature fusion
with constant value, i.e., 1; Ada: adaptive feature fusion via
CANet; Ens: Ensemble via CENet. Note that our SD-Pose
bridges the domain gap between synthetic and real data, es-
pecially in the case of OpenGL-based rendering, where the
gap is particularly large.

if the translation error and rotation error are smaller than
5cm and 5◦, respectively. For Proj. 2D, the estimated pose
is correct if the average 2D projection error is smaller than
5 pixels. For ADD, a pose is deemed correct if the average
vertex-to-vertex distance in 3D space is below 0.1d, where
d is the object diameter. For symmetric objects, the nearest
points are used to compute the distance.

Ablation Study
Semantic Representations vs. raw RGB. Here, we conduct
an ablation study on the input type to show the superiority of
our multi-level semantic representations over the raw RGB
representation. We first compare them in a simplified set-
ting. Concretely, we only use CCNet to predict coordinates
& confidence maps from different inputs, abandoning the
adaptive feature fusion (CANet) and coordinates ensemble
(CENet). For the case of multi-level semantic representa-
tions, without CENet, we only use the fused feature branch
for training and prediction. Furthermore, without CANet, we
use identical weights (i.e., 1) for feature fusion. As shown
in Table 2, using OpenGL-based synthetic training data, the
semantic representations (row 2) achieve significantly better
results than the RGB one (row 1) on all metrics (accuracies
of 46.7%, 53.2%, 64.1% vs. 37.6%, 46.3%, 57.3% in terms
of 5cm 5◦, ADD, and 2D Proj., respectively). This is true
even without adaptive feature fusion and coordinates ensem-
ble, but the use of CANet (row3) and CENet (row4) further
improve the performance of the semantic representations.
Ablation Study on CANet. We analyze CANet to show the
effectiveness of adaptive feature fusion. Without CANet, the
multiple semantic features are fused using identical weights
(i.e., 1). As shown in Table 2, our adaptive feature fusion
(row 3) significantly outperforms the baseline (row 2) ac-
cording to all metrics. Even when the domain gap becomes
narrow (i.e., on Blender-based data), our CANet still im-
proves the performance (rows 6 and 7).
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Figure 4: We compare the pose estimation accuracy of var-
ious modalities (metric: ADD, higher is better). The pro-
posed fusion network performs the best on average, demon-
strating that it can fully benefit from the domain transferabil-
ity of different semantic representations.

Training loss curves of various representationsValue

Step

Fusion
RGB
Gray
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Edge

Figure 5: Training loss curves of various representations for
‘Ape’. Across the different representations, the loss of the
fused feature branch typically reaches the minimum value.

Ablation Study on CENet. Here, we analyze the effect of
the coordinate ensemble of CENet. Without CENet, the out-
put from the fused feature branch is used to compute the
pose. As shown in Table 2, fusing predictions from multi-
ple semantic representations significantly improves the pose
estimation performance on both OpenGL-based (rows 3 and
4) and Blender-based (rows 7 and 8) data.
Ablation Study on Synthetic Type. We also conduct an
ablation study on the different types of synthetic data to
analyze the effectiveness of our approach with various
synthetic-real domain gaps. As shown in Table 2, our SD-
Pose achieves significant performance improvements over
the RGB baseline using both OpenGL-based and Blender-
based data.

Effectiveness of Representation Fusion
We further analyze our multi-level semantic representation
learning to reveal the mechanism behind its performance
improvement. Concretely, we remove CENet from SD-Pose
and train CCNet and CANet using the LCC loss to estimate
the pose from each representation and from the fused fea-
tures simultaneously. This allows us to compare the pose es-
timation performance of each semantic representation and
of the fused feature on the same model. As shown in Fig-
ure 4, the fused features yield the best average performance
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Data Method Ape Bv. Cam. Can Cat Dril. Duck Eggb. Glue Hol. Iron Lamp Ph. Avg

Syn

SSD6D (Kehl et al. 2017) 2.6 15.1 6.1 27.3 9.3 12.0 1.3 2.8 3.4 3.1 14.6 11.4 9.7 9.1
AAE (Sundermeyer et al. 2018) 4.0 20.9 30.5 35.9 17.9 24.0 4.9 81.0 45.5 17.6 32.0 60.5 33.8 31.4

MHP (Manhardt et al. 2019) 11.9 66.2 22.4 59.8 26.9 44.6 8.3 55.7 54.6 15.5 60.8 - 34.4 38.8
Self6D (Wang et al. 2020b) 37.2 68.9 17.9 50.4 33.7 47.4 18.3 64.8 59.9 5.2 68.0 35.3 36.5 40.1

DPOD (Zakharov et al. 2019) 37.2 66.8 24.2 52.6 32.4 66.6 26.1 73.4 75.0 24.5 85.0 57.3 29.1 50.0
Ours (OpenGL) 11.2 83.5 41.4 77.3 46.5 45.0 37.4 94.3 95.6 15.3 82.9 50.5 51.0 56.3
Ours (Blender) 54.0 76.4 50.2 81.2 71.0 64.2 54.0 93.9 92.6 24.0 77.0 82.6 53.7 67.3

Real* DomainTF (Rad et al. 2018) 19.8 69.0 37.6 42.3 35.4 54.7 29.4 85.2 77.8 36.0 63.1 75.1 44.8 51.6
Self6D (Wang et al. 2020b) 38.9 75.2 36.9 65.6 57.9 67.0 19.6 99.0 94.1 15.5 77.9 68.2 50.1 58.9

Table 3: Comparison with the state-of-the-art approaches on LineMOD without using real annotations. Metric: ADD; ‘Syn’:
only synthetic data involved during training; ‘Real*’: unlabeled real data involved during training. Our SD-Pose trained on the
simple OpenGL-based synthetic data yields on-par performance with the competitors. Furthermore, it outperforms most of the
competitors that exploit real data by a large margin, even though it only relies on synthetic data generated using Blender.

Data Method Ape Can Cat Dril. Duck Eggb. Glue Hol. Avg

Syn
Self6D (Wang et al. 2020b) 10.1 16.5 6.2 16.8 12.8 25.2 21.6 7.5 14.6

Ours (OpenGL) 4.3 49.5 8.9 16.4 25.4 30.3 37.1 7.6 22.4
Ours (Blender) 21.5 56.7 17.0 44.4 27.6 42.8 45.2 21.6 34.6

Real* Self6D (Wang et al. 2020b) 17.0 41.4 19.0 31.1 8.9 57.4 40.8 17.8 29.2

Table 4: Comparison with the state-of-the-art approaches on Occluded-LineMOD in the synthetic-only case. (Metric: ADD;
‘Syn’: only synthetic data involved during training; ‘Real*’: unlabeled real data involved during training.)

across 13 objects, surpassing the single-semantic competi-
tors by a significant margin. More importantly, for each ob-
ject, the performance of the fused features is on par with or
outperforms the best single-semantic result. This constitutes
evidence that our approach successfully guides the model
to integrate the benefits of every single modality. In Fig. 5,
we show the training loss curve of each prediction branch.
The output of the fused feature branch yields the minimum
loss in most cases, showing the benefit of the fused features
over the individual single-semantic features when it comes
to learning the pose.

Comparison with State-of-the-art Approaches
LineMOD dataset. We first compare our approach with
competitors using only synthetic data during training. We
focus on the ADD because most synthetic-only approaches
only report results on this metric. As shown in Table 3,
our SD-Pose trained on OpenGL-based synthetic data out-
performs the competitors by a large margin (our 56.3% vs.
50.0%). Exploiting realistic rendering data further boosts
our performance from 56.3% to 67.3% on ADD. On the
LineMOD dataset, we achieve state-of-the-art performance
in the synthetic-only case. We then compare our approach
with those that exploit real data but without using real an-
notations. Specifically, in the bottom portion of the Table 3,
we report the results of DomainTF (Rad et al. 2018) and
Self6D (Wang et al. 2020b), both of which leverage un-
labeled real-world RGBD data to help bridge the domain
gap. Our approach trained on OpenGL-based synthetic-only
data without any real-world data performs on par with these

methods. When we utilize physically-based rendered data,
our approach outperforms them by a large margin (67.3%
vs. 58.9%). On the LineMOD dataset, we achieve state-of-
the-art performance for pose estimation without using real
annotations.
Occluded-LineMOD dataset. We then compare our ap-
proach with the state-of-the-art methods on the Occluded-
LineMOD dataset. Self6D (Wang et al. 2020b) achieves
the state-of-the-art performance on Occluded-LineMOD in
synthetic-only case. However, as shown in Table 4, our ap-
proach with OpenGL data already outperforms it by a large
margin. Training with physically-based synthetic data al-
lows us to achieve the state-of-the-art synthetic-only perfor-
mance on this dataset.

Conclusions
We have introduced a framework based on multi-level se-
mantic decomposition for cross-domain 6D object pose es-
timation. Our approach has allowed us to bridge the gap
between the synthetic and real domains. Our thorough ex-
periments and ablation studies of each component of our
approach have evidenced the effectiveness of our frame-
work. We achieve state-of-the-art performance on both the
LineMOD and Occluded-LineMOD datasets without requir-
ing any real data during training, outperforming the competi-
tors by a large margin. In principle, our semantic decomposi-
tion framework is not specific to pose estimation and should
apply to other tasks that suffer from a synthetic-real domain
gap. In the future, we will therefore verify its effectiveness
in other contexts.
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