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Abstract

Human perceives rich auditory experience with distinct sound
heard by ears. Videos recorded with binaural audio particu-
lar simulate how human receives ambient sound. However, a
large number of videos are with monaural audio only, which
would degrade the user experience due to the lack of ambi-
ent information. To address this issue, we propose an audio
spatialization framework to convert a monaural video into a
binaural one exploiting the relationship across audio and vi-
sual components. By preserving the left-right consistency in
both audio and visual modalities, our learning strategy can
be viewed as a self-supervised learning technique, and alle-
viates the dependency on a large amount of video data with
ground truth binaural audio data during training. Experiments
on benchmark datasets confirm the effectiveness of our pro-
posed framework in both semi-supervised and fully super-
vised scenarios, with ablation studies and visualization fur-
ther support the use of our model for audio spatialization.

Introduction
Human beings are able to localize objects based on the
sound heard by ears. The reason behind this ability is that,
by parsing the audio difference between the two ears, human
beings are able to infer spatial information of the sound ori-
gins (e.g., the drum is at the left hand side, and the piano is
at the right hand side in Fig. 1), even if the audiences do not
see and are not physically present in the scene. Thus, if one
can design machines to measure the difference between the
arrival times, including that between the frequency distribu-
tions perceive by left and right audio sensors, such machines
would be able to perform sound localization accordingly.

However, most of the videos on social media contain only
monaural audio signals (i.e., the same audio source heard
by ears), which implicitly loses the spatial information of
interest. Without the difference between two ears while per-
ceiving sound, it is difficult for the users to immerse sur-
roundings as if they were in the scenes. Therefore, the lack
of spatial-related audio signals in media contents thereby di-
minishes the watching experiences of the users. To alleviate
this issue, it would be desirable if one can convert monau-
ral audio data into binaural ones. This is considered as the
task of audio spatialization (Gao and Grauman 2019a; Lu
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et al. 2019; Pedro Morgado and Wang 2018; Li, Langlois,
and Zheng 2018; Kim et al. 2019), which is among ac-
tive research topics in computer vision and signal process-
ing, and with applications ranging from augmented reality
(AR) (Kim et al. 2019), virtual reality (VR) (Li, Langlois,
and Zheng 2018), social video sharing (Gao and Grauman
2019a; Lu et al. 2019), and audio-visual video understand-
ing (Lin, Li, and Wang 2019; Tian et al. 2018; Lin and Wang
2020; Tian, Li, and Xu 2020). Nevertheless, by observing
visual data, generating audio outputs for left and right chan-
nels from a monaural audio input is a challenging task.

Since the visual content explicitly preserves the location
of the sounding objects in a scene, it would be desirable
to take videos accompanying monaural audio for recover-
ing spatial sound information, i.e., to lift a flat audio sig-
nal into left-right spatial audio outputs. A number of meth-
ods (Gao and Grauman 2019a; Lu et al. 2019; Pedro Mor-
gado and Wang 2018) jointly considering spatial-audio fea-
tures have been proposed. These methods are able to gen-
erate spatial audio signals associated with proper position
of the sounding objects. With videos recording in binaural
settings (Gao and Grauman 2019a; Lu et al. 2019), these
methods simulate how monaural audio is presented on the
mainstream media by mixing two channels audio into one
channel. Thus, the resulting models of (Gao and Grauman
2019a; Lu et al. 2019) are end-to-end trainable to perform
audio spatialization with stimulated monaural audio inputs.
Since the ground truth binaural outputs are available, the
predicted binaural audio signals can be properly guided by
the real binaural ones during training. While promising per-
formance has been presented, collecting a sufficient amount
of binaural audio datasets would be expensive. Moreover,
the method in (Lu et al. 2019) requires additional scene clas-
sifiers during training, which might limit its generalization
to videos with unseen content/scenes.

To overcome the above limitations, we propose a novel
deep learning network for audio spatialization. By exploit-
ing the visual cues across video frames, our model recovers
binaural audio outputs from the input video with monaural
recording. More specifically, we propose to identify audio-
visual cross-modal correlation, which allows us to identify
audio channels with the associated visual components. Such
spatial information would guide the prediction of left and
right-channel audio outputs throughout the video. Thus, the
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proposed framework would alleviate the dependency on the
large amount of ground truth binaural videos required dur-
ing training. In other words, our proposed framework can
be realized in both supervised and semi-supervised settings.
In our experiments, we extensively evaluate our proposed
method on a benchmark dataset. From both qualitative and
quantitative evaluation, our approach is shown to perform fa-
vorably against the state-of-the-art approaches in audio spa-
tialization.

The contributions of this paper are highlighted below:
• To recover binaural audio outputs from a video with only

monaural audio recording, we exploit its audio-visual cor-
relation to identify the sounding regions of interest in a
scene without the associated visual ground truth infor-
mation. This guides the audio recovery process with im-
proved performances.

• The audio-visual correlation is calculated between the
spectrogram of monaural audio and the visual features
extracted across frames. This infers left-right audio-
visual feature consistency, and can be viewed as a self-
supervised learning strategy.

• Experiments on benchmark datasets demonstrate that our
proposed module performs favorably against state-of-the-
art approaches, and confirm that the learning scheme can
be deployed in fully supervised and semi-supervised set-
tings.

Related Work
Audio-Visual Source Separation. Mutual relationships be-
tween audio and visual data are exploited in the context of
audio-visual source separation (Fisher III et al. 2001). Deep
neural networks have been shown to be effective in utiliz-
ing visual cues for audio source separation (Ephrat et al.
2018; Owens and Efros 2018), musical instruments (Zhao
et al. 2018; Gao and Grauman 2019a; Zhao et al. 2019;
Xu, Dai, and Lin 2019; Gao and Grauman 2019b) and ob-
jects (Gao, Feris, and Grauman 2018). Most of these meth-
ods adopt a “mix and separate” training strategy where the
training videos are first mixed and separated afterward. For
instance, MP-net (Xu, Dai, and Lin 2019) considers the
sounds with larger energy which are first separated under
all mixed sounds, and thus is removed from the mixture. As
a result, sounds will smaller energies would keep emerging.
In addition, the mixtures composed of any arbitrary number
of sounds can also be separated by MP-Net.

To achieve object-level audio-visual source separation,
Gao et al. (Gao and Grauman 2019b) propose a framework
to bridge the localized object regions in a video with the cor-
responding sounds. The detected sounding objects can then
be used to guide the learning process using unlabeled video
data. Methods like (Zhao et al. 2019; Gan et al. 2020b) uti-
lize visual motions or body gesture to separate sound sig-
nals, and thus audio-visual source separation can be per-
formed for different instruments. However, we note that
source separation is different from the task of audio-spatial
spatialization (as discussed later). The former identifies au-
dio signals corresponding to a particular sounding objects of
interest, while the latter needs to recover audio channel (e.g.,

left and right audio channels in binaural audio setting) which
still includes audio signals from multiple sounding sources.

Audio Generation from Visual Cues. Recent
works (Owens et al. 2016; Chen et al. 2017; Ephrat
and Peleg 2017; Zhou et al. 2018, 2019; Chen et al. 2020;
Gan et al. 2020a; Chen et al. 2018) have been proposed to
utilize visual cues to generate audio outputs which match
the sounding objects in the visual scene. For example,
Owens et al. (Owens et al. 2016) demonstrate that deep
neural networks are capable of synthesizing new sounds
for videos by looking at the material where the drumstick
hits. In (Ephrat and Peleg 2017), raw pixels of a speaker’s
face are mapped into audio features which are subsequently
converted into an intelligible waveform. In addition, recur-
rent networks are also shown to be effective in generating
audio input video frames (Zhou et al. 2018). Generating
audio data (Hao, Zhang, and Guan 2018) can be realized
by leveraging an encoder-decoder generative adversarial
network (GAN) (Goodfellow et al. 2014) conditioned on
the visual frames. However, different from generating audio
outputs associated with particular visual objects or scenes,
the main focus of our method lies in converting single
channel audio (i.e., monaural audio) into a dual channel
one (i.e., binaural audio), which is guided by observing
cross-modality features for improved performances.

Audio-Visual Spatialization. Audio-visual spatialization
aims at separating the audio input to multiple outputs based
on the locations of interest. Recently, a self-supervised neu-
ral network (Pedro Morgado and Wang 2018; Gan et al.
2019) is proposed to perform such tasks using videos with
spatial audio recording. Given a 360◦ video with a single
channel audio, their model learns to recover ambisonic au-
dio outputs (i.e., four channels for the 360◦ video), enabling
users to immerse sounds from all directions. To better cap-
ture the visual cues, their model exploits motion information
for generating audio with better ambisonic quality. How-
ever, one cannot directly apply their approach for videos not
recorded in the 360◦ format.

In (Gao and Grauman 2019a), Gao et al. propose a model
that converts mono audio to stereo audio in 2D videos by
measuring the difference between left and right audio chan-
nel outputs. This characteristic would guide the model to
convert stereo audio of better quality. Moreover, Lu et al. (Lu
et al. 2019) utilize not only visual and motion information
but also includes a scene classifier which guides the genera-
tion of binaural audio with the associated scene label infor-
mation. However, the use of their model would require ad-
ditional scene label annotation during training, which may
reduce the generalization of model (for unseen scenes, etc.).
Although both (Gao and Grauman 2019a) and (Lu et al.
2019) uitlize visual features in their model for predicting
binaural audio outputs, their models are not designed to
discover the spatial information of sounding regions corre-
sponding to distinct audio components. Thus, their abilities
for audio spatialization would still be limited (as confirmed
later by our experiments).
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Figure 1: Overview of our proposed framework for binaural audio prediction. Our framework is composed of two main compo-
nents, a spatial audio synthesizer taking monaural audio as inputs and predicting binaural audio outputs, and a CNN to extract
visual features from the input video. In addition to jointly taking visual features into the generation of binaural audio outputs, we
particularly observe audio-visual co-attention to identify spatial regions associated with audio components, with the observed
consistency guides the learning process.

Method
Problem Formulation and Notations
We first define the notations and settings considered in this
paper. As shown in Fig 1, the inputs of our network takes the
monaural audio with a set of corresponding visual frames.
Following the training setting in (Gao and Grauman 2019a;
Lu et al. 2019), the monaural audio xM (t) input is mixed
from binaural ground truth ones by adding left xL(t) and
right sound xR(t) together at time t. To analyze such au-
dio signals at distinct frequency bands, the input monaural
audio is transformed into frequency domain by short-time
Fourier transform (STFT) (Griffin and Jae Lim 1983). That
is, the mixed monaural xM (t) is transformed into the spec-
trogram SM ∈ Cu×t (and later encoded as the audio feature
a1 ∈ Rd×u×t). As for the visual feature of each frame, it
is represented by v ∈ Rd×w×h. Note that d indicates the
feature dimension for each channel; u and t indicate the size
of the audio spectrogram, while w and h denote that of the
visual feature. As for the outputs, our network produces left
ML and right MR complex masks which decompose the re-
covered monaural sound spectrogram S̃

M
into left and right

ones, respectively. In othe words, the predicted left S̃
L

and
right S̃

R
complex spectrograms can be represented as:

S̃L = ML × SM , S̃R = MR × SM . (1)

Revisit of Spatial Audio Synthesizer
Recently, (Gao and Grauman 2019a; Lu et al. 2019) ad-
dress audio spatialization and predict binaural audio out-

1note that u, t is 2n times smaller compared with spectrogram
inputs for simplicity

puts from videos with only monaural inputs. They adopt
the U-Net (Ronneberger, P.Fischer, and Brox 2015) which
takes monaural audio as inputs and injects visual features ex-
tracted from videos at the bottleneck of U-Net, which guides
the decoder to recover audio outputs with ground truth bin-
aural audio observed.

In stead of directly optimizing both binaural recording at
left and right channels (Lu et al. 2019), Guo et al. (Gao and
Grauman 2019a) particularly train the network by measuring
the difference of binaural recordings, in which the training
objective is described as follows:

Lrec = ‖S̃D − SD‖2, (2)

where S̃D = S̃L − S̃R. As for (Lu et al. 2019), additional
information such as scene labels is taken into consideration
for audio spatialization. However, collecting a large amount
of video data with ground truth binaural audio and/or scene
labels would be expensive. This is the reason why we choose
to exploit information observed across spatial and audio
modalities for better guiding the learning/prediction process.

Exploiting Interaural Level Difference for
Audio-Visual Consistency
To convert monaural audio of a video into binaural ones,
we propose to explore the correlation between particular au-
dio components and visual regions across video frames for
learning the audio spatialization model. This would not only
guide the training of our model; more importantly, it would
alleviate the need to collect a large number of videos with
ground truth binaural audio for training.

We note that, the characteristics of spatial audio (particu-
lar for binaural audio) relies on the difference between the
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audio signals received by left and right ears. To be more
specific, the decisive factors of binaural recording originate
from interaural time differences (ITDs) and interaural level
differences (ILDs), which allow human beings to sense 3D
surrounding audio in a scene. Therefore, it would be cru-
cial in determining different levels of magnitude (energy)
between the left-right channels of binaural recording and
recovery. Comparing the audio signals received by the two
channels, the channel with a larger magnitude indicates that
the audio source is closer to the corresponding audio re-
ceiver. Such properties and observations also imply that the
location of sounding objects can be possibly determined by
measuring the correlation between audio frequency and vi-
sual patches associated with that object.

Following the above idea, we first consider the difference
between the audio signals (in magnitude) received by left
and right channels. With the spectrogram signals predicted
by the left and right channels, we calculate their difference
by:

|SD| = |SL| − |SR|, (3)

where |SD| is of size u× t, indicating the magnitude differ-
ence between the left-right spectrograms. If an entry in |SD|
is greater than zero, it means that the sounding object with
the corresponding frequency-time specific audio component
is at the left-hand side of the scene. To normalize such dif-
ference values into probability values, we apply a sigmoid
function as follows:

PL→R
a = Sigmoid

(
|SD|

max(|SD|)−min(|SD|)

)
. (4)

Note that PL→R
a is also of size u × t, in which each entry

indicates how likely the sounding source of the associated
frequency-time specific audio component locates at the left
hand side of the input scene. It is worth noting that, if ground
truth SL and SR are not available during training, they will
be replaced by the predicted ones S̃

L
and S̃

R
for guiding the

training process as discussed later.

Audio Spatialization with Audio-Visual
Consistency
As pointed earlier, the key idea of our learning model lies in
the observation of the spectrogram difference between each
frequency-time specific audio component received by left
and right ears. By jointly exploiting the correlation across
audio spectrogram and visual features, the left-right location
of sounding objects can be discovered accordingly.

To realize the above idea, we propose to learn the co-
attention across audio and visual latent features, as depicted
in Figs. 1. Given the kth patch in the audio spectrogram (out
of u × t patches in a ∈ Rd×(u×t)), we calculate the corre-
lation (in cosine similarity) between it and the visual feature
v ∈ Rd×(w×h) extracted from a video frame. As a result,
the resulting co-attention map for ak can be expressed as
follows:

Ck = φcos(v,ak), ∀k = {1, ..., (u× t)}, (5)

where C ∈ Rw×h×(u×t) indicate the correlation scores be-
tween w × h visual patches and u × t audio components
in the spectrogram, and φcos denotes the cosine similarity
function.

Although the above co-attention map is derived between
each audio component and the visual features, which only
reflects the correlation between each monaural audio com-
ponent and the associated visual frame. To further determine
the left-right location information, we have each co-attention
map multiplied by two sigmoid-like weighting functions
WL and WR, both in size w × h and each column shar-
ing the same value. For example, WR can be described as:

WR(:, x) =
1

1 + e−(qx+r)
, (6)

where q ∈ R+ and r ∈ R are both constants. Similar re-
marks (q ∈ R−) can be applied for WL.

Multiplying the co-attention map by WL and WR would
imitate the received signals of each sounding source (i.e.,
ak) reaching left and right channels. By measuring the dif-
ference between two scores (also normalized by sigmoid),
the probability of each particular audio component locating
at left (or right) hand side of a scene can be produced:

pL→R
a,v (k) = Sigmoid{max(WLCk)−max(WRCk)},

∀k = {(1, ..., (u× t)},
(7)

where Ck ∈ Rw×h is the correlation scores between audio
patches and all w × h visual patches. WL,WR ∈ Rw×h

denote the functions weighting the co-attention maps. As a
result, we would observe the left-right probability outputs
for all audio frequencies as PL→R

a,v ∈ Ru×t, based on the
visual-audio correlation. Together with the left/right audio
cues observed in (4), we calculate the following loss func-
tion Lcon for preserving the audio-visual consistency:

Lcon = BCE(PL→R
a,v ,PL→R

a ). (8)

Note that BCE represents the binary cross entropy calcula-
tion. As discussed earlier, if ground truth binaural audio out-
puts are not available during training, this consistency loss
Lcon can still be calculated, which can be viewed as a self-
supervised learning technique. Nevertheless, if full supervi-
sion is available, our model can be trained by jointly observ-
ing the above Lcon and the (ground truth) audio recovery
loss Lrec as described in (2).

Experimental Results
Datasets
FAIR-PLAY (Gao and Grauman 2019a). The FAIR-PLAY
dataset consists of 1,871 10s clips of videos with binau-
ral recording. These videos are recorded in a music room
where reverberation has less influence in professional bin-
aural recording. As for the train/val/test split, we follow up
given splits from FAIR-PLAY dataset.
REC-STREET (Pedro Morgado and Wang 2018). The
REC-STREET dataset consists of 43 videos (3.5 hours)
recorded in street scenes 360◦ format with 1st order am-
bisonic format audio (4 channels).

2059



Method
Dataset FAIR-PLAY REC-STREET YT-CLEAN YT-MUSIC

STFT ENV STFT ENV STFT ENV STFT ENV
Mono 1.155 0.153 0.774 0.136 1.369 0.153 1.853 0.184

Audio Only 0.966 0.141 0.590 0.114 1.065 0.131 1.553 0.167
Ambisonics (Pedro Morgado and Wang 2018) - - 0.744 0.126 1.435 0.155 1.885 0.183

Lu et al. (Lu et al. 2019) 0.899 0.139 0.568 0.109 1.032 0.130 1.459 0.160
MONO2BINAURAL (Gao and Grauman 2019a) 0.909 0.140 0.571 0.110 1.035 0.131 1.455 0.162

Ours w/o Lcon 0.904 0.140 0.569 0.109 1.033 0.130 1.457 0.161
Ours 0.865 0.136 0.561 0.104 1.029 0.124 1.448 0.155

Table 1: Performance comparisons of binaural audio prediction on four video datasets in terms of STFT and ENV. Note that the
numbers in bold indicate the best results.

YT-CLEAN (Pedro Morgado and Wang 2018). The YT-
CLEAN dataset contains 496 videos collected on YouTube
in 360◦ format both audio and visual content. The scenes
of these videos vary such as meeting rooms, train carriages,
restaurants, and etc.
YT-MUSIC (Pedro Morgado and Wang 2018). The YT-
MUSIC dataset consists of 397 videos also collected on
YouTube in 360◦ format. Music and singing performance
are recorded in these videos. The audio of videos is mixed
with multiple similar sources like instruments and voices
from different people. For 360◦ videos, their audio encoding
format is different from binaural recording as in 2D videos.
Therefore, pre-processing for 360◦ videos is required not
only for comparison purposes but also for fitting the binaural
setting. We follow (Gao and Grauman 2019a) and process
the audio formats of 360◦ videos. That is, the ambisonics (4
channels) recording is decoded into the binaural one using
the transfer function (HRTF) from NH2 subject in the ARI
HRTF Dataset2.

Implementation Details

In all the experiments, only the visual frame corresponding
to the middle of the audio segment is extracted. For example,
the time of an audio segment is from 0.2 sec to 0.8 sec, and
the visual frame to be considered is the one at time 0.4 sec.
The visual feature is extracted from ResNet-18 (He et al.
2016) which is pre-trained on ImageNet (Deng et al. 2009).

We implement our model using PyTorch (Paszke et al.
2019) and train our model on a single NVIDIA GTX 1080 Ti
GPU with 12 GB memory. To fairly compare with the base-
line methods, our model utilizes the same number of model
parameters. The performance of our method can be possi-
bly further improved by adding more layers for U-Net based
spatial audio synthesizer or replacing with different U-Net
backbone. However, such techniques are not used in all of
our experiments.

As for audio settings in our experiments, the raw audio
data are resampled at 16kHZ. As for the STFT setting, we
use a Hann window of length 25ms, FFT size of 512 and hop
length of 10ms. During training, we randomly sample one
audio segment with 0.63s in a video with the corresponding
video frame. As for testing, we sample all the audio seg-
ments in a video with 0.05s hop size.

Evaluation Metrics
As considered in (Gao and Grauman 2019a; Lu et al. 2019;
Pedro Morgado and Wang 2018), two evaluation metrics are
utilized for measuring the recovered spatial audio quality.
STFT Distance: We computes the Euclidean distance be-
tween the ground-truth complex spectrograms and predicted
one which are scaled back as raw audio energy level. The
left and right are both evaluated:

DSTFT = ‖X̃L −XL‖2 + ‖X̃
R −XR‖2. (9)

Envelope (ENV) Distance: In time domain, directly mea-
suring raw waveforms may not capture perceptual similar-
ity well. We compute the envelope of ground-truth and pre-
dicted waveform, and measure their the Euclidean distance:

DENV = ‖E(x̃L(t))− E(xL(t))‖2
+ ‖E(x̃R(t))− E(xR(t))‖2,

(10)

where E(.) denotes the envelope of signal x(t).

Quantitative Evaluation
To evaluate the quality of our predicted binaural audio, we
compare our model with the following baselines or state-of-
the-arts methods:
• Audio Only: The model is trained without any visual

frame information, which directly predicts binaural audio
outputs given mixed monaural audio only.

• Mono: The mixed monaural audio is directly replicated
onto the left and right audio channel to create fake binau-
ral audio which preserves no spatial information.

• Ambisonics (Pedro Morgado and Wang 2018): As the
state-of-the-art method for the B-format (4 channels for
360◦ videos) audio generation, we first reproduce spa-
tial audio in B-format with the pre-trained models. Then,
the reconstructed spatial audio is decoded into binaural
format by the HRTF decoder. Owing to the limitation of
generation binaural recording, it cannot be applied to the
FAIR-PLAY dataset.

• Lu et al. (Lu et al. 2019): This approach jointly con-
siders audio, visual and flow information extracted by
FlowNet (Ilg et al. 2017), plus a scene classifier providing
additional guidance. Since no scene annotation is avail-
able for the datasets considered in this paper, we sim-
ply remove the scene classifier in our experiments during
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Input Frame MONO2BINAURAL Lu et al. Ours

Figure 2: Example visualization results on FAIR-PLAY. Note that the audio-visual attention is depicted in terms of heat maps,
in which red regions indicate high correlation between audio and visual data. More visualization results including demo videos
are available in the supplementary.

performance comparisons (note that all video scenes in
FAIR-PLAY are the same).

• MONO2BINAURAL (Gao and Grauman 2019a): Also
considered as a state-of-the-art method for spatial audio
generation, which considers audio-visual information at
the bottleneck of their model and requires full supervised
during training.
Table 1 compares our model with the aforementioned

baseline and three state-of-the-art methods for binaural au-
dio prediction. From this table, it is clear that our method
performed favorably against the state-of-the-art approaches
on all four datasets, including the ones utilizing visual infor-
mation. This supports our exploitation of audio-visual co-
attention for guiding the learning of particular audio compo-
nents (at left-right channels) with the associated location in
a scene. We note that, however, the performance improve-
ment on the 360◦ videos (REC-STREET, YT-CLEAN and
YT-MUSIC) was marginal. The main reasons are as follows:
the datasets are not real binaural recording (somehow simu-
lated) which is decoded by HRTFs that would lose some de-
tails because HRTFs simulate position of human beings in
sphere space. Furthermore, there are multiple sources with
silent audio segments throughout the videos, which eventu-
ally increase the difficulty of generating spatial audio. Nev-
ertheless, our model still achieved satisfactory performances
when comparing to the state-of-the-art ones.

It is worth noting the effect of optical flow estimation
when viewing videos and generating the binaural audio out-
puts. Since the scene label is not available, the main dif-
ference between the works of (Lu et al. 2019) and (Gao
and Grauman 2019a) would be the use of flow information.
Based on the experimental results, we only observe the ex-
ploitation of flow information to be marginal in performing
this task. We believe that the possible reason would be the
audio delivered by the sounding objects might not be highly

correlated with their movements, and thus utilizing flow in-
formation would not be sufficiently meaningful. And, due to
space limitation, more quantitative results will be provided
in the supplementary materials.

Qualitative Evaluation
The visualization results are shown in Fig. 2 on videos se-
lected from the FAIR-PLAY dataset. From this figure, we
see that our model better associates audio data with the
sounding objects. The example in the bottom row is particu-
larly challenging, since there are multiple sounding objects,
which makes the exploitation of correlation between visual
and audio data more difficult. Nevertheless, from the exam-
ples shown in this figure, we see that our model was able
to identify the sounding regions of interest when comparing
to state-of-the-art methods. It is worth noting that, no ground
truth spatial information is available for all sounding objects.
Thus, these results support the use of our model for discover-
ing the sounding sources in a scene, which would be applied
for identifying audio signals received by left and right chan-
nels as described in audio spatialization with audio-visual
consistency section.

Ablation Study
Since our model utilizes the proposed audio-visual con-
sistency loss (8) on state-of-the-arts models like (Gao and
Grauman 2019a) for spatial audio generation, Table 1 al-
ready compares and verifies the contribution of this pro-
posed loss term. On the other hand, since such observed
consistency comes from the co-attention of audio-visual fea-
tures, we now evaluate the performance of our model us-
ing audio features extracted from different layers (for (8))
in the decoder of our U-Net like architecture. Table 2 lists
both STFT and ENV results using audio features at vari-
ous layers. From this table, we see that the use of the latent
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Figure 3: Performance comparisons in terms of ENV and STFT on FAIR-PLAY using different amount of video data with
ground truth binaural audio for training. Note that the horizontal axes in both figures reflects the percentage of data with ground
truth audio utilized. It can be seen that our model achieved comparable results as other fully supervised models did, while only
about 60% of labeled data were used when training our model.

Layers 1 2 3 4 STFT ENV

U
til

iz
ed

L
ay

er
s X 0.865 0.1363

X 0.868 0.1365
X 0.872 0.1371

X 0.878 0.1375
X X 0.868 0.1366
X X X 0.871 0.1369
X X X X 0.869 0.1367

Table 2: Performance comparisons on FAIR-PLAY using
audio features extracted at different decoder layers from the
U-Net like auto-encoder architecture in Fig. 1. Note that
check mark indicates layers which are utilized.

feature extracted at the highest-level single layer would be
preferable, while using multiple cross-scale audio features
were not able to achieve comparable results. This is due to
the fact that the U-Net architecture outputs binaural outputs,
and thus extracting features at finer layers would not con-
tain spatial specific features, which would be redundant for
calculating audio-visual co-attention for observing the left-
right consistency in (8).

From Supervised to Semi-Supervised Learning
As discussed earlier, since our model is trained by jointly
minimizing binaural audio recovery and spatial-audio con-
sistency losses, our model can be realized in semi-
supervised settings. That is, only a portion of video data is
with ground truth binaural audio while the remaining ones
are unlabeled. It is worth repeating that, the ground truth
spatial information of sounding objects is never observed
during training. As a result, we choose to vary the percentage
of ground truth binaural recording for training, and present
the results in Fig. 3. From the results shown in this figure,

we see that the use of our spatial-audio consistency loss (i.e.,
the exploitation of spatial-audio co-attention) would benefit
binaural audio prediction. When the amount of labeled au-
dio data increases, all methods especially ours would better
learn the relationship between visual and audio information
presented in a video. The gap between our method with (Lu
et al. 2019) and (Gao and Grauman 2019a) would be ap-
preciable from this figure. For example, using only 60% of
labeled data, our model was able to achieve comparable per-
formances as (Lu et al. 2019) and (Gao and Grauman 2019a)
did. Therefore, from the above experiments, the use of our
model for binaural audio prediction in a semi-supervised set-
ting can be successfully verified.

Conclusions

In this paper, we presented a novel framework to gener-
ate binaural audio from the input video with only monau-
ral recording. The novelty of our proposed model lies in the
ability in exploiting the correlation between each audio com-
ponent and the spatial regions of interest, which would guide
the learning of left-right audio difference during training.
Since no ground truth spatial information is observed in the
above process, our learning scheme can be viewed as a self-
supervised learning technique, and thus can be integrated to
existing binaural audio recovery models (with full supervi-
sion of ground truth binaural audio). Moreover, our learning
strategy further alleviates the dependency of models learned
in fully supervised settings, and thus can be realized in semi-
supervised settings with promising performances. Our ex-
perimental results quantitatively and qualitatively support
the use of our model, confirming its superiority over state-
of-the-arts models in both supervised and semi-supervised
settings.
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