
SA-BNN: State-Aware Binary Neural Network

Chunlei Liu1,2, Peng Chen2, Bohan Zhuang3, Chunhua Shen2, Baochang Zhang1, Wenrui Ding1

1 Beihang University
2 The University of Adelaide

3 Monash University
liuchunlei@buaa.edu.cn, blueardour@gmail.com, bohan.zhuang@monash.edu,

chunhua.shen@adelaide.edu.au, bczhang@buaa.edu.cn, ding@buaa.edu.cn

Abstract
Binary Neural Networks (BNNs) have received significant at-
tention due to the memory and computation efficiency recently.
However, the considerable accuracy gap between BNNs and
their full-precision counterparts hinders BNNs to be deployed
to resource-constrained platforms. One of the main reasons for
the performance gap can be attributed to the frequent weight
flip, which is caused by the misleading weight update in BNNs.
To address this issue, we propose a state-aware binary neural
network (SA-BNN) equipped with the well designed state-
aware gradient. Our SA-BNN is inspired by the observation
that the frequent weight flip is more likely to occur, when
the gradient magnitude for all quantization states {−1, 1} is
identical. Accordingly, we propose to employ independent
gradient coefficients for different states when updating the
weights. Furthermore, we also analyze the effectiveness of
the state-aware gradient on suppressing the frequent weight
flip problem. Experiments on ImageNet show that the pro-
posed SA-BNN outperforms the current state-of-the-arts (e.g.,
Bi-Real Net) by more than 3% when using a ResNet archi-
tecture. Specifically, we achieve 61.7%, 65.5% and 68.7%
Top-1 accuracy with ResNet-18, ResNet-34 and ResNet-50 on
ImageNet, respectively.

Introduction
Binary Neural Networks (BNNs) (Courbariaux et al. 2016;

Zhang et al. 2019) have become one of the most prevail-
ing approaches in deep learning model compression (Choi
et al. 2018; Mishra et al. 2017; Gong et al. 2019; Cai et al.
2017) due to their computation efficiency. As demonstrated
in (Rastegari et al. 2016), BNNs can potentially achieve 32×
memory compression ratio, and up to 58× speed-up on CPU
compared with their full-precision counterparts. However, the
large accuracy drop of BNNs hampers them to be deployed
in real applications (Tang, Hua, and Wang 2017; Bulat et al.
2019; Sakr et al. 2018; Han et al. 2019).

The challenge of the accuracy drop instinctively comes
from the extremely limited binarization states {−1, 1}, which
would cause considerable propagation errors in forward and
backward procedures, and further lead to misleading weight
update (Bai, Wang, and Liberty 2018). To further illustrate
this issue, two sequential training iterations are shown in Fig-
ure 1. Specifically, with the sign(·) quantizer, BNNs compute

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the gradient at the binarized value while performing the up-
date at the full-precision value (Rastegari et al. 2016; Liu et al.
2018), which might mislead the training. Despite the chance
to be guided into the correct direction during training, the
weight update is more likely to be continuously misled and
cause a frequent weight flip, leading to less efficient training
and a sub-optimal model.

With respect with the aforementioned problem, we aim to
make the training more efficient by suppressing the fluctua-
tion of the weight update. Specifically, we find that existing
methods (Rastegari et al. 2016; Darabi et al. 2018; Liu et al.
2018) possess the identical gradient magnitude for all quanti-
zation states {−1, 1}. According to our analysis, the frequent
weight flip in this case is more likely to occur. The intuition
here is about “Can we calibrate the magnitude of the two
states and make them distinctive such that they would have
a different chance of weight flip? Thus, it would also make
weight flip be less frequent to occur. Inspired by this, a novel
state-aware binary neural network (SA-BNN) equipped with
the carefully-designed state-aware gradient is proposed in
this paper. Specifically, we set separate learnable gradient
coefficients for different states. Thus, the unnecessary weight
update can be impeded efficiently. Moreover, we also provide
a formal analysis to further justify the claim. We conduct
comprehensive experiments and the results also validate that
our SA-BNN provides a more reliable and effective gradi-
ent calculation than other works. Our main contributions are
summarized as follows.

• We propose a state-aware binary neural network (SA-
BNN) equipped with the state-aware gradient, which can
provide more reliable and effective gradient calculation
than prior work.

• We analyze the effectiveness of the state-aware gradient on
suppressing the frequent weight flip problem and alleviate
the ineffective update issue in BNNs optimization.

• We conduct extensive evaluations on ImageNet, showing
that our SA-BNN achieves state-of-the-art results. In par-
ticular, the proposed SA-BNN outperforms Bi-Real Net by
5.3%, 3.3% and 6.1% in Top-1 accuracy with ResNet-18,
ResNet-34 and ResNet-50, respectively.

Related Work
There have been extensive studies on network compression

and acceleration (Zhang et al. 2018a; Zhou et al. 2017, 2016;

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

2091

Figure 1: Illustration of the frequent weight flip issue caused by the misleading weight update, where w and L indicate the
full-precision weight and network loss function (blue line), respectively. Two sequential training iterations are presented. In
BNNs, the full-precision tensor is binarized by sign function (described by the green dotted line) in the forward propagation. In
the backward propagation, the gradient is computed based on the quantized value (indicated by the yellow dotted line). However,
the update is conducted on the full-precision value (the orange line), which might mislead the training. From iteration t to t+ 1,
a misleading weight update occurs, causing a flip from −1 to 1, and a similar misleading weight update that occurs from iteration
t+1 to t+2 causes a flip from 1 to −1. With extremely limited representation states, the weight flip happens more frequently in
BNNs.

Yang et al. 2020; Shen et al. 2019), including quantization
(Faraone et al. 2018; Cai et al. 2017; Jung et al. 2019; Zhuang
et al. 2018, 2019), pruning (He, Zhang, and Sun 2017), and
compact network design (Zhang et al. 2018b). We focus on
the binarization in this work. In general, most binarization
algorithms (Bethge et al. 2020; Martinez et al. 2020a) aim at
tackling three main problems.

The first category targets at designing accurate binariza-
tion approximation methods (Gu et al. 2019a,b; Rastegari
et al. 2016; Bulat and Tzimiropoulos 2019; Li et al. 2017).
In BNNs, both weights and activations are constrained to
{−1, 1} using sign function. XNOR-Net (Rastegari et al.
2016) uses {−α, α} instead of {−1, 1}, where α is a
channel-wise full-precision scales. Since sign function is
non-differentiable, HardTanh (Courbariaux et al. 2016), clip
(Rastegari et al. 2016), swishsign (Darabi et al. 2018) and
piecewise polynomial function (Liu et al. 2018) are used as
differentiable approximation of the sign function for better
backward propagation. Besides, Real-to-Binary Net (Mar-
tinez et al. 2020a) proposes to use a data-driven method to
calculate the scaling factor for the activations after 1-bit con-
volution, through which the performance of BNNs can be
large improved.

The second category aims at improving the capacity of the
model. Bi-Real Net (Liu et al. 2018) proposes to increase
the number of shortcut connections in ResNet. CBCN (Liu
et al. 2019) designs a simple and unique variation process to
increase the filter diversity in BNNs. Moreover, GroupNet
(Zhuang et al. 2019) is proposed to approximate the full-
precision convolution by aggregating several binary branches.

The third category focuses on exploring the efficient train-
ing methods (Chen et al. 2017; Mishra and Marr 2017; Liu
et al. 2020b; Hou, Yao, and Kwok 2016). BinaryDuo (Kim
et al. 2020) proposes a new training scheme for binary acti-
vation networks in which two binary activations are coupled
into a ternary activation during training. Martinez et al. (Mar-

tinez et al. 2020b) devise a sequence of teacher-student pairs
to progressively bridge the architecture gap between real and
binary networks.

Most previous works mainly focus on designing advanced
binarization methods. The issue of frequent weight flip is
less studied explicitly. To solve this problem, Helwegen et
al. (Helwegen et al. 2019) introduce an optimizer specifically
designed for BNNs by directly updating the state of binarized
weights. ProxQuant (Bai, Wang, and Liberty 2018) formu-
lates the quantized network training as a regularized learn-
ing problem instead and optimizes it via the prox-gradient
method. These methods consider the weight updating con-
sistently for different states, which may cause the frequent
forth-and-back weight flip issue. To improve the BNNs op-
timization, we propose SA-BNN in this paper, which learns
independent gradient coefficients for each state for more effi-
cient training.

Method
Preliminary and Motivation

BNNs refer to the CNN models with binary weights and
binary activations, specifically through a sign(·) function.
For a convolutional layer, the forward pass can be written as

xl+1 = (x̂l ∗ ŵl)α = (sign(xl) ∗ sign(wl))α, (1)

where xl and wl indicate the elements of full-precision ac-
tivation X l and weight W l in the l-th layer, respectively,
x̂l, ŵl ∈ {−1, 1} represent the corresponding binarized val-
ues, α is a full-precision scaling factor, and ∗ represents the
convolution operator. Correspondingly, the backward pass
can be written as

∂L

∂xl
=
∂L

∂x̂l
∂x̂l

∂xl
,

∂L

∂wl
=

∂L

∂ŵl

∂ŵl

∂wl
, (2)

where L is the network loss. Specifically, the triangle-shaped
derivative (Liu et al. 2018) and square-shaped derivative

2092

(Rastegari et al. 2016) are widely used options for ∂x̂l

∂xl and
∂ŵl

∂wl to approximate the gradients. Notably, these methods
treat the gradients of the two states in BNNs equally and
do not distinctively maintain the weight updating. However,
our analysis shows that this weight updating manner might
aggravate the frequent weight flip issue when considerable
noise exists in the mini-batch gradients. It motivates us to em-
ploy state-aware gradient in BNNs to discourage unnecessary
weight updating for efficient training.

State-Aware Binary Neural Network
As aforementioned, we propose the following state-aware

gradient to stabilize the optimization:

∂L

∂x
=

{
∂L
∂x̂ (τ−1

∂x̂
∂x) if x̂ = −1

∂L
∂x̂ (τ1

∂x̂
∂x) otherwise

, (3)

where τ−1, τ1 ∈ R are learnable coefficients, which are intro-
duced on the activation gradients to distinctively treat the two
states in BNNs. We do not apply the distinguishable param-
eters τ = {τ−1, τ1} on weight gradient (∂L∂w), since weights
themselves are learnable in training process. It is equivalent
to regard the state-aware coefficients τ and weight parame-
ters as a whole. Therefore, we do not consider state-aware
gradient on weights, and instead focus on that on activation in
the following. According to Eq. (3), we actually leverage an
extra scale factor on the activation gradients for each binariza-
tion state to impose a mild constraint on the weight updating.
When the two scale factors are equal (τ−1 = τ1), it reduces
to the traditional weight updating with state-consistent gradi-
ents. Otherwise, it is the proposed state-aware gradient based
BNNs. Next, we analyze the difference between these two
mechanisms.

Proposition 1 The state-aware gradients (|τ−1| 6= |τ1|)
can suppress frequent weight flip effectively compared with
the corresponding state-consistent gradients (|τ−1| = |τ1|),
leading to more stable training.

Based on the gradient chain rule, the weight updating
procedure can be described as

wl,t+1 = wl,t − η ∂L

∂wl,t

= wl,t − η ∂L

∂x̂l+1,t
(τ l+1,t ∂x̂

l+1,t

∂xl+1,t
)
∂xl+1,t

∂ŵl,t

∂ŵl,t

∂wl,t

= wl,t − η ∂L

∂x̂l+1,t
(τ l+1,t ∂x̂

l+1,t

∂xl+1,t
)x̂l,t

∂ŵl,t

∂wl,t

= wl,t − τ l+1,tbl,t,
(4)

where η is the learning rate, t represents the t-th iteration,
and bl,t = η ∂L

∂x̂l+1,t
∂x̂l+1,t

∂xl+1,t x̂
l,t ∂ŵl,t

∂wl,t . For simplicity, we ig-
nore the layer index superscript l in the following analysis.
According to Eq. (4), to enable a weight flip (namely let
sign(wt+1) 6= sign(wt)), it requires to satisfy the constraints
sign(τ tbt) = sign(wt) and |τ tbt| > |wt|, where | · | repre-
sents the magnitude of the input. We assume the initial state
sign(wt) = −1, and the process is similar for the initial state
sign(wt) = 1.

1) If |τ−1| = |τ1|, the flip probability from the iteration t
to t+ 1 is

P (sign(wt) 6= sign(wt+1)) = N|wt|/N, (5)

where N|wt| represents the total number of bt satisfying
sign(τ t1b

t) = sign(wt) and |τ t1bt| > |wt|, and N represents
the total number of b. Similarly, the flip probability from the
iteration t+ 1 to t+ 2 is

P (sign(wt+1) 6= sign(wt+2)) = N|wt+1|/N, (6)

where N|wt+1| represents the total number of bt+1 satisfy-
ing sign(τ t+1

−1 b
t+1) = sign(wt+1) and |τ t+1

−1 b
t+1| > |wt+1|.

Thus, the sequential flip probability from the iteration t to
t+ 2 is

P ((sign(wt) 6= sign(wt+1)) ∩ (sign(wt+1) 6= sign(wt+2)))

= (N|wt|N|wt+1|)/N
2.

(7)

2) If |τ−1| < |τ1|, it remains the same flip probability from
the iteration t to t+1 as Eq. (5). However, when considering
the flip probability from iteration t+1 to t+2, the number of
bt+1 that satisfying |τ t+1

−1 b
t+1| > |wt+1| in this case is less

than that in the case of |τ−1| = |τ1|.
Therefore, the state-aware gradient (i.e., |τ−1| < |τ1|) has

lower probability of sequential weight flip compared with the
conventional state-consistent methods (i.e., |τ−1| = |τ1|),

P (At ∩At+1||τ−1| < |τ1|) < P (At+1 ∩At+2||τ−1| = |τ1|),
(8)

where At represents sign(wt) 6= sign(wt+1).
3) If |τ1| < |τ−1|, the process is similar to 2). The state-

aware gradient also has lower probability of sequential weight
flip as

P (At ∩At+1||τ1| < |τ−1|) < P (At+1 ∩At+2||τ−1| = |τ1|).
(9)

Based on the above analysis, we propose an efficient yet
simple solution to realize the state-aware gradient:

xl+1 =

{
(sign(τ l−1x

l) ∗ sign(wl))α if x̂ = −1
(sign(τ l1x

l) ∗ sign(wl))α otherwise
.

(10)
Compared to Eq. (1), we simply multiply the scale τ on the
activation based on its state. Note that the learnable coef-
ficients τ are per-channel granularity in our paper. In this
way, our SA-BNN is established in exchange for a small in-
crease in computational complexity (only an extra point-wise
product between τ and x).

Discussion
In this section, we first discuss the difference of SA-BNN

with related methods in (Helwegen et al. 2019; Bai, Wang,
and Liberty 2018), and then further analyze the effectiveness
of the proposed SA-BNN.

In particular, Helwegen et al. (Helwegen et al. 2019) ar-
gue that latent weights are not necessary for gradient-based

2093

optimization of BNNs, and they directly update the state of
binarized weights with:

wt =

{
−wt−1 if |gt| ≥ β and sign(gt) = sign(wt−1)
wt−1 otherwise

,

(11)
where gt is exponential moving average of gradient (gt =
(1− γ)gt−1 + γ ∂L

∂wt , where γ is the adaptive rate) and β is
a manually defined threshold to control the weight flipping.
From Eq. (11), we can learn that it is easy for the weight to
flip when threshold β is small and hard to flip when threshold
β is large. From this perspective, threshold β in (Helwegen
et al. 2019) is consistent with the coefficients τ in our method.
However, the method in (Helwegen et al. 2019) suppresses
the weight flip equally for different states, while SA-BNN
treats different binarization states distinctively by employing
an independent coefficient for each state. Moreover, different
from the handcrafted hyper-parameters β, the coefficients τ
are learnable, which avoids a very careful tuning during the
optimization procedure.

Bai et al. (Bai, Wang, and Liberty 2018) propose the Prox-
Quant by formulating the quantized network training as a
regularized learning problem and optimizing it via the prox-
gradient method. Specifically, ProxQuant has access to addi-
tional gradient information at non-quantized points, which
avoids the misleading weight update in the training. Different
from the ProxQuant which suppresses the frequent weight
flip by designing a dedicated optimizer, SA-BNN provide a
more elegant and simple way which can be easily integrated
in existing methods and is able to achieve better performance.

In addition, due to the non-differentiability of sign function
in the binarization process, most existing works employ a
surrogate for the gradients (Rastegari et al. 2016; Darabi et al.
2018; Liu et al. 2018), in which the gradients are forced to be
0 for values outside [−1,+1]. However, once the value falls
outside the truncation interval, it cannot be used to update the
corresponding weights anymore. This strategy greatly limits
the training ability of backward propagation (Qin et al. 2019)
when too many values are clipped. In contrast, our SA-BNN
has the ability to preserve more gradients through learnable
coefficients, thus alleviating the unreliable gradients in BNNs
optimization.

Experiments
Dataset and Implementation Details

We perform experiments on large-scale dataset ImageNet
(ILSVRC12) (Russakovsky et al. 2015), which contains ap-
proximately 1.2 million training images and 50K validation
images from 1000 categories. In our experiments, we employ
224×224 random crop and center crop for training and infer-
ence, respectively. We use ResNet as our backbone, including
ResNet-18, ResNet-34 and ResNet-50 (He et al. 2016). We
use Adam (Kingma and Ba 2014) with the momentum of 0.9
and set the weight-decay to be 0.

For SA-BNNs with backbone ResNet-18, we run the train-
ing algorithm for 95 epochs with a batch size of 256. The
learning rate starts from 0.001 and is decayed twice by mul-
tiplying 0.1 at the 75th and the 85th epoch. Besides, for

SA-BNNs with backbone ResNet-34, the training process
includes 90 epochs and the batch size is set to 256. The learn-
ing rate starts from 0.001 and is multiplied by 0.1 at the 60th
and the 80th epoch, respectively. Moreover, for SA-BNNs
with backbone ResNet-50, we run the training algorithm for
70 epochs with a batch size of 64. The learning rate starts
from 0.0005 and is decayed twice by multiplying 0.1 at the
40th and the 60th epoch.

Ablation Study
Initial Coefficients. In this section, we investigate the in-
fluence of the initialization of τ = {τ−1, τ1} on the final
performance. First, τ−1 and τ1 are constantly set to be 0.4
and 1 for ResNet-18 empirically. We obtain an improvement
of 5.8% over the model without the state-aware method (SA)
(59.2% v.s. 53.4%), which justifies the effectiveness of state-
aware gradient. Furthermore, we unleash τ to be learnable
for better performance by setting their initial values to be
0.10, 0.25, 0.40, 0.75, and 1.0. The results are listed in Table
1, where “N” represents τ−1 is learnable while τ1 is con-
stantly set to be 1 (τ1 = 1); “P” represents τ1 is learnable
while τ−1 is constantly set to be 1 (τ−1 = 1); “S” represents
both τ−1 and τ1 are learnable, and we keep τ−1 = τ1 in the
whole training process; “D” represents both τ−1 and τ1 are
learnable and have the same initial value, but independently
updated in the training process. From the results in Table ??,
we observe that the results of τ−1 6= τ1 (i.e., “N”, “P”, “D”)
outperform those of τ−1 = τ1 (i.e., “S”) by a large margin,
which demonstrate that the performance can be improved
when the magnitude is different for binary states. Besides, we
conduct an additional experiment to validate the performance
influence of different initial value settings (0.40 for τ−1, and
1.0 for τ1) for both learnable τ−1 and τ1, and observe the
accuracy is 60.8%.

We further plot the distributions of learnable coefficients
τ−1 on the 14th − 17th layer of ResNet-18 with the initial
values of 0.4 while fixing τ1 = 1 in Figure 2. From the
results, we observe that most coefficients fall into the range
of [0, 1] and the distributions of τ−1 are extremely distinctive
in different layers (e.g., the coefficients are distributed around
0 in the 17th layer while being around 0.5 in the 16th layer),
which shows the learnable way can make τ be adaptive for
different layers.

Training Stability. To better understand our SA-BNNs, we
follow (Helwegen et al. 2019; Bai, Wang, and Liberty 2018)
to calculate the flipping state at each epoch and set the ratio
of sequential weight flip as

πt =

∑
w
At ∧ · · · ∧ At+m−1

||sign(W)||1
, (12)

where At represents sign(wt) 6= sign(wt+1) and m is the
examined epoch interval. In Figure 3, we plot the ratios of
sequential weight flip under the case of m = 2, m = 3,
and m = 4 for the 10th and 14th layer of ResNet-18. The
results show our methods (the solid lines) have lower flip
ratios compared with BNNs without SA (the dotted lines)
in both 10th and 14th layer, which validate the effectiveness

2094

0.10 0.25 0.40 0.75 1.0 0.10 0.25 0.40 0.75 1.0
N 58.8 60.0 60.6 60.6 59.2 P 59.6 59.6 60.4 60.6 59.4
S 57.5 55.7 56.4 55.8 55.6 D 58.6 59.6 60.5 60.1 59.9

Table 1: Top-1 accuracy (%) with different initial values on ResNet-18.

(a) (c)

C
ha

nn
el

(d)

0

100

200

300

400

500
600

0

100

200

300

400

500
600

0 0.5 1 1.5

(b)

0 0.5 1 1.5 0 0.5 1.51
0

100

200

300

400

500
600

0

100

200

300

400

500
600

0 0.5 1.51

Figure 2: The distributions of learnable τ−1 on ResNet-18 while fixing τ1 = 1. (a), (b), (c), (d) represent the 14th − 17th layer in
ResNet-18, respectively.

of our SA-BNNs on suppressing the consecutive weight flip.
Besides, we can also find that ratios of sequential weight flip
are gradually decreased as the training converges. Note it can-
not be updated without flipping at all while frequent flipping
will make training unstable, so we aim to adjust weight flip
probability to improve training stability and efficiency rather
than inhibiting weight flip.

Effective Gradients in BNNs. In this paper, we choose
the triangle-shaped derivative (Liu et al. 2018) for ∂x̂

∂x . In this
case, the gradient is forced to 0 for values outside [−1,+1],
where we regard these values as the clipped values. Further-
more, the clipped ratio can be defined as Nc/Ng, where Nc

represents the number of clipped values and Ng represents
the number of all values. Then, we calculate the clipped ratios
in Figure 4. Due to the increasing accumulative error in the
propagation, clipping too much gradient information is not
conducive to obtain better performance. From the results in
Figure 4, we observe that the clipped gradient ratios can be
reduced drastically (e.g., 0.69 v.s. 0.02) in the 13th layer in
ResNet-18 when equipped with SA, which validate that our
SA can help BNNs preserve more effective gradient infor-
mation, thus suppressing the unreliable gradients in BNNs
optimization. Note similar conclusions can be obtained with
rectangular-shaped derivative.

Training Techniques. In this section, we show how our
method can alleviate the optimization challenges of BNNs by
1) state-aware method (SA), 2) a BN layer before binarized
activation (pbn) (Zhang et al. 2018a) and 3) additional short-
cuts (sc) (Liu et al. 2020a). To study how these techniques
benefit BNNs individually and collectively, we train BNNs
with a combination of these techniques on ImageNet in Table
2. We implement Bi-Real Net as our baseline (base) in this
section according to the official source code with the same
parameters settings with SA-BNNs.

1) Comparing the columns of “Base” and “Base+SA”,

SA-BNNs improve the accuracy of baseline by 7.2%, 4.6%,
and 12.7% on ResNet-18, ResNet-34, and ResNet-50, respec-
tively, which validates the effectiveness of our state-aware
method.

2) Comparing the columns of “Base+SA” and
“Base+SA+pbn”, the pbn strategy obtains an improve-
ment of about 1% on three networks. The reason is attributed
to that the pbn which act as a feature map normalization can
maximize the information entropy of the binarized activation,
thus further reducing the binarization error to ensure a higher
diversity (Qin et al. 2019).

3) Comparing the columns of “Base+SA+pbn” and
“Base+SA+pbn+sc”, the networks with additional shortcuts
outperform their counterparts with an improvement of up
to 0.5%. In BNNs, additional shortcuts retain more network
representational capability, thus achieving better accuracy.

4) Putting together the above three training strategies, our
final models achieve approximately 89%, 89%, and 92% of
the accuracy of their corresponding full-precision networks,
but with a huge amount of speedup and computation cost
saving.

Accuracy Comparison with State-of-the-Art
While the ablation study demonstrates the effectiveness of

our SA-BNN, it is also necessary to compare with other state-
of-the-art methods to further evaluate the overall performance.
We carry out a comparative study with six methods: IR-Net
(Qin et al. 2019), Bop (Helwegen et al. 2019), CI-Net (Wang
et al. 2019), BONN (Gu et al. 2019b), Bi-Real Net (Liu et al.
2018), and XNOR-Net (Rastegari et al. 2016) on ResNet-
18, ResNet-34 and ResNet-50 in Table 3. These six works
are representative methods of binarizing both weights and
activations for CNNs and achieve state-of-the-art results.

The comparison in Table 3 clearly demonstrates that our
SA-BNNs outperform other networks by a considerable mar-

2095

10 20 30 40 50 60 70 80 900
0.005

0.01
0.015
0.02

0.025
0.03

0.035
0.04

0.045

Epoch

Fl
ip

 R
at

io

10 20 30 40 50 60 70 80 900
0.005
0.01

0.015
0.02

0.025
0.03

0.035
0.04

0.045

Epoch

Fl
ip

 R
at

io

(a) (b)

m = 2
m = 2 (SA)

 m = 3 (SA)
m = 3
m = 4 (SA)
m = 4

m = 2
m = 2 (SA)

 m = 3 (SA)
m = 3
m = 4 (SA)
m = 4

Figure 3: The ratios of sequential weight flip at each epoch with/without SA. (a) and (b) represent the flip ratios at the 10th and
14th layer with ResNet-18, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

标题

系列1 系列2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0

Cl
ip

pe
d

R
at

io

With SA Without SA

0.20 0.22
0.17 0.20

0.32

0.22 0.21

0.03

0.33
0.24 0.26

0.02

0.36

0.46 0.43

0

0.46
0.41 0.43

0.49
0.54 0.56 0.57

0.61 0.62 0.62

0.54

0.69

0.77

0.18

0.34

0.20

Figure 4: The statistical results of clipped gradient ratios. Orange, blue represent the clipped ratios with and without SA. On the
horizontal axis, 1-16 represents 16 intermediate convolutional layers in ResNet-18.

Base Base+SA Base+SA+pbn Base+SA+pbn+sc Full-precision
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-18 53.4 76.9 60.6 82.7 61.3 82.9 61.7 82.8 69.3 89.2
ResNet-34 58.5 80.6 63.1 84.3 65.0 85.3 65.5 85.8 73.3 91.3
ResNet-50 54.8 77.6 67.5 86.1 68.5 87.4 68.7 87.4 74.7 92.1

Table 2: Top-1 and Top-5 accuracy (%) with different combinations of the proposed techniques on three different network
backbones.

Epoch
0 10 20 30 40 50 60 70 80 900 10 20 30 40 50 60 70 80 90

10
20
30
40
50
60
70
80
90

Epoch

10
20
30
40
50
60
70

V
al

id
at

io
n

A
cc

ur
ac

y

V
al

id
at

io
n

A
cc

ur
ac

y

Top-1 Accuracy on ImageNet

XNOR-Net

SA-BNN
Bi-Real Net

95

XNOR-Net

SA-BNN
Bi-Real Net

95

Top-5 Accuracy on ImageNet

Figure 5: Validation accuracy curves of SA-BNN, Bi-Real Net and XNOR-Net with ResNet-18 backbone on ImageNet.

2096

SA-BNN IR-Net Bop CI-Net BONN Bi-Real Net XNOR-Net FP

ResNet-18 Top-1 61.7 58.1 56.6 59.9 59.3 56.4 51.2 69.3
Top-5 82.8 80.0 79.4 84.2 81.6 79.5 73.2 89.2

ResNet-34 Top-1 65.5 62.9 − 64.9 − 62.2 − 73.3
Top-5 85.8 84.1 − 86.6 − 83.9 − 91.3

ResNet-50 Top-1 68.7 − − − − 62.6 63.1 74.7
Top-5 87.4 − − − − 83.9 83.6 92.1

Table 3: Comparison on Top-1 and Top-5 accuracy (%) of SA-BNN with other state-of-the-art binarization methods, including
IR-Net (Qin et al. 2019), Bop (Helwegen et al. 2019), CI-Net (Wang et al. 2019), BONN (Gu et al. 2019b), Bi-Real Net (Liu
et al. 2018), and XNOR-Net (Rastegari et al. 2016). “FP” means full-precision.

Memory Usage Memory Saving FLOPs Speedup

ResNet-18

SA-BNN 33.7 Mbit 11.10× 1.69× 108 10.71×
Bi-Real Net 33.6 Mbit 11.14× 1.63× 108 11.06×
XNOR-Net 33.7 Mbit 11.10× 1.67× 108 10.86×

Full-precision 374.1 Mbit − 1.81× 109 −

ResNet-34

SA-BNN 44.3 Mbit 15.74× 2.01× 108 18.21×
Bi-Real Net 43.7 Mbit 15.97× 1.93× 108 18.99×
XNOR-Net 43.9 Mbit 15.88× 1.98× 108 18.47×

Full-precision 697.3 Mbit − 3.66× 109 −

Table 4: Memory usage and FLOPs calculation in our method.

gin in terms of the Top-1 accuracy. Note that the results of the
other six works are quoted directly from the corresponding
references. Specifically, the proposed SA-BNN with back-
bone ResNet-18 outperforms its counterpart Bi-Real Net by
5.3% and achieves a roughly 2% relative improvement over
CI-Net. Similar improvements can be observed for ResNet-34
and ResNet-50 networks. In Figure 5, we plot the validation
accuracy curves of XNOR-Net, Bi-Real Net, and SA-BNN
(without the contribution of pbn and sc). All networks are im-
plemented under the same hyper-parameter setting. It clearly
shows that, by learning distinctive gradient coefficients for
binarization states, our method converges faster and better
than XNOR-Net and Bi-Real Net. Therefore, SA-BNN is
more competitive than other state-of-the-art binary networks.

Efficiency and Memory Usage Analysis
We further analyze the memory usage saving and speedup

in Table 4. Following (Rastegari et al. 2016; Liu et al. 2018),
we keep the weights and activations in the first convolutional
and the last fully-connected layers to be full-precision. The
memory usage M is calculated as

M = 32×Nf +Nb, (13)

where Nf and Nb is the number of full-precision and binary
weights, respectively. Besides, the FLOPs is calculated as

F = Ncf +Ncb/64, (14)

whereNcf andNcb is the number of full-precision and binary
multiplication, respectively. For ResNet-18 and ResNet-34,
the proposed SA-BNNs reduce the memory usage by 11.10×
and 15.74×, respectively, in comparison with the correspond-
ing full-precision networks. In addition, our SA-BNNs can
be speedup to 10.71× and 18.21×, respectively, for back-
bone ResNet-18 and ResNet-34. Note Bi-Real Net has lower

FLOPs compared with XNOR-Net because the scaling factor
for binarization in Bi-Real Net is absorbed by the BatchNorm
layer at inference time. Compared with XNOR-Net which
has not absorbed the scaling factor, we obtain about 10%
accuracy improvement on ResNet-18 with small additional
FLOPs cost.

Conclusion
In this paper, we have proposed a state-aware binary neural

network (SA-BNN) to improve the performance of BNNs.
Different from the standard BNNs, SA-BNN utilizes a simple
state-aware gradient to significantly improve network opti-
mization. By employing independent gradient coefficients
for different states when updating the weight, SA-BNN ef-
fectively suppresses the frequent weight flip problem. Fur-
thermore, we have also analyzed the effectiveness of the
state-aware gradient on suppressing frequent weight flip and
alleviated the ineffective update in BNNs. Experimental re-
sults have demonstrated that the proposed SA-BNN shows
substantially superiority over the state-of-the-art methods.

Acknowledgments
This work was in part supported by Science and Tech-

nology Innovation 2030-Key Project of “New Generation
Artificial Intelligence” under Grant 2020AAA0108200, Na-
tional Natural Science Foundation of China (U20B2042), and
National Natural Science Foundation of China (62076019).
Chunlei Liu, Peng Chen and Bohan Zhuang contribute
equally. Wenrui Ding is the corresponding author. This work
was done when Chunlei Liu was visiting The University of
Adelaide. Chunhua Shen and his employer received no finan-
cial support for the research, authorship, and/or publication
of this article.

2097

References
Bai, Y.; Wang, Y.-X.; and Liberty, E. 2018. Proxquant: Quantized
neural networks via proximal operators. arXiv: Comp. Res. Reposi-
tory .

Bethge, J.; Bartz, C.; Yang, H.; Chen, Y.; and Meinel, C. 2020.
MeliusNet: Can binary neural networks achieve MobileNet-level
accuracy? arXiv: Comp. Res. Repository .

Bulat, A.; Kossaifi, J.; Tzimiropoulos, G.; and Pantic, M. 2019. Ma-
trix and tensor decompositions for training binary neural networks.
arXiv: Comp. Res. Repository .

Bulat, A.; and Tzimiropoulos, G. 2019. XNOR-Net++: Improved
binary neural networks. arXiv: Comp. Res. Repository .

Cai, Z.; He, X.; Sun, J.; and Vasconcelos, N. 2017. Deep learning
with low precision by half-wave gaussian quantization. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., 5918–5926.

Chen, G.; Choi, W.; Yu, X.; Han, T.; and Chandraker, M. 2017.
Learning efficient object detection models with knowledge distilla-
tion. In Proc. Advances in Neural Inf. Process. Syst., 742–751.

Choi, J.; Wang, Z.; Venkataramani, S.; Chuang, P. I.-J.; Srinivasan,
V.; and Gopalakrishnan, K. 2018. Pact: Parameterized clipping acti-
vation for quantized neural networks. arXiv: Comp. Res. Repository
.

Courbariaux, M.; Hubara, I.; Soudry, D.; El-Yaniv, R.; and Bengio,
Y. 2016. Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or-1. arXiv: Comp.
Res. Repository .

Darabi, S.; Belbahri, M.; Courbariaux, M.; and Nia, V. P. 2018.
BNN+: Improved binary network training. arXiv: Comp. Res. Repos-
itory .

Faraone, J.; Fraser, N.; Blott, M.; and Leong, P. H. 2018. Syq:
Learning symmetric quantization for efficient deep neural networks.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 4300–4309.

Gong, R.; Liu, X.; Jiang, S.; Li, T.; Hu, P.; Lin, J.; Yu, F.; and Yan,
J. 2019. Differentiable soft quantization: Bridging full-precision
and low-bit neural networks. In Proc. IEEE Int. Conf. Comp. Vis.,
4852–4861.

Gu, J.; Li, C.; Zhang, B.; Han, J.; Cao, X.; Liu, J.; and Doermann,
D. 2019a. Projection convolutional neural networks for 1-bit cnns
via discrete back propagation. In Proc. AAAI Conf. Artificial Intell.,
volume 33, 8344–8351.

Gu, J.; Zhao, J.; Jiang, X.; Zhang, B.; Liu, J.; Guo, G.; and Ji, R.
2019b. Bayesian Optimized 1-Bit CNNs. In Proc. IEEE Int. Conf.
Comp. Vis., 4909–4917.

Han, Y.; Deng, C.; Zhao, B.; and Tao, D. 2019. State-aware anti-
drift object tracking. IEEE Transactions on Image Processing 28(8):
4075–4086.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual learning
for image recognition. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
770–778.

He, Y.; Zhang, X.; and Sun, J. 2017. Channel pruning for accelerat-
ing very deep neural networks. In Proc. IEEE Int. Conf. Comp. Vis.,
1389–1397.

Helwegen, K.; Widdicombe, J.; Geiger, L.; Liu, Z.; Cheng, K.-T.;
and Nusselder, R. 2019. Latent weights do not exist: Rethinking
binarized neural network optimization. In Proc. Advances in Neural
Inf. Process. Syst., 7531–7542.

Hou, L.; Yao, Q.; and Kwok, J. T. 2016. Loss-aware binarization of
deep networks. arXiv: Comp. Res. Repository .

Jung, S.; Son, C.; Lee, S.; Son, J.; Han, J.-J.; Kwak, Y.; Hwang,
S. J.; and Choi, C. 2019. Learning to quantize deep networks by
optimizing quantization intervals with task loss. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., 4350–4359.

Kim, H.; Kim, K.; Kim, J.; and Kim, J.-J. 2020. BinaryDuo: Reduc-
ing Gradient Mismatch in Binary Activation Network by Coupling
Binary Activations. arXiv: Comp. Res. Repository .

Kingma, D. P.; and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv: Comp. Res. Repository .

Li, Z.; Ni, B.; Zhang, W.; Yang, X.; and Gao, W. 2017. Performance
guaranteed network acceleration via high-order residual quantiza-
tion. In Proc. IEEE Int. Conf. Comp. Vis., 2584–2592.

Liu, C.; Ding, W.; Xia, X.; Zhang, B.; Gu, J.; Liu, J.; Ji, R.; and Doer-
mann, D. 2019. Circulant binary convolutional networks: Enhancing
the performance of 1-bit dcnns with circulant back propagation. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 2691–2699.

Liu, Z.; Luo, W.; Wu, B.; Yang, X.; Liu, W.; and Cheng, K.-T.
2020a. Bi-real net: Binarizing deep network towards real-network
performance. Int. J. Comput. Vision 128(1): 202–219.

Liu, Z.; Shen, Z.; Savvides, M.; and Cheng, K.-T. 2020b. ReAct-
Net: Towards Precise Binary Neural Network with Generalized
Activation Functions. arXiv: Comp. Res. Repository .

Liu, Z.; Wu, B.; Luo, W.; Yang, X.; Liu, W.; and Cheng, K.-T. 2018.
Bi-real net: Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorithm. In Proc.
Eur. Conf. Comp. Vis., 722–737.

Martinez, B.; Yang, J.; Bulat, A.; and Tzimiropoulos, G. 2020a.
Training binary neural networks with real-to-binary convolutions.
In Proc. Int. Conf. Learn. Representations.

Martinez, B.; Yang, J.; Bulat, A.; and Tzimiropoulos, G. 2020b.
Training binary neural networks with real-to-binary convolutions.
In Proc. Int. Conf. Learn. Representations.

Mishra, A.; and Marr, D. 2017. Apprentice: Using knowledge
distillation techniques to improve low-precision network accuracy.
arXiv: Comp. Res. Repository .

Mishra, A.; Nurvitadhi, E.; Cook, J. J.; and Marr, D. 2017. WRPN:
wide reduced-precision networks. arXiv: Comp. Res. Repository .

Qin, H.; Gong, R.; Liu, X.; Wei, Z.; Yu, F.; and Song, J. 2019.
IR-Net: Forward and backward information retention for highly
accurate binary neural networks. arXiv: Comp. Res. Repository .

Rastegari, M.; Ordonez, V.; Redmon, J.; and Farhadi, A. 2016.
Xnor-net: Imagenet classification using binary convolutional neural
networks. In Proc. Eur. Conf. Comp. Vis., 525–542. Springer.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma,
S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. 2015.
Imagenet large scale visual recognition challenge. Int. J. Comput.
Vision 115(3): 211–252.

Sakr, C.; Choi, J.; Wang, Z.; Gopalakrishnan, K.; and Shanbhag,
N. 2018. True gradient-based training of deep binary activated
neural networks via continuous binarization. In Proc. IEEE Int.
Conf. Acoustics, Speech & Signal Process., 2346–2350. IEEE.

Shen, M.; Han, K.; Xu, C.; and Wang, Y. 2019. Searching for
accurate binary neural architectures. In Proc. IEEE Int. Conf. Comp.
Vis. Workshops, 0–0.

Tang, W.; Hua, G.; and Wang, L. 2017. How to train a compact
binary neural network with high accuracy? In Proc. AAAI Conf.
Artificial Intell.

2098

Wang, Z.; Lu, J.; Tao, C.; Zhou, J.; and Tian, Q. 2019. Learning
channel-wise interactions for binary convolutional neural networks.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 568–577.

Yang, Z.; Wang, Y.; Han, K.; Xu, C.; Xu, C.; Tao, D.; and Xu, C.
2020. Searching for low-bit weights in quantized neural networks.
Proc. Advances in Neural Inf. Process. Syst. 33.

Zhang, D.; Yang, J.; Ye, D.; and Hua, G. 2018a. Lq-nets: Learned
quantization for highly accurate and compact deep neural networks.
In Proc. Eur. Conf. Comp. Vis., 365–382.

Zhang, J.; Pan, Y.; Yao, T.; Zhao, H.; and Mei, T. 2019. dabnn: A
super fast inference framework for binary neural networks on arm
devices. In Proc. ACM Int. Conf. Multimedia, 2272–2275.

Zhang, X.; Zhou, X.; Lin, M.; and Sun, J. 2018b. Shufflenet: An
extremely efficient convolutional neural network for mobile devices.
In Proc. IEEE Conf. Comp. Vis. Patt. Recogn., 6848–6856.

Zhou, A.; Yao, A.; Guo, Y.; Xu, L.; and Chen, Y. 2017. Incremental
network quantization: Towards lossless cnns with low-precision
weights. arXiv: Comp. Res. Repository .

Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; and Zou, Y. 2016.
Dorefa-net: Training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv: Comp. Res. Repository .

Zhuang, B.; Shen, C.; Tan, M.; Liu, L.; and Reid, I. 2018. Towards
effective low-bitwidth convolutional neural networks. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., 7920–7928.

Zhuang, B.; Shen, C.; Tan, M.; Liu, L.; and Reid, I. 2019. Structured
binary neural networks for accurate image classification and seman-
tic segmentation. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
413–422.

2099

