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Abstract

As 3D point clouds become the representation of choice
for multiple vision and graphics applications, such as au-
tonomous driving, robotics, etc., the generation of them by
deep neural networks has attracted increasing attention in
the research community. Despite the recent success of deep
learning models in classification and segmentation, synthe-
sizing point clouds remains challenging, especially from a
single image. State-of-the-art (SOTA) approaches can gen-
erate a point cloud from a hidden vector, however, they treat
2D and 3D features equally and disregard the rich shape in-
formation within the 3D data. In this paper, we address this
problem by integrating image features with 3D prototype fea-
tures. Specifically, we propose to learn a set of 3D prototype
features from a real point cloud dataset and dynamically ad-
just them through the training. These prototypes are then inte-
grated with incoming image features to guide the point cloud
generation process. Experimental results show that our pro-
posed method outperforms SOTA methods on single image
based 3D reconstruction tasks.

Introduction
Fueled by recent development in 3D acquisitions, 3D sen-
sors are becoming increasingly available in various applica-
tions, such as LiDARs and RGB-D cameras. In contrast to a
simple RGB image, 3D data offers much richer geometric,
shape, and scale information, which is proven advantageous
for numerous applications. Among the 3D data representa-
tions, point clouds are becoming more and more popular as
they can capture a much higher resolution than the voxel
grids, and show more sophisticated representations such as
meshes. It would be extremely valuable if we can construct
a point cloud merely from one single image. For instance,
since 3D sensors are still much more extravagant comparing
to traditional cameras, generating point clouds from RGB
images can significantly reduce the data acquisition bud-
get. Also, self-driving may benefit from this technique since
complete 3D shapes can provide more information regarding
surroundings of the object.

Numerous methods have been proposed to solve this 3D
representation synthesis task. For example, 3D-R2N2 (Choy
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Figure 1: The intuition of our framework: Combining 2D
image feature and 3D prototype knowledges.

et al. 2016) utilizes a 3D LSTM to generate the voxel rep-
resentation, given one or multiple views of an object. Holo-
GAN (Nguyen-Phuoc et al. 2019) separates the shape and
appearance of an object, then generate its 2D projection
from an unseen angle. Despite such great success, these ap-
proaches mainly focus on the regularly sampled data, which
limits their usage in practice.

As a flexible and powerful representation, the point cloud
receives more and more attention from the research commu-
nity. For instance, PointSetNet (Fan, Su, and Guibas 2017)
generates a point cloud from one image, with the help from
a two-branch network architecture and MoN loss function.
FoldingNet (Yang et al. 2018) is proposed to reconstruct a
point set by deforming a canonical 2D grid onto the underly-
ing 3D object surface. Furthermore, AtlasNet (Groueix et al.
2018) takes one more step in this direction, which deforms
multiple 2D configurations onto the target surface. Although
significant progresses has been made, previous methods ei-
ther focus on the self-reconstruction task tremendously, or
overlook the handy shape information concealed in the point
clouds themselves.

Motivated by these aforementioned limitations and re-
cent advances of the 3D shape representation learning, we
believe that model performance could be significantly im-
proved using the strong shape prior introduced by a point
cloud dataset.

In this paper, we focus on designing a novel architec-
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ture that allows efficient image-to-point-cloud generation,
and connects the gap between 2D and 3D features. To ad-
dress those problems, we introduce our Three Dimensional
Prototype Network (TDPNet), which is a unified point
cloud generation framework based on 3D prototypes. To
be more concrete, we first extract a set of features from
point cloud datasets via a SOTA representation learning
framework, such as PointNet (Qi et al. 2017a) and Point-
wiseCNN (Hua, Tran, and Yeung 2018). Then, we obtain a
set of 3D prototype features with a clustering algorithm (e.g.
KMeans). Note that these prototypes can be considered as
3D shape priors to our proposed framework. For a given im-
age, we build a set of fused vectors based on 2D features, 3D
features, and random 2D grids. The 2-manifold is deformed
onto a point cloud patch using a simple MLP. Our frame-
work contains multiple MLP decoders to handle different
prototype features. This setting encourages diverse recon-
struction and avoids mode collapse. All the point patches are
collected into the final point cloud. Compared to previous
research such as CSRNet (Kar et al. 2015) and RealPoint3D
(Zhang et al. 2019), which restrict their model template on a
specific domain, our approach is more flexible and efficient.

To sum up, our contributions in this paper are listed as
follows:

• A deep learning based framework is proposed to solve the
image-to-point-cloud generation problem;

• We bridge the gap between 2D image features and 3D
shape features in the hidden space;

• A unified 3D prototypes schema is designed to efficiently
utilize the rich structural 3D information;

• We conduct extensive experiments to verify the effective-
ness of our method, both quantitatively and qualitatively;

Related Works
Multi-view Reconstruction
Challenges about 3D reconstruction has been well stud-
ied based on the multi-view geometry (MVG) in the pre-
vious literatures (Hartley and Zisserman 2003). Traditional
approaches include motion structures (SfM) (Schonberger
and Frahm 2016), simultaneous localization and mapping
(SLAM) (Cadena et al. 2016). Even though these methods
have achieved promising performances, they are limited by
the coverage multiple views images (Wang et al. 2018; Zhu
et al. 2020). Recently, a number of SOTA frameworks lever-
age deep neural networks to learn a 3D shape from multi-
ple images (Gadelha, Maji, and Wang 2017; Rezende et al.
2016; Tulsiani et al. 2017; Choy et al. 2016). Most of these
approaches require no 3D ground truth (GT) labels for su-
pervision, while additional signals (e.g., contextual informa-
tion or camera matrix) are required. In practice, these re-
quirements could limit their usages dramatically. Moreover,
it is favorable if we can reconstruct the complete 3D shape
from only one RGB image (single view reconstruction).

Single-view 3D Reconstruction
Predicting a complete 3D shape via only one image is a
long-standing conundrum. Furthermore, this problem is ill-

posed, and prior knowledge is mandatory because an RGB
image solely contains deficient information for a complex
3D model (Fan, Su, and Guibas 2017).

With the rapid advance of deep learning techniques, lots
of deep learning frameworks explored the land of 3D re-
construction. 3D-ShapeNet (Chang et al. 2015) is amongst
the first framework utilizing deep networks to predict mul-
tiple 3D solutions from a single partial view. 3D-EPN (Dai,
Ruizhongtai Qi, and Nießner 2017) firstly predicted a 323

voxel grids and synthesized a higher resolution model with
deep networks. The resolution of the voxel representation
gradually increased from 323 to 603 (Gwak et al. 2017; Yang
et al. 2017). Recently, an interesting GAN framework, so-
called HoloGAN (Nguyen-Phuoc et al. 2019), is proposed to
learn the unseen 2D projections of a 3D shape based on a
sculpted 323 voxel volume. Even great progress has made,
the aforementioned methods are restricted to the voxel rep-
resentation and suffered from scalable issues.

On the other hand, 3D objects tend to be more com-
plete and natural by using point clouds and such represen-
tation forms a nicer shape for neural networks. In recent
years, PointSetNet (Fan, Su, and Guibas 2017) combined
an MoN loss and a powerful two-branch architecture to re-
store point clouds from one image. PCGAN (Li et al. 2018)
theoretically solved the applicable problem of GAN on the
point cloud. AtlasNet (Groueix et al. 2018) trained a set of
manifold decoders that are applicable to both point cloud
self-recontruction and image-to-point-cloud synthesization.
A contemporary method, so-called SSPNet (Navaneet et al.
2020), generates point cloud from one image by enforcing
geometric and pose cycle consistency. Nevertheless, it has
a strong assumption that each image has its corresponding
sihouette (image mask). We observed that those frameworks
treat 2D images and 3D shapes equally. Consider the fact
that the valuable information embedded in 3D shapes com-
pensate for the missing part of 2D images, mixing 2D and
3D features seem to be more reasonable.

Deep Learning in Point Clouds
As a preferred representation for many CV applications,
many deep learning approaches emerged to analyze the
property of point clouds. Shared MLP and convolutional-
based networks are two main categories in this domain.
PointNet (Qi et al. 2017a) is the pioneer of the first schema,
which learns shape descriptors from point clouds via a
sharing function. Successors follow the same philosophy
achieved amazing performance in different applications (Qi
et al. 2017b; Yang et al. 2019b; Wang et al. 2020).

Shared MLP methods generally ignored the local infor-
mation around each point. Convolutional-based networks
are introduced to tackle this issue. Specifically, they learned
a convolutional kernel covers a small region and use it to ag-
gregate information from 3D shapes (Hua, Tran, and Yeung
2018; Simonovsky and Komodakis 2017). Unfortunately,
it’s striking to observe that convolutional based approaches
are hard to train and struggled by overfitting. Without loss
of generality, we adopt PointNet as the 3D shape encoder in
our framework.
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Figure 2: Approach overview: A two-phase single-view point cloud reconstruction solution. a) We firstly warm-up the network
by solving a point cloud self reconstruction problem. Namely, we trained a point cloud autoencoder in this phase. b) We build
the actual image-to-point-cloud network in the 2nd phase. K prototype features are computed using the trained point cloud
encoder and KMeans clustering. Notice that it can be extended to a multi-class version by repeating this operation every class.
We then infuse the image feature and prototypes with random 2D grids and feed them to a hierarchical decoder to construct the
final point cloud. The decoder has K MLP clusters and each contains P one-patch decoders (K = 3, P = 3 in this figure).

Framework

Overview

The objective of our framework is to reconstruct a complete
point cloud from a single 2D projection, with the aids from
existing point cloud datasets. A point cloud is presented as
S = {pi}Ni=1, where N denotes its cardinality and pi is a
point in the 3D Euclidean space with coordinate (xi, yi, zi).
Based on our observation and existing literature, we found
that N = 2048 is sufficient to preserve the major structure
of given 3D object (Chang et al. 2015).

An image is a 2D projection of a 3D shape, while it con-
tains limited information about its source. This missing in-
formation is crucial for a successful reconstruction. We in-
troduce a set of 3D prototype features T =

⋃
c∈C{t

(c)
i }Ki=1

to compensate the information loss. Here C is the set of
classes, K is the set size, and ti is a prototype feature de-
rived from a point cloud dataset. Note that we use the same
point cloud dataset both phases for simplicity in Fig 2, while
a comprehensive external resource, like ShapeNet, is wel-
come in the 1st phase. Let I be the input image and f(·) be
the predefined image feature extractor (e.g. VGG-16). Our
goal is to learn a neural network G(·‖θ) such that the dis-
tance between the synthesized point cloud and the ground
truth is minimized. The objective is formulated as:

arg min
θ
D(S,G(f(I)⊕ T‖θ)) (1)

where θ = {φ, ρ} denotes network parameter: φ is the pa-
rameter of the feature extractor and ρ belongs to the mani-
fold decoders. D(·, ·) is the distance function and two com-
mon choices of this distance metric are Chamfer Distance
(CD) and Earth Mover Distance (EMD). Mathematically
speaking, CD and EMD between two sets of points are for-
mulated as following:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

‖x− y‖22 +
∑
y∈S2

min
x∈S1

‖x− y‖22 (2)

dEMD(S1, S2) = min
φ:S1→S2

∑
x∈S1

‖x− φ(x)‖2 (3)

where φ : S1 → S2 is a bijection. Although these two met-
rics are widely used by different frameworks, each of them
has its own concentration during the generating process, thus
leads to different 3D shapes when being used as loss func-
tion. EMD favors the shapes close to the ”mean-shape” of
the given category (Fan, Su, and Guibas 2017). Consider a
set of airplanes, the model always outputs a cabin will get a
better score. In contrast, CD tends to cover all components
while leading to a splashy shape that blurs the object’s geo-
metric structure. Noted that the sum term in both equations,
such computation is expensive and is another hint we should
keep the number of points, N , reasonable in practice.
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Architecture and Workflow
Our framework, TDPNet, has two training phases as illus-
trated in Fig 2. The goal of such design is to prepare the
point cloud encoder for prototype extraction and to help the
decoder gain the ability to reconstruct point clouds from an
isolated 3D feature in the 1st phase. We later build the ac-
tual image-to-point-cloud pipeline in the 2nd phase, where
the real image features and 3D prototypes are combined and
decoded.

To be concrete, we train a point cloud autoencoder in the
first step. The encoder may either be a pointwise MLP or a
convolution-based network (We adopt PointNet in this pa-
per). The one-patch decoder is a simple MLP (1538-512-
256-128) comprised of ReLU non-linearities on the first
three layers and tanh on the last output layer. This decoder
will be later used to initialize our hierarchical decoder. Fi-
nally, since the image feature Ifeat is not available now, we
mask out that part with an all-zero tensor. The loss function
of this autoencoder may either be CD or EMD.

For the 2nd phase, let’s start from a simple scenario,
where all inputs are from the same category (e.g., air-
plane). We need to generate K prototype features with the
trained point cloud encoder. A clustering algorithm, such as
KMeans, is applied to obtain K clusters. We then initialize
the prototype features by the centroid of each cluster. Notice
that we need to repeat this operation for every category when
facing a general multi-class problem setting. Nevertheless,
the centroids are insufficient for a realistic reconstruction,
we will apply a Froze-Finetune training strategy on those
prototypes, which is explained in the next subsection.

Our hierarchical decoder contains K MLP clusters and
every cluster has P one-patch decoders. We used K =
3, P = 3 in Fig 2. We concatenate the image feature Ifeat
with corresponding 3D prototypes T (c) = {t(c)i }Ki=1 to ob-
tain K fused vectors. Recall that there are K MLP clusters
and each of them will handle one fused vector. Each fused
vector is replicated P times and endowed with randomly
sampled 2D grids. With this configuration, we allow each
prototype to contribute to the final result democratically and
dedicated to different local regions. In the end, all theK×P
patches produced by the decoder are collected onto the final
point cloud. The pseudocode for this training process is pre-
sented below.

Dynamic 3D Prototype
In this section, we demonstrate how we generate the 3D pro-
totype and why it’s important to use a frozen-finetune train-
ing schema.

We initialize the 3D prototypes, T =
⋃
c∈C{t

(c)
i }Ki=1, by

the KMeans centroids of a collection of point cloud fea-
tures. Recall that we trained a point cloud AE in the 1st
phase and initialized our hierarchical decoder with its one-
patch decoder. Indeed, a multiple-patches decoder is accept-
able in the point cloud AE, whereas the performance won’t
be impaired heavily and it could cause negative effects to
the initialization. To reduce the requirement of computa-
tional resources and minimize the training time, we stay with
the one-patch decoder. Since the clustering algorithm won’t

Algorithm 1: Phase 1 Training
input: A point cloud dataset S = {si}mi=1

1 for Number of training epochs do
2 for batch← 1 to bm/batch sizec do
3 Compute 3D features for S{batch} ;
4 Concatenate 3D features with dummy image

features and 2D random grids ;
5 Generate Ŝ{batch} from the fused vector;
6 Compute dCD(Ŝ{batch}, S{batch}) ;
7 Update the network ;
8 end
9 end

Algorithm 2: Phase 2 Training
input: A paired image & point cloud dataset

D = {Ii, si}ni=1

1 Generate K prototypes with KMeans;
2 Initialize all MLPs with the 1st phase decoder;

3 for Number of training epochs do
4 if epoch < frozen period then
5 Froze the prototype
6 else
7 Activate prototype tuning
8 end
9 for batch← 1 to bn/batch sizec do

10 Compute 2D features from I{batch} ;
11 Concatenate 2D features with 3D prototypes

and 2D random grids ;
12 Generate Ŝ{batch} from the fused vector ;
13 Compute dCD(Ŝ{batch}, S{batch}) ;
14 Update the network ;
15 end
16 end

change the feature space, we conclude that the centroid cap-
tured meaningful information and can be decoded by the
one-patch decoder. Examples of extracted prototypes are
presented in the experiment section. The one-patch decoder
is capable of reconstructing a complete point cloud without
any image feature. In other words, the network learns the
mechanism to incorporate the 2D features with 3D proto-
types in the 2nd phase. The prototypes seem to be random
noise and lead to model collapse provided that 1st phase
does not exist (Mejjati et al. 2018), yet it’s also not advisable
to keep the prototype untouched during the training. For ex-
ample, an external dataset provides rich shape information
while its underlying distribution may not be consistent with
the prototype distribution of the 2nd phase.

To overcome aforementioned problems, we propose to
froze the prototypes for first few epochs. UAGAN (Mejjati
et al. 2018) embraced this strategy to balance the generator
and the discriminator in a GAN. The idea behind this op-
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Figure 3: Comparison of four SOTA image-to-point-cloud decoders. PointNet and PointSetNet both use a single image feature
and have no surface assumption, while PointSetNet is able to generate multiple plausible shapes thanks to the deconv branch
and MoN loss function. The AtlasNet tries to deform multiple 2D grids onto local 2-manifold but they still stay on the single
image feature. Our TDPNet is capable of fusing 2D and 3D information (K prototype features). Each prototype controls an
MLP cluster and every cluster contains P MLP components, each of which can fold a distinct 2D grid onto a specific local
point set.

eration is general and intuitive: Mode collapse is caused by
the joint training of one or more auxiliary components. The
alleviation of it is allowing update parameters for only one
component in the early stage. With the same idea, We froze
the prototype for the first 30 epochs and allow them to be
fine-tuned in the rest epochs, thus they can capture the cor-
rect information in the target dataset.

Hierarchical Manifold Decoder
Following the AtlasNet (Groueix et al. 2018) convention,
generating a point cloud can be considered as generating a
surface of a 3D shape. The surface (shape) of a 3D object is
a differentiable 2-manifold that embedded in the ambient 3D
Euclidean space:M2 ∈ R3. A point cloud is considered as a
sampled discrete subset of the surface S = {pi ∈M2∩R3}.

Before we dive into the reconstruction process, let us first
start with some basic concepts (Zhao et al. 2019):

Definition 1 (Diffeomorphisms)
A diffeomophism is an invertible, differentiable map be-
tween two differentiable surfaces.

Definition 2 (Chart)
Consider an open set U ∈ R2. A chart C is a diffeomor-
phism C : M2 → U ∈ R2 that maps an open neighborhood
in 3D space to its 2D embedding.

Definition 3 (Parameterization)
Given a chart C, let Ψ ≡ C−1 : R2 →M2 be the inverse of
this chart. Ψ is called a parameterization.

Definition 4 (Atlas)
A set of charts with images covering the 2-manifold is called
an atlas: A = ∪iCi(pi)

With these definitions, we conclude that a 2D point set can
be deformed to a surface with a parameterization Ψ. In the
other words, we are not learning an exact mapping from the
hidden vector to a point set Ŝ, but trying to find function(s)
Ψ(U |ρ) to generate the 2-manifold, such that Ψ(U |ρ) ≈ S.
ρ is a lower-dimensional parameterization of these functions
such that |ρ| < |S|.

It has been proved that “Given that C−1 exists, arbitrary
3D surfaces can be reconstructed if ψ is approximated by a
3-layer MLP” (Groueix et al. 2018). Based on this theorem

and the universal approximation theorem (Csáji et al. 2001),
we are able to state that a point cloud S can be universally
reconstructed up to a precision ε via an MLP with H hidden
units.

With these definitions and theorems, previous point cloud
decoder networks can be categorized based on their archi-
tecture. As presented in Fig 3, PointNet (Qi et al. 2017a)
could be extended to an image-to-point-cloud network nat-
urally by swapping the point cloud encoder with an image
feature extractor, and replace the FC-layer with an MLP de-
coder. PointSetNet (Fan, Su, and Guibas 2017) improves this
architecture by adding a deconvolutional branch and hierar-
chically combining the output from FC-branch into the fi-
nal result. However, both of them lack the grid structure and
their decode functions depend upon a single latent feature.
In other words, these two frameworks have the assumption
U = ∅. AtlasNet (Groueix et al. 2018) is an advanced ver-
sion of FoldingNet (Yang et al. 2018). They shared the same
intuition of manifold deformation, whereas FoldingNet re-
stricts itself to one manifold, and AtlasNet deforms multiple
2D grids with MLPs.

Although AtlasNet performs very well in the point cloud
self-reconstruction task, it assumes that 2D features and 3D
features have the same impact on the result point cloud,
which is not true in practice. Our framework addresses this
problem by combining 2D features and 3D prototypes to-
gether. Therefore, our framework is a generalization of At-
lasNet, which can be obtained by setting all the prototypes to
zero (T = ∅). Noted that our framework contains one MLP
cluster per prototype, thus a prototype can affect several re-
gions if desired.

Experiments
Setting
We evaluate our method quantitatively and qualitatively
on different challenging tasks, such as single category
image-to-point-cloud generation, multiple category image-
to-point-cloud generation and multiple plausible shapes gen-
eration.

Data Two datasets are used for evaluation in this paper:
ModelNet (Wu et al. 2015), and ShapeNet (Chang et al.
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PointSetNet PointFlow AtlasNet 1 Patch AtlasNet 32 Patches TDPNet K4P4 TDPNet K8P4
Airplane 6.48 / 36.63 7.96 / 14.47 6.38 / 21.33 5.94 / 21.22 5.40 / 19.42 5.44 / 17.13
Bathtub 13.16 / 53.35 33.34 / 21.18 11.36 / 20.55 12.06 / 14.94 10.64 / 14.93 9.54 / 14.96

Bed 11.80 / 42.49 10.07 / 15.09 10.14 / 19.28 9.16 / 32.87 7.80 / 13.39 7.27 / 13.45
Chair 14.81 / 42.14 11.16 / 15.35 11.03 / 22.16 9.47/ 16.92 9.86 / 17.43 8.74 / 17.55
Desk 18.75 / 47.43 28.83 / 23.63 21.14 / 32.87 21.67 / 34.87 16.18 / 27.32 18.59 / 31.04

Dresser 18.89 / 55.88 12.15 / 15.52 13.11 / 17.58 10.35 / 14.39 9.88 / 14.27 10.18 / 14.71
Monitor 16.49 / 43.91 10.88 / 14.82 12.88 / 21.59 11.38 / 18.33 10.51 / 16.06 10.05 / 16.41

Sofa 12.56 / 45.56 9.56 / 14.86 8.66 / 17.03 8.09 / 16.26 7.59 / 14.36 8.11 / 15.10
Table 15.46 / 43.69 9.72 / 14.94 10.49 / 18.45 8.06 / 16.54 7.97 / 15.91 7.48 / 16.11
Toilet 13.88 / 45.85 12.78 / 16.12 9.87 / 19.89 9.39 / 21.38 8.92 / 19.36 9.12 / 20.02

Table 1: Single-View Reconstruction (per category) for ModelNet dataset, trained on each category. The results of each frame-
work are reported in format ”CD / EMD”. Chamfer Distance is multiplied by 103 and Earch Mover Distance is multiplied by
102 for better visualization. Both metrics are computed on 2048 points. Best results are bolded.

Airplane Chair Car
PointSetNet 3.36 / 34.71 6.35 / 45.15 8.63 / 52.39
PointFlow 4.12 / 12.17 8.95 / 14.73 8.42 / 11.50
AtlasNet 2.82 / 11.39 6.67 / 13.81 4.42 / 11.39
TDPNet 2.34 / 13.85 6.32 / 14.87 4.20 / 11.18

Table 2: Single-View Reconstruction (per category) for
ShapeNet dataset, trained on each category. The results are
organized with the same format of Tab 1. AtlasNet 1 patch
and TDPNet K4P4 are omitted.

2015). For the ModelNet dataset, we borrow the processed
data from MVCNN (Su et al. 2015), which contains 4,899
CAD models across 10 categories and each model is accom-
panied by 12 2D projections. Regarding ShapeNet, we sam-
pled 3 categories, which totally contains 14,355 CAD mod-
els. We then render 12 views of each 3D shape based on
the Blinn-Phong shading formula with a black environmen-
tal map (Blinn 1977). The single RGB image of each CAD
model in both datasets is chosen from corresponding 12 2D
projections randomly. Both datasets are divided into a 80/20
train/test split randomly.

Baselines We compare our proposed TDPNet with three
SOTA frameworks. PointSetNet (Fan, Su, and Guibas
2017), AtlasNet(Groueix et al. 2018) and PointFlow (Yang
et al. 2019a). Only the first two methods claim that they have
the capacity to generate the point cloud from a single im-
age. Nevertheless, PointFlow solved the point cloud recon-
struction task from the perspective of statistics and achieved
promising results. Thus, we include this method to study its
capacity for the image-to-point-cloud task. For a fair com-
parison, all the images features are extracted by a VGG-
16 and we provide an additional run of AtlasNet with 32
patches, which is equal to the maximum number of MLP
decoders in our framework, K = 8, P = 4.

Evaluation Metrics We evaluated the synthesized point
cloud by comparing it to ground truth shapes using two cri-
teria: Chamfer Distance and Earth Mover Distance. Formu-
las and physical meanings of these two criteria are presented
in Equation 2 and 3, respectively. As we will show in later
sections, although these two numerical metrics have limita-
tions, they unveil different insights to the performance of all
models (Yang et al. 2019a).

Figure 4: Examples of qualitative comparison among dif-
ferent method. From left to right: Input image, PointFlow,
PointSetNet, AtlasNet, TDPNet (Ours) and Ground Truth.

Implementation Before training, the input point clouds
are aligned to a common ground plane and size normalized.
Data augmentation like random rotation and jitter are ap-
plied. All the RGB images are center cropped and resize to
224×224. To train our network, we use an ADAM optimizer
with an initial learning rate of 10−3 and a batch size of 32
for the first phase. We still use an ADAM optimizer in the
second phase but set the initial learning rate as 10−4. We ar-
ranged 100 epochs per training stage and froze the prototype
for 30 epochs.

3D Shape Reconstruction from RGB Images
We first report quantitative results for the single category
image-to-point-cloud generation in Tab 1 (ModelNet) and
Tab 2 (ShapeNet). Notice that the networks are trained on
each category separately. We observe that for single view
reconstruction, our proposed method consistently achieves
better CD and competitive EMD in every categories. Addi-
tionally, we can see that our approach is significantly better
than AtlasNet with the same number of decoders.

The results of our framework trained on all categories of
ModelNet are in Tab 3. Although our performance down-
grade slightly comparing to the single-category tests, we still
achieve better scores in most categories. Strictly speaking,
it’s not a fair comparison because our framework uses label
information to decide which prototypes to use.

PointSetNet and PointFlow are two extremes in this task.
PointSetNet performs moderately in CD but has intolera-
ble EMDs. PointFlow achieves amazing EMDs with unsta-
ble CD. Considering the visualization in Fig 4, the results
reveal the shortcomings of these two metrics. CD favors
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PointSetNet PointFlow AtlasNet P32 TDPNet K8P4
Airplane 20.92 / 42.54 14.28 / 24.52 8.03 / 33.56 5.68 / 21.74
Bathtub 44.83 / 53.05 21.11 / 20.25 16.17 / 37.27 8.73 / 18.17

Bed 18.77 / 49.82 12.37 / 17.65 8.11 / 15.08 7.50 / 17.90
Chair 23.12 / 44.99 17.54 / 27.41 14.10 / 27.52 9.52 / 23.85
Desk 27.79 / 49.06 31.72 / 27.97 21.32 / 41.49 16.61 / 27.84

Dresser 54.45 / 56.65 12.15 / 15.52 17.64 / 22.37 9.74 / 20.35
Monitor 31.83 / 50.88 15.05 / 24.22 13.08 / 20.76 9.09 / 20.01

Sofa 16.59 / 50.19 14.09 / 18.97 10.10 / 16.88 7.64 / 20.30
Table 22.45 / 47.88 10.91 / 20.77 9.23 / 25.74 7.03 / 18.36
Toilet 23.29 / 49.67 17.14 / 27.28 9.89 / 30.17 8.96 / 27.75

Table 3: Single-View Reconstruction (per category) for
ModelNet, trained on all categories. The results are in for-
mat ”CD / EMD” and they are scaled by 103 and 102, re-
spectively.

Figure 5: Multiple predictions for a single input image. Note
that the input view can be a 2D projection from a different
angle, while we can still reconstruct the 3D shape correctly.

a splashy result that covers more regions, whereas EMD
prefers a ”mean-shape” that roughly matches every instance
in a given category (Yang et al. 2019a; Fan, Su, and Guibas
2017). Based on these observations and previous literatures,
we suggest that a model is better if it has better CDs and
moderate EMDs. Adequate EMD guranantees that the re-
sult is in the right category and small CD make sure all re-
gions are recovered properly.

Generating Multiple Plausible Clouds
The random sampled coordinates from the 2-manifold natu-
rally allows prediction of different shapes, given the same
input image. This model behavior is valuable because of
the ambiguous 2D to 3D construction behavior (Sung et al.
2018). Fig 4 shows examples of a set of predictions given
one image. We observed that our network can reveal its un-
certainty about the shape or the ambiguity in the input.

Ablation Study
Prototypes and Decoders
We report the result of different settings of K and P in Tab
4. Notice how our approach generally improves as we in-
crease the number of prototypes and MLP decoders. Another
interesting observation is that our approach usually obtains
more benefits from the increase of prototypes compared to
the increase of MLP decoders. Our approach consistently
outperforms AtlasNet when the number of decoders is equal
(K × P = 32), which further justified the effectiveness of
combining 2D and 3D features. Finally, we observed that
adding extravagant decoders doesn’t necessarily improve the
model performance.

P=1 P=2 P=4 P=8
K=2 6.41 6.28 5.70 5.63
K=4 6.15 6.09 5.40 5.66
K=8 6.08 5.82 5.44 5.41
K=16 5.73 5.41 5.25 5.07

Table 4: Chamfer Distance measured on ModelNet-airplane
with different hyper-parameter setting. The result are multi-
plied by 103 for better visualization.

Froze Finetune Froze-Finetune
Airplane 6.12 5.76 5.44
Bathtub 11.37 10.84 9.54

Table 5: Chamfer Distance (×103) measured on 2 Model-
Net categories with different training strategies. We adopt
configuration K = 8, P = 4 in this experiment.

Frozen-Finetune Training
In this section, we evaluate the effectiveness of the Frozen-
Finetune training. Tab 5 shows the quantitative results. The
performance of Frozen and Finetune are approximately the
same since the network may recognize the first one as con-
stants and the finetuned version as random noise. On the
other hand, our approach is capable of avoiding mode col-
lapse and utilizing the 3D shape information.

Fig 6 visualizes two samples of prototypes. We combined
the prototype with a dummy image feature and feed it to
the 1st phase decoder. Although this may not be the optimal
visualization because we trained the prototype features to
incorporate with real image features, we can still find that
the finetuned prototype looks closer to the category mean-
shape, whereas the frozen version tends to be more sparse in
the space.

Conclusion
In this paper, we introduced a unified framework for gen-
erating point clouds from an image. Our approach bridges
the gap between 2D and 3D features by introducing a flexi-
ble 3D prototype mechanism. The superiority of our frame-
work compared to SOTA methods is demonstrated by both
quantitative metrics and qualitative figures. Moreover, the
proposed method is a general framework that can be eas-
ily extended to new 3D reconstruction techniques (e.g. point
cloud representation) with few modifications.

Figure 6: Sampled prototypes on ModelNet-bathtub. Left are
the initial centroids and Right are the finetuned prototypes.
See context for more information.
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