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Abstract

Although deep learning based methods have achieved great
progress in unsupervised video object segmentation, difficult
scenarios (e.g., visual similarity, occlusions, and appearance
changing) are still not well-handled. To alleviate these issues,
we propose a novel Focus on Foreground Network (F2Net),
which delves into the intra-inter frame details for the fore-
ground objects and thus effectively improve the segmentation
performance. Specifically, our proposed network consists of
three main parts: Siamese Encoder Module, Center Guiding
Appearance Diffusion Module, and Dynamic Information Fu-
sion Module. Firstly, we take a siamese encoder to extract
the feature representations of paired frames (reference frame
and current frame). Then, a Center Guiding Appearance Dif-
fusion Module is designed to capture the inter-frame feature
(dense correspondences between reference frame and current
frame), intra-frame feature (dense correspondences in cur-
rent frame), and original semantic feature of current frame.
Specifically, we establish a Center Prediction Branch to pre-
dict the center location of the foreground object in current
frame and leverage the center point information as spatial
guidance prior to enhance the inter-frame and intra-frame
feature extraction, and thus the feature representation con-
siderably focus on the foreground objects. Finally, we pro-
pose a Dynamic Information Fusion Module to automati-
cally select relatively important features through three afore-
mentioned different level features. Extensive experiments on
DAVIS2016, Youtube-object, and FBMS datasets show that
our proposed F2Net achieves the state-of-the-art performance
with significant improvement.

Introduction
Unsupervised video object segmentation (UVOS) aims to
separate foreground objects from their background in a
video sequence without any prior information. Due to the
lack of prior knowledge about the foreground objects, this
task not only suffers from the common challenges (e.g. ob-
ject deformation and occlusion) in other video-related tasks,
but also faces huge difficulties in accurately discovering the
most prominent and distinct objects across video frames
from a complex and diverse background.
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Figure 1: Compared to other methods, our network shows
better segmentation performance under the challenging sce-
narios of visual similarity, occlusion, and appearance chang-
ing by considering the center information of the foreground.

Traditional methods tend to address this task by using
handcrafted or learnable features, such as objectness (Zhang,
Javed, and Shah 2013), motion boundary (Papazoglou and
Ferrari 2013), saliency (Wang, Shen, and Porikli 2015), and
trajectories (Ochs and Brox 2011). These are typically non-
learning methods working in a purely unsupervised manner
without using any training data. Recently, more research ef-
forts have been devoted to tackling this task in deep learning
frameworks, leading to an unsupervised solution (no anno-
tation used for any testing frame). Many of these (Zhou et
al. 2020; Cheng et al. 2017; Li et al. 2018c) employ two-
stream networks to combine local motion and appearance
information. Due to the usage of optical flow, they may fail
to correctly infer the foreground when the object is occluded
or nearly static (Tokmakov, Alahari, and Schmid 2017). Lat-
est appearance matching based methods (Wang et al. 2019;
Yang et al. 2019; Lu et al. 2019) are proposed to explore
higher-order relationships among video frames, which ob-
tain more optimal results from a global view by attention
mechanisms. However, they lack robustness when there are
visually similar object existed in the background.

For example, as shown in Figure 1, there are three chal-
lenging scenarios: foreground-background visual similar-
ity, object occlusion, and appearance changing. For appear-
ance matching method Anchor Diffusion Network (AnDiff)
(Yang et al. 2019), it fails to separate the foreground camel
from the background one in the first video as the two camels
have similar appearance. It also can not handle the appear-
ance changing problem as shown in the third video. For two
stream network MAT (Zhou et al. 2020), it only segments
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part of the occluded object in the second video because opti-
cal flow is not robustness to the object occlusion. The above
methods pay less attention to the foreground object, lead-
ing to the inaccurate segmentation result. Considering center
point can be taken as the spatial prior guidance (Zhou, Wang,
and Krähenbühl 2019; Zhou, Koltun, and Krähenbühl 2020;
Wang et al. 2020), we tend to firstly predict the center point
of the primary object and then segment the mask from such
point to its surroundings. Therefore, our network can focus
more on the foreground object, and alleviate the visually
similarity, occlusion and appearance changing problems.

Towards this end, we propose a novel Focus on Fore-
ground Network (F2Net) for unsupervised video object seg-
mentation, which exploits center point information to focus
on the foreground object. Different from the common ap-
pearance matching based methods, we additionally estab-
lish a Center Prediction Branch to estimate the center lo-
cation of the primary object. Then, we encode the predicted
center point into a gauss map as the spatial guidance prior
to enhance the intra-frame and inter-frame feature matching
in our Center Guiding Appearance Diffusion Module, lead-
ing the model to focus on the foreground object. After the
appearance matching process, we can get three kinds of in-
formation flows: inter-frame features, intra-frame features,
and original semantic features of current frame. Instead of
fusing these three features by simple concatenation like pre-
vious methods, an attention based Dynamic Information Fu-
sion Module is developed to automatically select the most
discriminative features across the three features, providing
more optimal representations for final segmentation.

To summarize, our main contributions are three-folds:
• To the best of our knowledge, we are the first to take cen-

ter point information into UVOS task for spatial guidance
prior, which helps model focus on the foreground ob-
ject. Specifically, our proposed Center Guiding Appear-
ance Diffusion Module leverages the center prior in ap-
pearance matching procedure to extract foreground atten-
tive representations.

• We develop a Dynamic Information Fusion Module to ag-
gregate information from different level features, which
generates more discriminative representations for the fi-
nal foreground object segmentation.

• Extensive experiments are conducted on three popular
UVOS benchmarks, DAVIS2016, FBMS, and Youtube-
Objects. Compared to the state-of-the-art methods, we
achieve the significant improvement with a large margin.

Related Work
Unsupervised Video Object Segmentation. UVOS aims to
automatically separate foreground object(s) from their back-
ground in a video without any human intervention. Early
methods typically utilize handcrafted features (e.g., color,
optical flow) (Papazoglou and Ferrari 2013; Faktor and Irani
2014; Tsai, Yang, and Black 2016; Hu, Huang, and Schwing
2018). Recently, benefiting from the large datasets (Perazzi
et al. 2016), more research efforts have been devoted to tack-
ling this task in deep learning frameworks. Tokmakov et al.
(Tokmakov, Alahari, and Schmid 2017) proposed a purely

optical flow based network that discards appearance mod-
elling and casts segmentation as foreground motion predic-
tion, thus poorly deals with static foreground objects. To ad-
dress this problem, two-stream networks are introduced to
fuse appearance and motion information (Li et al. 2018a;
Jain, Xiong, and Grauman 2017; Cheng et al. 2017; Li et
al. 2018c; Zhou et al. 2020). However, above methods uti-
lize optical flow information, and significantly suffer from
not only the large computation of the optical flows, but also
the deterioration in the quality of their predictions over time.
Targeting this issue, several approaches (Wang et al. 2019;
Yang et al. 2019; Lu et al. 2019; Chen et al. 2018; Fathi et
al. 2017; Li et al. 2018b; Oh et al. 2019) tackle video object
segmentation by simply learning similarities between pixel
embeddings without motion contexts. AGNN (Wang et al.
2019) provides an unified, end-to-end trainable network to
capture the higher-order correlated information with graph
attention network. AnDiff (Yang et al. 2019) performs ap-
pearance similarity learning, feature propagation and binary
segmentation in a single network. COS (Lu et al. 2019) uti-
lizes co-attention to comprehensively use the rich, inherent
correlation information within videos.
Attention Mechanism. Differentiable attentions have been
widely used in recent neural networks for various tasks, such
as visual question answering (Lu et al. 2016), human pose
estimation (Chu et al. 2017; Su et al. 2019), and image clas-
sification (Hu, Shen, and Sun 2018; Li et al. 2019). It allows
networks to focus on the most informative parts of the in-
puts. Latest appearance matching methods in UVOS (Wang
et al. 2019; Yang et al. 2019; Lu et al. 2019) generally match
the pixel embeddings across the whole frame based on at-
tention mechanism, thus may wrongly segment the visually
similar backgrounds. They also fuse the matched features by
simple concatenation which may lose fine-grained details.
To pay more attention on the foreground, we predict the fore-
ground object center and encode it to a spatial gauss map.
Such spatial guidance is injected into the attention mecha-
nism to selectively focus on the foreground pixels. Besides,
instead of fusing features by simply concatenation, we de-
vise an attention based Dynamic Information Fusion Mod-
ule to aggregate information from different level features.

Method
Overview
UVOS aims to automatically segment the primary object(s)
from videos. To focus on the foreground and neglect the
background, we propose the Focus on Foreground Network
F2Net illustrated in Figure 2, which consists of three main
parts: a Siamese Encoder Module, a Center Guiding Appear-
ance Diffusion Module, and a Dynamic Information Fusion
Module. Given a pair of frames, we first generate their em-
beddings by a siamese encoder. After that, the Center Guid-
ing Appearance Diffusion Module first predicts the fore-
ground object center point by a Center Prediction Branch,
then encodes it into a gauss map as the spatial-prior condi-
tion during the appearance matching process. After appear-
ance matching, we can get three kinds of features. At last, we
apply a Dynamic Information Fusion Module to fuse differ-
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Figure 2: Overall pipeline of the proposed network architecture. A pair of frames is first fed into a siamese encoder to obtain
the feature representations. After that, we develop a Center Guiding Appearance Diffusion Module to first predict the center
point of the foreground object in current frame, and then generate a gauss map as spatial guidance prior for the following up
appearance matching procedure. At last, we devise a Dynamic Information Fusion Module to aggregate different level features
for foreground object segmentation.
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Figure 3: Illustration of the heatmap estimation in current
frame, which considers 1) spatial clues Gt−1 from previous
frame, and 2) semantic information Ut from current frame.

ent level matched features for final segmentation.

Siamese Encoder
The siamese encoder takes a pair of RGB images as inputs,
including a current frame It ∈ RW×H×3 and a reference
frame I0 ∈ RW×H×3. Here, we take the first frame I0 as
the reference frame because it is guaranteed to contain the
foreground objects. The backbone network of the siamese
encoder is DeepLabv3 (Chen et al. 2017), which consists of
five convolution blocks (res1, res2, res3, res4, res5) from
ResNet (He et al. 2016) and an atrous spatial pyramid pool-
ing (ASPP) module. We denote the extracted embeddings of
It, I0 as Vt,V0 ∈ RW

8 ×H
8 ×C , whereW,H,C are the width,

height, and the number of channels, respectively.

Center Guiding Appearance Diffusion
To focus more on the foreground object, we delve into the
intra-inter features with center point information. In detail,
we build a Center Prediction Branch to detect the object cen-
ter point, and then utilize it as spatial guidance prior for fur-
ther Spatial-Prior Guided Appearance Matching.
Center Prediction Branch. This branch tends to predict the
center point of the foreground object. Specially, following

(Tompson et al. 2014), we transform the point prediction
into a heatmap Ht estimation task, which consists of two
main steps: Feature Upsampling and Heatmap Generation.
In Feature Upsampling, we adopt an upsample module to
efficiently merge features of different res-blocks (res2, res3,
res4, res5) in different scales to enhance the information for
high-resolution features. As shown in Figure 2, we illustrate
the detailed structure of upsample block. The input of pre-
vious layer is first upsampled to the same size to the skip-
connected features, and then both inputs are element-wise
added. The final output of the whole upsampling blocks can
be denoted as Ut ∈ RW

4 ×H
4 ×D, where D is the channel

number. In Heatmap Generation, to predict the final point-
wise heatmap Ht ∈ RW

4 ×H
4 ×1, we consider two aspects

as shown in Figure 3: 1) Spatial clues from previous frame:
we propagate previous gauss map Gt−1 to current frame for
better locating the foreground (if the current frame is the first
frame, we utilize a zero map as the previous gauss map). We
concatenate the current embedding Ut and the spatial clues
Gt−1 to learn S, b ∈ RW

4 ×H
4 ×1, which are scale and bias

parameters (Yang et al. 2018) to control the weight to adjust
the Gt−1 under the guidance of the appearance information
of current frame. We can formulate such process as:

S = Conv2d(Concat[Ut,Gt−1]), (1)

b = Conv2d(Concat[Ut,Gt−1]), (2)

Ĝt−1 = Sigmoid(S)�Gt−1 + Sigmoid(b), (3)

where � denotes the element-wise product. 2) Semantic
information from current feature: Since Ut also contains
enough information to predict the target center point, we can
directly estimate the heatmap Ft on Ut by applying a 3× 3
convolutional layer with ReLU, followed by a 1×1 convolu-
tional layer. At last, we add this two estimation branch into
one with a sigmoid function by:

Ht = Sigmoid(Ĝt−1 + Ft). (4)
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To choose the best center point ot = (xt, yt) ∈ R2 from
Ht, instead of directly choosing the point with the maxi-
mum score, we additionally consider the motion clues across
the sequential frames for better accuracy. We first rank topK
points using NMS (Lin et al. 2017) from Ht as candidates,
and then utilize a motion mechanism (Xu et al. 2019) to pre-
dict a coarse center point pt = pt−1 + 1

n

∑t−1
m=t−n(pm −

pm−1) using n history object centers in previous frames. At
last, we compute the distance from each candidate to pt, and
choose the closest one as the final center ot of the foreground
object in current frame. In our experiments, we find it can
achieve better performance than the maximum strategy.
Spatial-Prior Guided Appearance Matching. To deter-
mine the foreground object, there are two essential prop-
erties: 1) distinguishable in an individual frame (locally
saliency), and 2) frequently appearing throughout the video
sequence (globally consistent). To achieve the first goal, we
apply a non-local operation (Wang et al. 2018) on the cur-
rent feature Vt to locate the salient object in an intra-wise
matching way. To achieve our second goal, we utilize an-
other non-local operation on both current and the reference
features Vt,V0 to capture the inter-frame correlated infor-
mation for alleviating appearance drift. We also employ a
skip-connection on current feature Vt to preserve the seman-
tic information. All three features contain different level in-
formation as shown in Figure 2. To focus on the foreground,
we encode the predicted center point ot into a gauss map
Gt as spatial guidance prior for the intra-frame and inter-
frame appearance matching. Compared to other appearance
matching methods, the key difference of our method is that
the encoded feature representation is weighted by the gauss-
guided spatial prior.

As shown in Figure 2, given the intra-frame and iter-frame
feature pairs (Vt,Vt) and (V0,Vt), we first flatten V0,Vt
into shape WH

64 × C, then compute the gauss-guided corre-
lation matrices Mintra,Minter ∈ RWH

64 ×WH
64 as:

Mintra = Softmax(
1√
C
Vt(Vt �Gt)

T ), (5)

Minter = Softmax(
1√
C
V0(Vt �Gt)

T ), (6)

where C is the channel number of Vt. After that, we recon-
struct feature V̂t in which the pixel embeddings are weighted
according to their similarity with the foreground:

V̂t,intra = MintraVt, (7)

V̂t,inter = MinterVt. (8)
At last, we can get three kinds of information flows and re-
shape them back to a 3D tensor with the size of W8 ×

H
8 ×C

for further segmentation: 1) initial current feature Vt by
a skip connection (He et al. 2016), 2) intra-frame feature
V̂t,intra for intra-frame discriminability and 3) inter-frame
feature V̂t,inter for inter-frame consistency.

Dynamic Information Fusion
Original current feature Vt only contains a coarse clue for
inferring the target foreground object without a global view.

Current 
Feature

Intra-frame 
Feature

Inter-frame 
Feature

Pool FC

FC Softmax

Conv

Softmax

••

••

••

Aggregated 
Feature

| |Channel-wise attention |Spatial-wise attention

Figure 4: Scheme of the Dynamic Information Fusion Mod-
ule, in which we apply attentions on channel and spatial di-
mensions for different level features aggregation.

Intra-frame feature V̂t,intra contains more accurate salient
object information in current frame, but fails to address the
appearance changes in a video sequence. Inter-frame feature
V̂t,inter contains more contexts to adapt to the appearance
changes of the foreground objects. Instead of directly fusing
these three features by simple concatenation (Lu et al. 2019;
Yang et al. 2019), we need to selectively aggregate them
to generate more discriminative features. According to the
above analysis, we develop a Dynamic Information Fusion
Module to emphasize meaningful features along both chan-
nel and spatial dimensions with attention mechanism.
Channel-wise attention. The basic idea of channel-wise at-
tention is to use gates to control the information flows from
three-level features in channel dimension. To achieve this
goal, the gates need to integrate information from all fea-
tures. As shown in Figure 4, we first fuse three kinds of fea-
tures by an element-wise addition as:

Ṽt = Vt + V̂t,intra + V̂t,inter. (9)

Then we utilize global average pooling on Ṽt to conduct
spatial squeeze, where each element is calculated by shrink-
ing Ṽt through spatial dimensions. We further apply a sim-
ple fully connected (FC) on the squeezed feature to en-
able the guidance for adaptive selection. After that, we em-
ploy another three FC layers to generate the gate vectors
{Z1,Z2,Z3} ∈ R1×1×C for {Vt, V̂t,intra, V̂t,inter}, re-
spectively, and utilize channel-wise softmax function to gen-
erate adaptive weights {W1,W2,W3} ∈ R1×1×C corre-
sponding to different level features {Z1,Z2,Z3} as:

W c
i =

exp(Zc
i )∑3

j=1 exp(Z
c
j )
, i ∈ {1, 2, 3}, (10)

in which, W c
i represents relative importance of feature Zi

at channel c ∈ C, and
∑3
i=1 W

c
i = 1. The gated feature

maps for three information flows can be formulated as:

Vt = Vt�W1, V̂t,intra = V̂t,intra �W2,

V̂t,inter = V̂t,inter �W3.
(11)

Spatial-wise attention. Similar to the channel-wise atten-
tion, we also first fuse three features by element-wise ad-
dition. To strengthen the information on the spatial dimen-
sion, we then employ 1 × 1 convolutional filters to conduct
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the channel squeeze and compress the channels to 3, where
the feature map of each channel corresponding to the spatial
weights for each level feature. After that, a softmax opera-
tion is conducted across channels to rescale activations and
the rescaled activations are sliced along the channel dimen-
sion to generate pixel-wise adaptive weights. At last, we sum
the three features to one according to the generated weights.

After the channel-wise and spatial-wise attention mod-
ules, the information flows from three-level input features
can be adaptively aggregated into one feature map. Like
most of previous works, we employ a decoder which con-
sists of two convolutional layers to generate the final binary
mask result Rt ∈ RW×H .

Implementation Details
Training loss. Given a pair of input images, our F2Net pre-
dicts a center point heatmap H and a mask result R of the
current frame. For point heatmap estimation, we apply an
element-wise focal loss (Lin et al. 2017) on the heatmap H

in Eq.(4) and the corresponding ground-truth gauss map Ĥ:

Lf =
∑
(x,y)

{
(1−H(x,y))

αlog(H(x,y)), if Ĥ(x,y) = 1

(1− Ĥ(x,y))
β(H(x,y))

αlog(1−H(x,y)), else

(12)
where H(x,y) is the score at location (x, y) in the predicted
heatmap H , and we set α as 2 and β as 4 following the
default setting in (Law and Deng 2018). For segmentation
mask result, we employ the binary cross entropy loss on the
predict mask R and the ground truth R̂ as:

Lb = −
∑
(x,y)

R̂(x,y)log(R(x,y))+(1−R̂(x,y))log(1−R(x,y)).

(13)
The overall loss function can be obtained by:

L = Lf + Lb. (14)
Training settings. Following (Wang et al. 2019; Lu et al.
2019), we adopt two alternated steps to train our model. In
the static-image iteration, we utilize image saliency dataset
MSRA10K (Cheng et al. 2014) to fine-tune the DeepLabV3
based feature embedding module and the Center Prediction
Branch. This allows the backbone to extract more discrim-
inative foreground features and the center prediction mod-
ule to locate the center of salient object more accurately.
Meanwhile, in the dynamic-video iteration, we train the
whole model with the training set in DAVIS16 (Perazzi et al.
2016). During training the Center Guiding Appearance Dif-
fusion module, we first separately train the Center Predic-
tion Branch and Spatial-Prior Guided Appearance Matching
in parallel in the first 20 epochs, where we feed the appear-
ance matching module with the center point of ground truth.
Then, in latter epochs, we feed the appearance matching
module with the predicted point from the Center Prediction
Branch to jointly train them. For the above alternated train-
ing process, the size of input RGB frame is 473 × 473 × 3.
The entire network is trained using the SGD optimizer with
an initial learning rate of 2.5×10−4. We set the batchsize as
16. All the experiments are conducted using 4 V100 GPUs
on a server. The overall training time is about 9 hours, and it
takes about 0.1s with one image in a forward pass.

Network Variant Mean J ↑ 4J Mean F ↑ 4F
Baseline 77.6 -5.5 76.8 -7.6
+ AD 79.6 -3.5 79.0 -5.4
+ CGAD 82.5 -0.6 82.9 -1.5
+ CGAD&SA 82.7 -0.4 83.4 -1.0
+ CGAD&CA 82.8 -0.3 83.6 -0.8
+ CGAD&SCA 83.0 -0.1 84.2 -0.2
+ CGAD&CSA 83.1 - 84.4 -

Table 1: Ablation study of the proposed model on DAVIS-
2016 dataset, measured by Mean J and Mean F .

Mechanism Mean J ↑ Mean F ↑
maximum 82.4 84.2

motion based (Xu et al. 2019) 83.1 84.4

Table 2: Ablation study of different strategies to choose the
center point from the predicted heatmap.

Experiments
Experimental Setup
We conduct experiments on three well-known datasets:
DAVIS2016 (Perazzi et al. 2016), Youtube-Objects (Prest et
al. 2012), and FBMS (Ochs, Malik, and Brox 2013).
DAVIS2016 is a challenging video object segmentation
dataset which consists of 50 videos in total (30 for training
and 20 for validation) with pixel-wise annotations for every
frame. Three evaluation criteria are used following the stan-
dard evaluation protocol (Perazzi et al. 2016): region simi-
larity J , boundary accuracy F , and time stability T .
Youtube-Objects contains 126 video sequences which be-
long to 10 objects categories with more than 20,000 frames
in total. Following its protocol, we use the region similarity
J to measure the segmentation performance.
FBMS is comprised of 59 video sequences (29 training
videos and 30 test videos). The ground-truth of FBMS is
sparsely labeled. Following (Yang et al. 2019; Lu et al. 2019;
Zhou et al. 2020), we use region similarity J to evaluate our
method on test set without training.

Ablation Study
We conduct the ablation study on DAVIS2016 dataset as
shown in Table 1 and 2, where the baseline model is a the
DeepLabV3 network.
How does the gauss based spatial guidance help? We first
investigate the effectiveness of the proposed Center Guiding
Appearance Diffusion (CGAD) Module, which relies on the
center point estimated by the Center Prediction Branch. We
denote AD as normally appearance diffusion (AnDiff with-
out multi-scale and pruning strategies), and CGAD as the
center-prior guided one. Compare to the baseline model, as
shown in Table 1, AD brings the improvement of 2.0 on J
and 2.2 on F which indicates the effectiveness of the gen-
eral appearance matching based method. Compare to it, our
CGAD outperforms AD by 2.9 on J and 3.9 on F with a
large margin. It demonstrates the effectiveness of the gauss
based spatial prior, which helps to focus on the foreground
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Method FSEG UOVOS LVO ARP PDB LSMO MoA EpO AGS COS AnDiff MAT Ours
J&FMean↑ 68.0 70.9 74.0 73.4 75.9 77.1 77.3 78.1 78.6 80.0 81.1 81.5 83.7

J
Mean↑ 70.7 73.9 75.9 76.2 77.2 78.2 77.2 80.6 79.7 80.5 81.7 82.4 83.1
Recall↑ 83.5 88.5 89.1 91.1 90.1 89.1 87.8 95.2 91.1 93.1 90.9 94.5 95.7
Decay↓ 1.5 0.6 0.0 7.0 0.9 4.1 5.0 2.2 1.9 4.4 2.2 5.5 0.0

F
Mean↑ 65.3 68.0 72.1 70.6 74.5 75.9 77.4 75.5 77.4 79.5 80.5 80.7 84.4
Recall↑ 73.8 80.6 83.4 83.5 84.4 84.7 84.4 87.9 85.8 89.5 85.1 90.2 92.3
Decay↓ 1.8 0.7 1.3 7.9 -0.2 3.5 3.3 2.4 1.6 5.0 0.6 4.5 0.8

T Mean↓ 32.8 39.0 26.5 39.3 29.1 21.2 27.9 19.3 26.7 18.4 21.4 21.6 20.9

Table 3: Quantitative results of UVOS methods on the DAVIS2016 validation set. All the results are borrowed from the public
leaderboard maintained by the DAVIS challenge. The best scores are marked in bold.

Method FSEG LVO PDB AGS COS MAT Ours
Airplane 81.7 86.2 78.0 87.7 81.1 72.9 85.8

Bird 63.8 81.0 80.0 76.7 75.7 77.5 82.8
Boat 72.3 68.5 58.9 72.2 71.3 66.9 81.9
Car 74.9 69.3 76.5 78.6 77.6 79.0 81.4
Cat 68.4 58.8 63.0 69.2 66.5 73.7 70.2
Cow 68.0 68.5 64.1 64.6 69.8 67.4 71.0
Dog 69.4 61.7 70.1 73.3 76.8 75.9 75.8

Horse 60.4 53.9 67.6 64.4 67.4 63.2 75.4
Motorbike 62.7 60.8 58.4 62.1 67.7 62.6 71.8

Train 62.2 66.3 35.3 48.2 46.8 51.0 59.6
MeanJ ↑ 68.4 67.5 65.5 69.7 70.5 69.0 75.6

Table 4: Quantitative performance of each category on
Youtube-Objects with the Mean J .

and thus alleviates the challenges in common appearance
matching based methods.
How does the dynamic information fusion help? The
Dynamic Information Fusion Module consists of channel-
wise and spatial-wise attention mechanisms. Here, we do
the comparison on four variants: spatial attention only (SA),
channel attention only (CA), first spatial attention then chan-
nel attention (SCA), and first channel attention then spatial
attention (CSA). Detailed experiments on different variant
attentions can be found in Table 1. Compared to CGAD, SA
can bring improvements of 0.2 on J , 0.5 on F , and CA can
bring improvements of 0.3 onJ , 0.7 onF . To investigate the
performance on different combinations of the two attentions,
we conduct the experiments on SCA and CSA. The results
show that the channel-spatial attention (CSA) achieves the
best performance of J = 83.1 and F = 84.4.
How to select the center point from a heatmap? Be-
sides, we also do the ablation study on different strategies to
choose the center point from the heatmap H in Eq. (4). Spe-
cially, we compare two methods in Table 2: 1) We directly
choose the the center point in heatmap with the maximum
score. 2) We exploit a motion mechanism (Xu et al. 2019) to
choose the center point with motion history information un-
der the parameter settings K = 5, n = 10. We can find that
the motion mechanism performs relatively better. It reveals
that the motion mechanism can help locate more accurate
position of object based on the motion history, whether ob-
jects move fast or slow in the video.

Comparison with State-of-the-arts

Evaluation on DAVIS2016. We compare our F2Net with
the top performing UVOS methods in the public leaderboard
on DAVIS2016 dataset. As shown in Table 3, our method
outperforms all the reported methods across most metrics.
Compared with the second best method MAT (Zhou et al.
2020), our model achieves gains of 2.2 in terms of J&F
Mean. In detail, we obtains improvements of 0.7 and 3.7 on
J Mean andF Mean, respectively. Compared to appearance
matching methods COS (Lu et al. 2019) and AnDiff (Yang et
al. 2019), we outperform them both on J Mean andF Mean
by a large margin. Compared to methods like MoA (Siam et
al. 2019) and EPO (Faisal et al. 2019) which utilize both
appearance information and motion cues, our model outper-
forms them by only utilizing appearance information. In our
experiments, we find that the above methods may fail to dis-
tinguish the visually similar pixels from both foreground and
background. Due to the center based gauss map, our model
consider spatial prior during the appearance matching proce-
dure, which helps filter out the background noise and focus
more on the foreground object boundary construction (im-
provingF ). Besides, the Dynamic Information Fusion Mod-
ule also can aggregate discriminative features across differ-
ent level for the final segmentation.
Evaluation on Youtube-Objects. Table 4 illustrates the re-
sults of all compared methods for different categories on
Youtube-Objects dataset. Our approach brings improvement
of 5.1 on J than the second best method COS (Lu et al.
2019) by a large margin. It is also worth to note that we out-
perform all compared methods on almost all categories. The
main reason lies in two folds: First, for optical guided meth-
ods MAT, FSEG (Jain, Xiong, and Grauman 2017) and LVO
(Tokmakov, Alahari, and Schmid 2017), sequences in the
Airplane and Boat categories contain objects that have quick
appearance variation or move slowly. Both factors result in
inaccurate estimation of optical flow. Compared to them, our
matching based framework can handle these scenarios well.
Second, compared to other matching based methods COS,
our estimated center point provides the spatial prior for bet-
ter segmentation focusing more on the actual foreground.
Evaluation on FBMS. As shown in Table 5, we also con-
duct experiments on FBMS for completeness. Compared to
others, our method performs the best result with 77.5 over
the MeanJ , outperforming the second best one by 1.4. Con-
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Figure 5: Qualitative results on three datasets. From top to bottom: breakdance from the DAVIS2016 dataset, cats01 from the
FBMS dataset, and dog0006 from the Youtube-Objects dataset.

Method NLC FST SFL APR MSTP FSEG
MeanJ ↑ 44.5 55.5 56.0 59.8 60.8 68.4
Method IET OBN PDB COS MAT Ours

MeanJ ↑ 71.9 73.9 74.0 75.6 76.1 77.5

Table 5: Quantitative results on FBMS test set over Mean J .

sidering lots of foreground objects in FBMS share similar
appearance with the background, our Center Guiding Ap-
pearance Diffusion Module exploits center information to
focus on the foreground objects and filter out the visually
similar background ones for better segmentation.

Qualitative Results
Does center prediction branch estimate the center point
well? To investigate the performance of Center Prediction
Branch, we give some visualization results on the generated
center point heatmap, especially for the first frame of each
video sequence. As shown in Figure 6, there are four chal-
lenging sequences in which the surroundings has a similar
appearance to the foreground object. Without any previous
motion history, our Center Prediction Branch still can esti-
mate relatively accurate object center point of the first frame
mainly based on the semantic features. It demonstrates that
our Center Prediction Branch can effectively capture the
contextual information across the frame to locate the target
point. In the latter frames, besides the current semantic fea-
tures, the center point based gauss map from previous frame
is additionally fed to refine the point position, which pro-
vides more precisely center point estimation.
Segmentation visualization. Figure 5 shows qualitative re-
sults sampled from the three datasets. The breakdance se-
quence from DAVIS2016 contains many challenging fac-
tors, such as fast motion, deformation and multiple instances
of the same category. We can find that our method is ro-
bust to such complex scenarios and can accurately seg-
ment out primary objects from the cluttered background.
The effectiveness is further proved in the cat01 sequence of
FBMS dataset. In addition, our method performs well in the
dog0006 sequence of Youtube-Objects, in which the target

First Frame First Frame Other Frame Other Frame

Figure 6: Visualization of center point heatmaps on each
frame of the DAVIS2016 dataset. From top to down: camel,
dog, goat, and parkour. Although the first frame has no his-
tory motion knowledge of the foreground object, our Cen-
ter Prediction Branch can still estimate accurate point result
among noisy neighbors. The other frames receive additional
point information from previous frame and thus predict more
accurate center point.

suffers from large scale variations.

Conclusion

In this paper, we propose a novel Focus on Foreground Net-
work (F2Net) for unsupervised video object segmentation.
Compared to recent appearance matching based methods,
we additionally estimate the center point of the foreground
object and encode it into a gauss map as spatial guidance
for the appearance matching procedure. This Center Guiding
Appearance Diffusion Module is flexible and can be easily
adapted to other segmentation frameworks. We also develop
a Dynamic Information Fusion Module to aggregate multi-
level features for generating more discriminative features for
final segmentation. Extensive results on three public datasets
demonstrate the effectiveness of our proposed method.
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