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Abstract

This paper addresses the task of segmenting class-agnostic
objects in semi-supervised setting. Although previous de-
tection based methods achieve relatively good performance,
these approaches extract the best proposal by a greedy strat-
egy, which may lose the local patch details outside the chosen
candidate. In this paper, we propose a novel spatiotemporal
graph neural network (STG-Net) to reconstruct more accurate
masks for video object segmentation, which captures the lo-
cal contexts by utilizing all proposals. In the spatial graph, we
treat object proposals of a frame as nodes and represent their
correlations with an edge weight strategy for mask context
aggregation. To capture temporal information from previous
frames, we use a memory network to refine the mask of cur-
rent frame by retrieving historic masks in a temporal graph.
The joint use of both local patch details and temporal rela-
tionships allow us to better address the challenges such as ob-
ject occlusion and missing. Without online learning and fine-
tuning, our STG-Net achieves state-of-the-art performance on
four large benchmarks (DAVIS, YouTube-VOS, SegTrack-
v2, and YouTube-Objects), demonstrating the effectiveness
of the proposed approach.

Introduction
Video object segmentation (VOS) in semi-supervised set-
ting aims to segment the class-agnostic objects or instances
from the background according to the annotation in the first
frame, which has been widely applied to video editing, au-
tomatic driving, etc. Tremendous progress (Johnander et al.
2019; Caelles et al. 2017; Wug Oh et al. 2018; Wang et al.
2019a) has been made with deep learning methods in re-
cent years, most of which directly embed the whole frame
image or propagate the previous mask into current frame.
However, it is still challenging due to the background noise,
object missing, or severe occlusion in real world scenarios.

To address such challenges, detection based schemes (Li
et al. 2017; Luiten, Voigtlaender, and Leibe 2018) are pro-
posed, which restore missing objects or re-establish objects
with bounding box proposals. These proposals of target ob-
jects are either generated individually in each frame by de-
tectors like Mask R-CNN (He et al. 2017), or further merged
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Figure 1: Different from previous detection based methods
that generally utilize a greedy strategy to choose the best
proposal for segmentation, our spatiotemporal graph consid-
ers all proposals of each frame in the spatial domain and uti-
lizes historic masks for refinement in the temporal domain,
which provides better mask details.

with a few adjacent neighboring frames (Luiten, Voigtlaen-
der, and Leibe 2018). Although they are effective in object
missing and occlusion scenarios, these approaches rely on
a greedy search scheme that extracts the best proposal in a
frame, as shown in the upper part of Figure 1, resulting in a
strong dependence not only on the proposal quality, but also
on a reliable Re-ID network (Li et al. 2017) for proposal se-
lection. Since the local patch details may be contained in all
proposals scattered across the frame, instead of choosing the
best proposal by a greedy search scheme, we argue that one
should leverage the rich contexts of all proposals to recon-
struct a more accurate mask.

Recently, graph neural network (GNN) (Scarselli et al.
2008; Gilmer et al. 2017; Cheng et al. 2020b,a; Liu et al.
2020) is recognized as a promising approach in sequential
information processing. It takes advantage of aggregating
the information with node-wise correlation establishment.
Previous GNN based methods (Wang et al. 2019b; Haller,
Florea, and Leordeanu 2019; Bao, Wu, and Liu 2018) in the
VOS task either represent image frames as nodes to explore
their temporal correlations, or represent pixels as nodes that
may lose instance-level relations. They may also fail to re-
cover the spatial mask details in local contexts. To better
capture the local patch details for more accurate mask recon-
struction, different from them, we take masks of all detection
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based proposals in the same frame as nodes to construct a
spatial graph, and correlate current frame result to the pre-
vious frame masks to build a temporal graph. Such a joint
graph neural network is capable of not only aggregating the
scattered instance-level mask details of current frame (in the
spatial domain), but also capturing the temporal correlations
with historic masks (in the temporal domain).

In this paper, to better capture the local patch details from
spatial information of the current frame and capture motion
clues with temporal information from the previous frames,
we propose a novel spatiotemporal graph neural network
(STG-Net) for video object segmentation. Specifically, we
construct a fully-connected spatial graph on the mask pro-
posals of current frame to establish intra-object proposals
relationship, and propose a temporally-connected graph to
link the historic masks, as shown in the bottom part of Fig-
ure 1. In a spatial graph, we develop an edge weight strat-
egy to represent the correlation between two instance-level
mask proposals by considering their feature similarity. After
spatial graph updating, we design a score function based on
motion estimation and mask propagation to choose the best
reconstructed mask from all nodes for each object in current
frame. Then a temporal graph is developed to correlate the
chosen mask with historic masks of previous frame for mask
refinement, which can also be regarded as a reconstruction
process. Therefore, the mask is reconstructed in both spatial
and temporal domains to produce a more accurate segmen-
tation that recovers detailed contexts of objects.

The contributions of our work are summarized as follows:

• We propose a novel VOS method named STG-Net based
on a spatiotemporal graph to recover the local patch de-
tails in an instance level. With the cooperation of spatial
and temporal graph networks, STG-Net has sufficient ca-
pacity to aggregate detailed mask contexts for more accu-
rate mask reconstruction. To the best of our knowledge,
it is the first time to take advantage of both spatial and
temporal correlations with GNN in VOS task.

• Instead of searching the best proposal in a greedy man-
ner, our spatial graph network takes all object proposals
into consideration with an edge weight strategy, which is
measured by the feature similarity of a proposal pair. It
helps to aggregate mask details from scattered locations.
A score function is then employed to choose the recon-
structed mask from spatial graph by considering both mo-
tion estimation and mask propagation.

• We develop a temporal graph based on the chosen masks
from spatial graph along the time dimension. For each
node, we utilize a memory network to retrieve mask con-
texts from the historic masks, and use them to refine the
current mask with a temporal graph network.

Experimental results show that the proposed STG-Net
achieves state-of-the-art performance on DAVIS, YouTube-
VOS, SegTrack-v2, and YouTube-Objects datasets without
online learning on the annotation of the first frame. The su-
perior visual results show better mask details than others,
which demonstrates the effectiveness of our method in han-
dling the challenging occluded and missing objects.

Related Works
Semi-Supervised Video Object Segmentation. Semi-
supervised video object segmentation can be roughly clas-
sified into three categories: matching-based, propagation-
based, and detection-based methods. Matching-based meth-
ods (Caelles et al. 2017; Voigtlaender and Leibe 2017; Zeng
et al. 2019) generally utilize the given mask in the first
frame to extract appearance information for objects of in-
terest, which is then used to find similar objects in succeed-
ing frames. Some works (Caelles et al. 2017; Voigtlaender
and Leibe 2017) trained a parent network on still images
and then fine-tuned the pre-trained work with one-shotonline
learning. Embedding approaches (Chen et al. 2018b; Hu,
Huang, and Schwing 2018) mapped pixels to group the pix-
els of same object, and there are methods (Voigtlaender et al.
2019; Wang et al. 2019c) extend from them for multiple ob-
ject segmentation with correlation operation. Propagation-
based methods (Wug Oh et al. 2018; Johnander et al. 2019;
Xu et al. 2019) utilize temporal information to refine masks
propagated from preceding frames. The above two meth-
ods mainly depend on the robustness of the feature extrac-
tor to segment the foreground object in the whole image
where much background noise may be induced. Different
from them, detection-based methods (Li et al. 2017; Wang
et al. 2019a; Luiten, Voigtlaender, and Leibe 2018) first de-
tect the best bounding box of each object in a frame, then
crop out the target and input it into a segmentation model.
Although it can decrease background noises and improve the
performance of segmentation, it relies on the quality of the
generated bounding box of each object. To avoid losing lo-
cal details, our method aggregates the mask contexts of all
proposals in the same frame to automatically reconstruct a
more accurate mask.
Graph Neural Networks. Graph neural network (GNN)
(Scarselli et al. 2008) is an extension for recursive neural
networks and random walk based models for graph struc-
tured data. (Gilmer et al. 2017; Li, Han, and Wu 2018) fur-
ther adapted GNN to sequential outputs with a learnable
message passing module. Generally, for each node v in a
graph, the updating process includes two steps: message ag-
gregation and hidden state update. For the updating of l-th it-
eration, the node v first aggregates messages from its neigh-
bors N (v) into a single message mv and then updates the
hidden state hv itself with mv , it is according to:

mv = F (hu, u ∈ N (v)), (hv)′ = U(hv,mv), (1)

where F (·), U(·) are the functions to update the mes-
sage and hidden state. Different from (Haller, Florea, and
Leordeanu 2019; Wang et al. 2019b) that take a naive GNN
to the VOS task and treat frames as nodes for temporal con-
texts exploring, our spatial graph is constructed with object
proposals of each frame with a tailored edge weight strategy.
Memory Networks. Memory networks (Vaswani et al.
2017; Sukhbaatar et al. 2015) have external memory where
information can be further written and read. Given an input,
the information is separately embedded into key and value
feature maps, where the key feature maps are used to ad-
dress relevant memories whose corresponding value feature
maps are returned. Different from the embedding process
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Figure 2: The framework of our proposed scheme. Given a video frame t, we first obtain bbox proposals by an offline detection
model and generate corresponding masks by an offline segmentation model. Then we classify each proposal with our motion
model to construct intra-object spatial graphs, where each node is a mask proposal. During the spatial graph updating, each
node aggregates mask contexts from its neighbors and updates itself to reconstruct more accurate mask. We further design a
mask selection function to choose the best reconstructed mask from all nodes in graph. At last, we construct a temporal graph
to retrieve historic masks of previous frames for refinement, and obtain the final result of frame t.

(Oh et al. 2019; Lu et al. 2020) for value features maps, we
take the mask result of each frame as value, to retrieve his-
toric masks for refining the current mask in temporal graph.

Spatiotemporal Graph Neural Network
In this section, we present our method STG-Net, as illus-
trated in Figure 2. Given a video frame, we first utilize a
class-agnostic detection model to generate object bound-
ing box (bbox) proposals and a class-agnostic segmentation
model to segment corresponding masks, which is performed
offline. Then, we design a motion model to classify the pro-
posals, and take the proposals of the same object as nodes
to construct a spatial graph. After spatial graph updating, we
choose the best reconstructed mask from all nodes, and cap-
ture the temporal information by using a temporal graph that
utilizes historic masks of previous frames for refinement. We
pre-process the proposal generation offline, thus our whole
framework can be end-to-end training.

Proposal Generation
We first generate possible object bbox proposals of a video
frame by using an offline detection method Mask R-CNN
(He et al. 2017), where each bbox proposal contains differ-
ent local patch details of objects. As VOS task only con-
siders foreground objects, we change the number of cat-
egories in Mask R-CNN into only one class to make the
bbox proposals class-agnostic. Specifically, we extract ob-
ject bboxs with pre-defined thresholds of detection confi-
dence and non-maxinum suppression to keep the most pos-
sible bboxs. Given a video frame I ∈ R3×H×W , we denote
the extracted bbox proposal as bv = (xvmin, y

v
min, x

v
max, y

v
max),

where v is the v-th proposal of detection results in cur-
rent frame. To further segment its corresponding mask Mv ,
we employ Deeplabv3+ (Chen et al. 2018a) network with
ResNet101 (He et al. 2016) backbone offline. Since objects
tend to move smoothly through space in time, we use opti-
cal flow generated by FlowNet2.0 (Ilg et al. 2017) as a direct
source of information, to estimate a rough mask Q for cur-
rent frame by a warp operation (Khoreva et al. 2017). And

we take Q as an additional input besides the cropped RGB
image Iv which is based on bbox bv , to guide the segmenta-
tion module to produce more accurate mask.

Spatial Graph Construction
Different proposals may contain different local patch de-
tails, we construct spatial graphs in Figure 2(c) to aggre-
gate the mask contexts of all proposals to enrich the seg-
mentation information. To handle the class-agnostic mask
proposals Mv , we first introduce a motion model to prepare
for proposal-wise classification, then our spatial graph can
be built with intra-object proposals for contexts sharing. We
construct our spatial graph of each object as follows.
Preparation. Before constructing the spatial graph of ob-
ject o, we first group the o-class proposals from all propos-
als in current frame by classification. As object smoothly
moves across the video, we can utilize its mask results in
previous frames and generate corresponding bboxs {b} and
center points {c} as motion history. Based on such history
memory, we can predict a bbox p as objective probability
location in current frame based on the prior knowledge of
previous frame bboxs, then take the closest proposal bv into
object o class. Since each bbox mainly depends on the char-
acters of size st and center point ct where st is composed
of the height and weight of bbox, t denotes the time-step,
we develop a motion model to estimate the center point of p
based on the previous n steps movements by:

ct = ct−1 +
1

n

t−1∑
r=t−n

(cr − cr−1), (2)

where the second term means the average velocity. The bbox
size st of p can also be estimated as st = 1

n

∑t−1
r=t−n sr,

since most object sizes change smoothly in video sequence.
Therefore, the predicted objective probability bbox p of ob-
ject o in current frame t is composed of (ct, st). Given a
bbox proposal bv , we first calculate the intersection over
union (IoU) scores between the area of bv and the area of
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p for all object. Then we rank the IoU scores to find the ob-
ject class of the highest one to classify the bbox bv . If the
top ranked score refers to the object o, we add the bbox
bv into the object o-class. After getting the proposal in-
dex v, v = 1, ..., N of object o-class, we past correspond-
ing mask into a void image to rebuild back a full mask
Mv ∈ RH×W .
Graph construction. To recover the local patch details in
intra-object proposals, we construct a fully-connected spa-
tial graph of object o with masks {Mv} as node, to prop-
agate beneficial information for mask reconstruction. Each
node aggregates the mask contexts from its neighbors to re-
construct the mask itself. Generally, the correlation between
different nodes are not always the same, as the proposals
which have closer position and similar representation tends
to be more relevant. To selectively propagate the mask in-
formation more between the relevant nodes while reduce the
noise between less relevant ones, we define an edge weight
Wvu on the edge between node v and u, which can be for-
malized as follows:

Wvu =

{
αcos(Xv,Xu) + βIoU(bv, bu), v 6= u

0, v = u
,

(3)
where the first item is the cosine similarity to measure the
correlation between features Xv and Xu extracted by a
learnable CNN for the proposals bv and bu, respectively.
α and β control the ratio between the feature similarity
score and the IoU score, and we set Wvv to 0 to avoid self-
enhancing. This weight strategy also helps to reduce the in-
fluence on the edge between the wrong classified proposal
from motion model and the correct one as their similarity
score will be much smaller.
Graph updating. For node v in graph, the updating process
contains two steps: 1). Mask message aggregation: To at-
tach the mask information from other nodes u, node v first
aggregates the mask message mv from its neighbors by a
weighted summation with the edge weight Wvu; 2). Node
mask update: Then node v updates the state hv itself with
the aggregated messages mv to reconstruct more contextual
segmentation result. In details, we first initial the state hv of
node v with the mask proposal Mv , and defined its neighbor
sets as N (v). During the graph updating, it first aggregates
messages mv from neighborsN (v) by function F (·) as fol-
low:

mv = F (hu) =
∑
u

Wvuh
u, u ∈ N (v). (4)

Then node v reconstructs the mask of its state with the ag-
gregated mask message mv ∈ RH×W by:

(hv)
′
= U(hv,mv) =

(1−Wvv)h
v +mv

1 +
∑

u Wvu
, u ∈ N (v),

(5)
where U(·) is the function to update the mask state, and
(1 +

∑
u Wvu) is used to normalize the mask result. Spe-

cially, we iterative the graph updating process for several
steps. To avoid over-smoothing problem (Li, Han, and Wu
2018) in graph nodes, we only conduct less than three itera-
tions and keep the edge weight Wvu unchanged during the

graph iterative updating. At last, for node v, we get the bi-
nary reconstructed mask M̂v = (hv > thr) by a threshold
thr, and it recovers the local patch details from intra-object
proposals.

Temporal Graph Construction
After getting masks {M̂v} in spatial graph, we design a
score function to choose the best mask of object o from all
nodes. Then, we refine it using the temporal information of
the same instance by a temporal graph in Figure 2(d).
Mask selection. We define the score function as follows:

S(M̂v|(p,Q)) = λ1IoU(B(M̂v), p) + λ2
M̂v ∩Q

M̂v ∪Q
, (6)

where B(·) is the function to extract the bbox of the recon-
structed mask M̂v , and Q is the warped mask from previ-
ous frame with optical flow. Our mask selection score con-
tains two parts: 1) bbox IoU score between the bbox of cur-
rent segmented object and predicted probability bbox p from
motion model, which stands for the measurement of object
motion estimation; 2) the intersection area over union area
score between the current estimated mask and the warped
mask, which represents the performance of mask propaga-
tion. λ1 and λ2 are the parameters to control the ratio of
these two scores. We choose the best mask index v with
maxv S(M̂v|(p,Q)), and denote the chosen mask as cur-
rent frame segmentation result M̂ ∈ RH×W of object o.
Graph construction. Inspired by differential memory net-
works (Vaswani et al. 2017; Sukhbaatar et al. 2015), we uti-
lize the chosen mask of object o in current frame and the pre-
vious frame mask results as nodes, to construct a temporal
graph. This graph is designed to refine the mask of the cur-
rent frame by aggregating historic masks as memories and
is evolved by adding new nodes over time. At frame t, there
are t + 1 nodes with mask M̂ r, r ≤ t including the first
frame 0. We first crop the image I based on B(M̂ r), and
resize it to Ir ∈ R3×H1×W1 . Then, we extract its embed-
ding features by a learnable CNN as the key feature maps
Kr ∈ RC×H1×W1 . We take the cropped M̂ r as the cor-
responding value map. The similarity between key feature
maps of the current and previous frames are computed to de-
termine when-and-where to retrieve relevant previous value
maps from. Therefore, every pixel of each previous frame
value map can be utilized to construct a new self-predicted
mask for current frame based on such similarities. These
constructed masks are taken as neighborhood messages mt

for current frame node t to update its mask ht.
The main differences of our memory network compared

to STM (Oh et al. 2019) are: For structure, our temporal
graph takes bbox based image/mask as key/value with only
one network. Instead, STM takes whole image as input, and
utilizes an encoder-decoder structure to embed image into
two feature spaces named as key/value. For goal, we aim to
propagate previous masks on edges for current mask refine-
ment. And STM is to predict mask for each input.
Graph updating. In details, node t first initials its state ht

with mask M̂ t, and then retrieves the mask memories from
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Figure 3: Illustration of temporal graph updating process at
frame t, where ‘

⊗
’ denotes the matrix multiplication.

previous t frames including the first frame 0 as:

(mt)i = F (hr) =
t−1∑
r=0

∑
j exp((Kt)i � (Kr)j)(h

r)j∑
j exp((Kt)i � (Kr)j)

,

(7)
where i, j are the location index and (Kt)i ∈ RC×1, �
denotes the dot-product. Therefore, the refinement process
of frame t by using the mask memories can be seen as a
process of reconstruction, which is formulated by:

(ht)
′
= U(ht,mt) = η(ht +mt), (8)

where η = 1/(t + 1) is used to normalize the mask result.
Details of temporal graph updating at frame t are shown in
Figure 3. Note that our temporal graph only updates within
one iteration, and the refined output mask M̂ ∈ RH×W of
current frame is also obtained by M̂ = (ht > thr).

Network Structure and Loss Function
For the feature extractor in spatial graph, we use a
ResNet101 backbone of which the weights are initialized
from the released model of RVOS (Ventura et al. 2019), and
obtain the proposal features from its last layer. As for mem-
ory key maps, we use the stage-4 feature map of a ResNet50
which is finetuned online. During the training, as for the re-
constructed mask M̂v in spatial graph, we utilize the ground
truth pair (b,M) to choose the best mask instead of (p,Q).
To make our model end-to-end trainable with the mask se-
lection operation, we develop an additional distance loss to
backpropagate the gradient for all reconstructed masks. Our
total loss function L is formulated as:

L(M̂) =γ
∑
v

|S(M̂v|(b,M))− S(M̂v|(p,Q))|

−Mlog(σ(M̂))− (1−M)log(1− σ(M̂)), (9)

where σ(·) denotes the sigmoid function, and γ is the hyper-
parameter to balance the two losses.

Experiments
Datasets
DAVIS. DAVIS2016 and DAVIS2017 (Pont-Tuset et al.
2017) are widely used to evaluate VOS methods, where the

former one focuses on object-level segmentation and the lat-
ter one is challenging in multiple objects which correspond
to different targets. It consists of 60 videos in training set and
30 videos in the validation set. It also provides extra test-
dev data with 30 challenging videos, which contains some
similar objects in the same videos and object occlusion or
missing in the continues frames. And there are three evalua-
tion metrics: region similarity J , the intersection over union
of the estimated segmentation and the ground truth mask;
contour accuracy F : F-measure between the contour-based
precision and recall; and global mean value G: average score
of J and F .
YouTube-VOS. YouTube-VOS (Xu et al. 2018) is the lat-
est large-scale dataset which consists of 4453 videos anno-
tated with multiple objects. The validation set contains 474
videos including 91 object categories, and it has separate
measures for 65 of seen and 26 of unseen object categories.
Like DAVIS dataset, we adopt J , F and G for evaluation.
Others. The SegTrack-v2 dataset (Li et al. 2013) consists of
14 test video sequences with 24 objects. YouTube-Objects
(Prest et al. 2012) comprises 126 video sequences which be-
long to 10 object categories. Following the protocol, we use
metric J to measure the segmentation performance.

Implementation Details
To adapt the Mask R-CNN network to generate class-
agnostic foreground object bboxs offline, we first train it on
COCO dataset with the pre-trained weights on ImageNet.
Then we finetune it on DAVIS2017 and YouTube-VOS re-
spectively. In testing phase, we set detection confidence as
0.05 and non-maxminum suppression as 0.6. To feed the
bbox proposals to segmentation module Deeplabv3+, we
crop the bbox of the four channel input by using the spatial
information of the annotation with a margin ratio 0.15. Then
we resize the cropped data into 512 × 512, jitter the image
color. Similar to the training process of Mask R-CNN, we
first pre-train Deeplabv3+ on COCO dataset, and then train
it on DAVIS and YouTube-VOS with learning rate 1e-5 for
100 epochs respectively.

To train our spatiotemporal graph together with the two
feature extractors, we set Adam optimizer with learning rate
0.1 which reduces by power of 0.9 for every 10 epochs. We
adopt n = 10 to store history in our motion mechanism.
The balanced ratio α and β in Eq.(3) are set to 0.7 and 0.3
for DAVIS and YouTube-VOS, 0.1 and 0.9 for SegTrack-v2
and YouTube-Objects. And we set the parameters λ1 and λ2
in Eq.(6) to 0.4 and 0.6 respectively for their relative impor-
tance. The γ in Eq.(9) is set to 100. The thr is set to 0.2.All
experiments are implemented on a single NVIDIA 1080Ti
GPU. Our codes and trained model will be available online.

Experimental Results
DAVIS. For experiments on DAVIS, we only train our STG-
Net on DAVIS 2017 training set. We compare with a wide
range of recent competitors both on the DAVIS2016 and
DAVIS2017 datasets. Compared with approaches without
online learning in Table 1, our method achieves the state-
of-the-art performance and outperforms others over most
evaluation criteria. Especially on DAVIS2017 test-dev set
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Method OL DAVIS2017 test-dev DAVIS2017 val DAVIS2016 val
JM FM GM JM FM GM JM FM GM

OSMN (Yang et al. 2018) 8 37.7 44.9 41.3 52.5 57.1 54.8 74.0 72.9 73.5
SiamMask (Wang et al. 2019a) 8 40.6 45.8 43.2 54.3 58.5 56.4 71.7 67.8 69.8

FAVOS (Cheng et al. 2018) 8 42.9 44.2 43.6 54.6 61.8 58.2 82.4 79.5 81.0
RVOS (Ventura et al. 2019) 8 47.9 52.6 50.3 57.5 63.6 60.6 - - -

AGAME (Johnander et al. 2019) 8 49.2 55.3 52.3 68.5 73.6 71.0 81.5 82.2 81.9
RGMP (Wug Oh et al. 2018) 8 51.3 54.4 52.8 64.8 68.6 66.7 81.5 82.0 81.8
AGSS (Lin, Qi, and Jia 2019) 8 51.5 57.1 54.3 63.4 69.8 66.6 - - -

FEEL (Voigtlaender et al. 2019) 8 51.2 57.5 54.4 65.9 72.3 69.1 80.3 83.1 81.7
RANet (Wang et al. 2019c) 8 53.4 57.2 55.3 63.2 68.2 65.7 85.5 85.4 85.5

AGSS∗ (Lin, Qi, and Jia 2019) 8 54.8 59.7 57.2 64.9 69.9 67.4 - - -
FEEL∗ (Voigtlaender et al. 2019) 8 55.1 60.4 57.8 69.1 74.0 71.5 81.1 82.2 81.7

Ours 8 59.7 66.5 63.1 71.5 77.9 74.7 85.4 86.0 85.7

Table 1: Quantitative comparison of state-of-the-art methods on DAVIS2016 validation, DAVIS2017 validation and test-dev
sets.M denotes the mean value. “OL” indicates online learning with the annotation of the first frame. ∗ indicates the use of
YouTube-VOS for pre-training.

Method OL JS JU FS FU GM FPS
OSMN 8 60.0 40.6 60.1 44.0 51.2 8.0
DMM 8 58.3 41.6 60.7 46.3 51.7 12

SiamMask 8 60.2 45.1 58.2 47.7 52.8 55
RGMP 8 59.5 - 45.2 - 53.8 7

OnAVOS 4 60.1 46.6 62.7 51.4 55.2 0.1
RVOS 8 63.6 45.5 67.2 51.0 56.8 24
S2S 8 66.7 48.2 65.5 50.3 57.7 6

DMM 4 60.3 50.6 63.5 57.4 58.0 -
OSVOS 4 59.8 54.2 60.5 60.7 58.8 0.1

S2S 4 71.0 55.5 70.0 61.2 64.4 0.1
AGAME 8 66.9 61.2 - - 66.0 -

AGSS 8 71.3 65.5 75.2 73.1 71.3 12
Ours 8 72.7 69.1 75.2 74.9 73.0 6

Table 2: Quantitative comparison of state-of-the-art meth-
ods on YouTube-VOS validation set. ‘S’ and ‘U’ denote the
seen and unseen categories. Specially, DMM (Zeng et al.
2019), OnAVOS (Voigtlaender and Leibe 2017), S2S (Xu
et al. 2018) and OSVOS (Caelles et al. 2017) contain online
learning.

that contains much occlusion or object missing scenarios,
our method achieves global mean value GM of 63.1, which
gains a great margin of improvement than others. Compared
to FEEL, we outperform them by 4.6%, 6.1% and 5.3% on
three metrics, respectively. Since DAVIS2016 only contains
single object without challenge scenario, we perform the
similar result to others but still gain improvement of 0.2.
YouTube-VOS. For experiments on YouTube-VOS, we
train our model on YouTube-VOS, and show the compar-
ison with previous start-of-the-art approaches in Table 2.
Our method achieves a new state-of-the-art of global mean
value GM 73.0 in terms of overall scores. Compared to the
SOTA model AGSS, we outperform it by 1.7%. Beside, we
obtain a good trade off between the performance and run-
ning time. Compared with approaches without using on-
line learning (like DMM, AGSS), our method achieves bet-
ter performance on evaluation metrics. Compared with the
approaches using online learning (like OSVOS, S2S), our
method achieves faster FPS than these model, demonstrat-

Method OL SegTrack-v2 Method OL YouTube-Objects
OSVOS 4 65.4 OSMN 8 69.0
RGMP 8 71.1 FEEL 8 78.9
DMM 8 76.7 OnAVOS 4 80.5
Ours 8 79.5 Ours 8 84.1

Table 3: Quantitative comparison of state-of-the-art methods
on SegTrack-v2 and YouTube-Objects datasets.

ing that our method is more efficient.
Others. We test our STG-Net (trained on DAVIS2017) on
SegTrack-V2 and YouTube-Objects datasets directly. Our
method also achieves the state-of-the-art performance with-
out online learning as shown in Table 3.

Qualitative Visualization and Analysis
Figure 4 shows qualitative examples of our results, where we
choose challenging videos from DAVIS2017, DAVIS2016,
and YouTube-VOS datasets. Our method is robust to occlu-
sions and complex motions. We also show the visual com-
parison in Figure 5 where other detection based method
loses the local patch details and matching based method
wrongly segment the background visual similar object.
Compared to them, our STG-Net reconstructs the mask re-
sult and provides better details. The reason is that our model
recovers the local patch details in spatial domain by aggre-
gating the contexts from all intra-object proposals. The tem-
poral graph also helps to refine the mask by retrieving the
historic mask memory. More qualitative results can be found
in our supplymentary.

Ablation Study
We conduct thorough ablation study to analyze the effective-
ness of different components and hyperparameters of STG-
Net on DAVIS2017 test-dev set. Detailed results are shown
in Table 4. We start by a baseline model, which directly
choose the best mask from the proposals with λ1, λ2 and
achieves global mean value 53.2.
Effectiveness of the motion model. The baseline model
computes the selection score in Eq. (6) using the previous
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Figure 4: Qualitative results of our method, where frames are sampled at the important moments (e.g. multi-view or occlusion)
for each video. From top to bottom, the sequences are “girl-dog” in DAVIS2017, “libby” in DAVIS2016 and “0daaddc9da” in
YouTube-VOS, respectively.

Ours Detection based Matching based

Local patch losing Background noise

Figure 5: Visual comparison with detection based (Luiten,
Voigtlaender, and Leibe 2018) and matching based (Voigt-
laender et al. 2019) methods.

bbox instead of the predicted p. Considering the motion his-
tory in the previous frames, our motion model predicts a
coarse position p in current frame which is more accurate
than the previous bbox. From the table, we find that it has
the improvement of performance with 0.9.
Effectiveness of the spatial graph. Our spatial graph recon-
structs the mask by utilizing the local patch details from all
proposals in current frame. It helps to deal with the occlu-
sion and object missing problems. As shown in the table, our
spatial graph construction makes the maximum improve-
ment of 4.3 which recovers the local patch details among
intra-object proposals. And the defined hyperparameters of
α, which controls the operation of the edge weighting, has
another improvement of 0.8.
Effectiveness of the temporal graph. Our temporal graph
helps to refine the current frame mask result by using the
previous frame masks, which can provides the temporal con-
textual information for better boundary results. As shown in
table, the temporal graph takes mask memory for refinement
and has the second maximum improvement of 2.1. The hy-
perparameters λ1 in Eq. (6), which controls the operation of
mask choosing, has another improvement of 0.6.
How to choose the number of graph layer. We further in-
vestigate the performances on different iteration number l
of graph updating process. Although more graph layer will
bring better performance, too much layers will result in over-
smoothing problem. We find that the graph with 2-steps up-
dating achieves the best result of 63.1.
Comparison on different training strategy. We also do the
experiments on different training strategy to investigate the
benefits. Results show that online leaning with the annota-
tions of the first frame brings the improvement of 1.2. Fine-

Settings OL FT +ytb GMMo SG α l λ1 TG
8 8 - - 0.5 8 8 8 8 53.2
4 8 - - 0.5 8 8 8 8 54.1
4 4 0.5 1 0.5 8 8 8 8 58.4
4 4 0.7 1 0.5 8 8 8 8 59.2
4 4 0.7 1 0.4 8 8 8 8 59.8
4 4 0.7 1 0.4 4 8 8 8 61.9
4 4 0.7 2 0.4 4 8 8 8 63.1
4 4 0.7 3 0.4 4 8 8 8 62.3
4 4 0.7 2 0.4 4 4 8 8 64.3
4 4 0.7 2 0.4 4 4 4 8 66.5
4 4 0.7 2 0.4 4 4 4 4 69.4

Table 4: Ablation study evaluated on the DAVIS2017 test-
dev set. ‘Mo’ means the motion model,‘SG’ and ‘TG’ mean
the spatial and temporal graph. α controls edge weights
where α = 1 − β, and λ1 controls the mask selection score
where λ1 = 1 − λ2. l represents the spatial graph iteration
number. ‘OL’ indicates online learning and ‘FT’ indicates
fine-tuning with lucid (Khoreva et al. 2017) augmentation.
‘+ytb’ denotes pre-training on YouTube-VOS dataset.

tuning on the augmented train-set of DAVIS2017 makes the
improvement of 2.2. And we add YouTube-VOS dataset for
pre-training, it has another improvement of 2.9.

Conclusion
In this paper, we propose a spatiotemporal graph neural net-
work (STG-Net) for video object segmentation. By the co-
operation of spatial and temporal graph networks, STG-Net
has sufficient capacity to reconstruct more detailed masks.
Contrasted to the previous detection based approaches uti-
lizing greed search strategy only in the current frame, the
abundant use of both local patch details in spatial graph
and time dimension relationships in temporal graph make
STG-Net able to obtain a superior representation for the
class-agnostic objects segmentation. Extensive experiments
demonstrate that our method is robust to challenging sce-
narios thanks to our spatiotemporal graph, and outperforms
state-of-the-art methods on all four benchmarks, even com-
pared to online learning methods.
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Cremers, D.; and Van Gool, L. 2017. One-shot video ob-
ject segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 221–
230.

Chen, L.-C.; Zhu, Y.; Papandreou, G.; Schroff, F.; and
Adam, H. 2018a. Encoder-decoder with atrous separa-
ble convolution for semantic image segmentation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 801–818.

Chen, Y.; Pont-Tuset, J.; Montes, A.; and Van Gool, L.
2018b. Blazingly fast video object segmentation with pixel-
wise metric learning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
1189–1198.

Cheng, D.; Wang, X.; Zhang, Y.; and Zhang, L. 2020a.
Graph Neural Network for Fraud Detection via Spatial-
temporal Attention. IEEE Transactions on Knowledge and
Data Engineering .

Cheng, D.; Xiang, S.; Shang, C.; Zhang, Y.; Yang, F.; and
Zhang, L. 2020b. Spatio-Temporal Attention-Based Neural
Network for Credit Card Fraud Detection. In Proceedings
of the AAAI Conference on Artificial Intelligence, 362–369.

Cheng, J.; Tsai, Y.-H.; Hung, W.-C.; Wang, S.; and Yang,
M.-H. 2018. Fast and accurate online video object segmen-
tation via tracking parts. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
7415–7424.

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural message passing for quantum
chemistry. In International Conference on Machine Learn-
ing (ICML), 1263–1272.

Haller, E.; Florea, A. M.; and Leordeanu, M. 2019. Space-
time Graph Optimization for Video Object Segmentation.
arXiv preprint arXiv:1907.03326 .

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2961–2969.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 770–778.

Hu, Y.-T.; Huang, J.-B.; and Schwing, A. G. 2018. Video-
match: Matching based video object segmentation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), 54–70.

Ilg, E.; Mayer, N.; Saikia, T.; Keuper, M.; Dosovitskiy, A.;
and Brox, T. 2017. Flownet 2.0: Evolution of optical flow

estimation with deep networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2462–2470.
Johnander, J.; Danelljan, M.; Brissman, E.; Khan, F. S.; and
Felsberg, M. 2019. A generative appearance model for end-
to-end video object segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 8953–8962.
Khoreva, A.; Benenson, R.; Ilg, E.; Brox, T.; and Schiele,
B. 2017. Lucid data dreaming for multiple object tracking.
International Journal of Computer Vision (IJCV) .
Li, F.; Kim, T.; Humayun, A.; Tsai, D.; and Rehg, J. M.
2013. Video segmentation by tracking many figure-ground
segments. In Proceedings of the IEEE International Confer-
ence on Computer Vision (ICCV), 2192–2199.
Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper insights into
graph convolutional networks for semi-supervised learning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence.
Li, X.; Qi, Y.; Wang, Z.; Chen, K.; Liu, Z.; Shi, J.; Luo, P.;
Tang, X.; and Loy, C. C. 2017. Video object segmentation
with re-identification. In CVPR Workshop.
Lin, H.; Qi, X.; and Jia, J. 2019. AGSS-VOS: Atten-
tion Guided Single-Shot Video Object Segmentation. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 3949–3957.
Liu, D.; Qu, X.; Liu, X.; Dong, J.; Zhou, P.; and Xu, Z.
2020. Jointly Cross- and Self-Modal Graph Attention Net-
work for Query-Based Moment Localization. In Proceed-
ings of the 28th ACM International Conference on Multime-
dia (MM’20), 4070–4078.
Lu, X.; Wang, W.; Danelljan, M.; Zhou, T.; Shen, J.; and
Van Gool, L. 2020. Video object segmentation with episodic
graph memory networks. In Proceedings of the European
Conference on Computer Vision (ECCV).
Luiten, J.; Voigtlaender, P.; and Leibe, B. 2018. PReMVOS:
Proposal-generation, refinement and merging for video ob-
ject segmentation. In Asian Conference on Computer Vision
(ACCV), 565–580.
Oh, S. W.; Lee, J.-Y.; Xu, N.; and Kim, S. J. 2019. Video
object segmentation using space-time memory networks. In
Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 9226–9235.
Pont-Tuset, J.; Perazzi, F.; Caelles, S.; Arbeláez, P.; Sorkine-
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