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Abstract

Depth completion aims to recover a dense depth map from a
sparse depth map with the corresponding color image as in-
put. Recent approaches mainly formulate depth completion
as a one-stage end-to-end learning task, which outputs dense
depth maps directly. However, the feature extraction and su-
pervision in one-stage frameworks are insufficient, limiting
the performance of these approaches. To address this prob-
lem, we propose a novel end-to-end residual learning frame-
work, which formulates the depth completion as a two-stage
learning task, i.e., a sparse-to-coarse stage and a coarse-to-
fine stage. First, a coarse dense depth map is obtained by a
simple CNN framework. Then, a refined depth map is further
obtained using a residual learning strategy in the coarse-to-
fine stage with a coarse depth map and color image as input.
Specially, in the coarse-to-fine stage, a channel shuffle ex-
traction operation is utilized to extract more representative
features from the color image and coarse depth map, and
an energy based fusion operation is exploited to effectively
fuse these features obtained by channel shuffle operation, thus
leading to more accurate and refined depth maps. We achieve
SoTA performance in RMSE on KITTI benchmark. Exten-
sive experiments on other datasets future demonstrate the su-
periority of our approach over current state-of-the-art depth
completion approaches.

Introduction
Depth is considered as one of the most fundamental in-
formation in many applications, including robotics (Liao
et al. 2017)(Song et al. 2019), augmented reality (Dey et al.
2012)(Song et al. 2020), virtual reality (Armbrüster et al.
2008) and SLAM (Wang et al. 2016). Various depth sen-
sors such as 3D Lidar, depth cameras and stereo cameras
have been developed to obtain depth information. For au-
tonomous driving, 3D Lidar is commonly used because it
can obtain accurate depth information in centimeter-level ac-
curacy. However, due to the inherent characteristics of Lidar
devices, the captured depth information is usually sparsely
distributed, which largely limits the performances of Lidar-
based applications.
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Figure 1: Comparison with SoTA approaches. (a) STD (Ma,
Cavalheiro, and Karaman 2019), (b) DeepLidar (Qiu et al.
2019), (c) CSPN++ (Cheng et al. 2020), (d) Ours.

In order to obtain a dense and accurate depth map at
a low cost, the task of depth completion draws more and
more attention. Depth completion aims to recover a dense
depth map from a sparse depth map obtained from Li-
dar or other depth sensors. Recently, various of effective
depth completion approaches have been proposed, includ-
ing sparse depth based approaches (Uhrig et al. 2017)(Cho-
dosh, Wang, and Lucey 2018)(Lu et al. 2020)(Eldesokey
et al. 2020) and image-guided based approaches (Ma, Cav-
alheiro, and Karaman 2019)(Qiu et al. 2019)(Yang, Wong,
and Soatto 2019)(Imran et al. 2019)(Qu, Nguyen, and Tay-
lor 2020)(Tang et al. 2019)(Cheng et al. 2020)(Li et al.
2020)(Liu et al. 2021). However, due to lack of complemen-
tary cues of color information, the resulting depth maps of
sparse depth based approaches are inevitably blurred with
unclear boundaries. More recent image-guided based ap-
proaches explore color images to guide depth completion
and various features fusion strategies have been proposed.
However, image-guided based approaches mainly take depth
completion as a one-stage task, and the feature extraction
and information supervision are insufficient. Thus depth de-
tails are failed to be recovered. As illustrated in Fig. 1 (a) to
(c), the obtained depth maps either suffer from blurred edges
or lose depth details.

To solve these problems, we propose an effective frame-
work, named FCFR-Net, which tackles depth completion as
a two-stage task, i.e., a sparse-to-coarse stage and a coarse-
to-fine stage. The sparse-to-coarse stage first interpolates
the sparse depth maps using simple CNN frameworks, and
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coarse dense depth maps can be obtained, which guarantees
that more consecutive information can be provided in the
next stage. Note that all the commonly used sparse-to-dense
frameworks can be utilized in the sparse-to-coarse stage, and
to reduce the complexity, we use the supervised network
of STD (Ma, Cavalheiro, and Karaman 2019) in our paper.
Then the obtained coarse dense depth maps and correspond-
ing color images are fed into the coarse-to-fine stage. To suf-
ficiently fuse features extracted by color and depth informa-
tion, a channel shuffle extraction operation and an energy
based fusion operation are combined into a residual learning
framework. The channel shuffle operation first interleaves
color and depth features at multi-scale feature levels by mix-
ing and disrupting the features of color and depth informa-
tion at the channel level, and the energy based fusion oper-
ation further effectively fuses features obtained by channel
shuffle operation. Hence, more representative features can
be obtained, and more accurate depth completion results can
be expected. The residual learning framework can further
improve the performance of depth completion. As demon-
strated in Fig. 1 (d), compared with previous approaches,
depth maps with sharper boundaries and more depth details
can be obtained by our approach.

The main contributions of this paper can be summarized
as:

• We formulate the problem of depth completion as a
two-stage task, and a coarse-to-fine residual learning
based framework is proposed, which contains a sparse-
to-coarse stage and a coarse-to-fine stage. The sparse-to-
coarse stage interpolates coarse dense depth maps, and the
coarse-to-fine stage further refines the depth maps.

• A channel shuffle extraction operation is proposed, which
can effectively fuse the features of color and depth infor-
mation at the multi-scale feature levels, and greatly im-
prove the depth completion performance.

• A energy based fusion operation is utilized to further suf-
ficiently fuse the features obtained by channel shuffle ex-
traction, thus achieves better performance.

We achieve SoTA performance in RMSE on KITTI
benchmark, and results on NYUv2 dataset also demonstrates
the superiority of our approach.

Related Work
Sparse Depth based Approaches Sparse depth can be
used as input to get dense ones without image guid-
ance (Uhrig et al. 2017)(Chodosh, Wang, and Lucey 2018),
and most recent approaches (Van Gansbeke et al. 2019)(Li
et al. 2020)(Qiu et al. 2019)(Tang et al. 2019)(Park et al.
2020) usually get dense depth map with sparse depth and
image data as input. All of them encode the invalid values of
sparse input with zeros. However, discontinuous values limit
the performance of these approaches. Meanwhile, the sparse
depth can also be interpolated along with the gravity (Liao
et al. 2017)(Chen et al. 2018), the invalid values are popu-
lated with non-zero values. Through these operations can ef-
fectively avoid the limitation in convolution learning, depth
details and semantic information are lost.

Signal Level Fusion (Ma, Cavalheiro, and Karaman
2019) use a ResNet (He et al. 2016) based autoencoder net-
work to predict a dense depth map. The sparse depth map
and image are directly connected as an input to the net-
work at the signal level. To get a more accurate depth map,
(Cheng, Wang, and Yang 2018)(Cheng et al. 2020) propose
a novel convolutional spatial propagation network (CSPN)
to learn the affinity matrix for depth prediction. This work
adopts a general CNN structure and adds post-processing to
get a sharp result. All the above methods directly merge the
image and sparse depth at the signal level, and then obtain
more accurate results through post-processing.

Feature Level Fusion Approaches (Yan, Liu, and Belyaev
2020)(Lee et al. 2020) for depth completion usually in-
tegrate depth and image information at the feature level.
The image and depth features are extracted using two en-
coders, and a skip connection exists between the encoder
and decoder parts. (Lee et al. 2020) proposes a cross-
guidance module, and the image and depth features are
fused through cross attention. Meanwhile, (Yan, Liu, and
Belyaev 2020) uses a Spatial Pyramid fusion (SPF) as a
global attention block to merge the final outputs from two
encoders. (Van Gansbeke et al. 2019)(Li et al. 2020)(Tang
et al. 2019)(Tang et al. 2019) use image information to
guide depth feature extraction for depth completion. Be-
sides, (Van Gansbeke et al. 2019) uses global and local
branches for depth completion, and the output of the im-
age branch and the depth are connected as an input to the
local branch. (Li et al. 2020) uses the cascade hourglass net-
work to extract the multi-resolution depth map features for
better depth completion. (Xu et al. 2019)(Qiu et al. 2019)
use surface normal to assist depth completion and (Chen
et al. 2019) fuse the information between 2D and 3D spaces.
However, all of the above methods ignore the integration of
the color and depth information at the micro-level. Thus, the
feature fusion is not sufficient, which limits the performance
of these approaches.

Image Fusion Image fusion is the technique of integrat-
ing information on different types of images obtained from
different sensors. (Liu et al. 2017)(Du and Gao 2017) pro-
pose a multi-focus image fusion method based on image seg-
mentation through a multi-scale CNN. In (Prabhakar, Srikar,
and Babu 2017), the feature pairs of input images extracted
from the last layer of the network are fused into a single fea-
ture by an addition operation. Instead of simply adding two
features, (Li and Wu 2018) apply a novel strategy based on
l1-norm and soft-max operation into the network and get a
better fusion result. (Liu, Song, and Wang 2020) proposes
a multi-scene image fusion architecture based on the com-
bination of the multi-scale discrete wavelet transform. The
useful information of feature maps can be fully utilized, and
a region-based fusion strategy is adopted to capture more
detailed information.

However, the combination and fusion of color and depth
information of the above approaches are insufficient, and to
solve this, we propose a novel framework for better depth
completion.
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Figure 2: Overview of network architecture. The whole network architecture includes two parts: Sparse-to-Coarse stage (blue
area) and Coarse-to-Fine stage (orange area). A simple CNN framework is used for the Sparse-to-Coarse stage. In the Coarse-to-
Fine stage, color image and coarse depth are extracted by two encoder branches. Channel shuffle is utilized to mix two features
sufficiently. Then energy based fusion is adopted to fuse features. The obtained features are concatenated with deconvolution.
The final depth output is the sum of the learned residual depth and the coarse depth map.

Our Approach
We formulate depth completion as a two-stage task, includ-
ing a sparse-to-coarse stage and a coarse-to-fine stage. The
pipeline of our approach is demonstrated in Fig. 2. First, a
simple framework is utilized in the sparse-to-coarse stage
to obtain coarse dense depth maps; Second, a coarse-to-fine
stage is exploited, which contains a channel shuffle opera-
tion, an energy based fusion operation and a residual learn-
ing strategy. The channel shuffle extraction operation, which
effectively extracts more representative features from color
and depth information; The energy based fusion operation,
which sufficiently fuses features obtained by channel shuf-
fle extraction operation, thus better depth completion results
can be expected; The residual learning strategy can further
improve the quality of depth completion.

Sparse-to-Coarse
A dense depth map can be interpolated in handcrafted
ways in the sparse-to-coarse stage, such as nearest-neighbor
interpolation or other simple sparse-to-dense approaches.
For the sparse-to-coarse stage, commonly used sparse-
to-dense structures, such as (Ma, Cavalheiro, and Kara-
man 2019)(Cheng, Wang, and Yang 2018)(Cheng et al.
2020)(Park et al. 2020), can be utilized, and to reduce the
computational limitations, we use STD (Ma, Cavalheiro, and
Karaman 2019) in our approach. The process of the sparse-
to-coarse stage can be formulated as:

dsc = SC(ds, I) (1)

where ds and I mean the sparse depth and corresponding

color image, SC means the process of the sparse-to-coarse
stage, and dsc means the obtained coarse dense depth map.

Coarse-to-Fine
The coarse-to-fine stage uses the color image and the corre-
sponding coarse dense depth map as input, where the depth
map is obtained after interpolation in the sparse-to-coarse
stage. Thus consecutive information can be provided to the
convolution. Meanwhile, to effectively and sufficiently ex-
tract and fuse features from color and depth information,
a channel shuffle operation (CS) and an energy based fu-
sion operation (EF ) are utilized. Besides, a residual learn-
ing framework is exploited in the coarse-to-fine stage to im-
prove the performance of depth completion further. In this
section, we provide more details about these operations.

Channel Shuffle Strategies (Ma, Cavalheiro, and Kara-
man 2019)(Cheng, Wang, and Yang 2018), have been pro-
posed to extracted features from color and depth informa-
tion with commonly used backbones, such as ResNet18 and
ResNet34. These strategies usually stack color and depth di-
rectly and extract features using a single feature extractor,
which performs the same feature extraction on information
from different sources. Although information exchange ex-
ists in the process, some source-independent features can-
not be extracted to a certain extent. Various strategies, such
as (Qiu et al. 2019)(Lee et al. 2020), extract features from
color and depth information separately using two feature ex-
tractors, then fuse them with the same size using concate-
nate or add operation. However, the consistency of color
and depth information is not utilized in the feature extrac-
tion process. Thus more representative features can not be
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obtained, which limits the performance of these approaches.
Inspired by (Zhang et al. 2018), to well utilize the con-

sistency of color and depth information, we propose to
use channel shuffle extraction strategy in the coarse-to-fine
stage, which extracts features from the color image and
coarse dense depth map first, and then fully integrates the
two different features at multi-scale channel levels.

Specifically, we use the commonly used backbones R,
such as Resnet34 (He et al. 2016), to obtain the features with
different sizes from color images and coarse depth maps, re-
spectively. Given the input coarse depth map dsc and color
image I , we define fd and fc as the extracted features, re-
spectively. A convolution operation Conv is first utilized to
obtain features fd0 = Conv(dsc) and fc0 = Conv(I). We
define the backbones used in color and depth feature extrac-
tion as Rc = {Rc1 , ..., RcN }, Rd = {Rd1 , ..., RdN }, where
N is the number of convolution blocks in the backbones.
The features extracted by the first convolution block is de-
fined as:

fd1 = Rd1(fd0),

fc1 = Rc1(fc0)
(2)

The process of feature extraction by other convolution
blocks can be formulated as:

(f
′

di−1
, f
′

ci−1
) = CS(fdi−1 , fci−1),

fdi = Rdi(f
′

di−1
),

fci = Rci(f
′

ci−1
),

(3)

where i ∈ [2, N ], and CS means the channel shuffle op-
eration, N is the number of convolution blocks in the back-
bones.

The process of channel shuffle is shown in Fig. 3, given
depth and color features of the i-th convolution block
fdi = {fdi1 , ..., fdiM }, fci = {fci1 , ..., fciM }, where M
is the number of channels, the output of channel shuf-
fle are f

′

di
= {fdi1 , fci1 , ..., fdiM

2

, fc
iM

2

} and f
′

ci =

{fd
iM

2
+1
, fc

iM
2

+1
, ..., fdiM , fciM }, respectively, which guar-

antees that features extracted by depth and color images are
exchanged and mixed in channel level. Note that we assume
M is even number because the channel number is always
even number in current DCNN based approaches. After mix-
ing, two new feature maps f

′

di and f
′

ci are generated, and
returned to the (i + 1)-th convolution block of backbones
for next step. For each scale feature level, the different chan-
nels of the characteristics are fully mixed, which we call the
channel shuffle operation. This operation can effectively ex-
tract new fusion features after shuffle and mixed. Experi-
ments show that the result of this operation is significantly
improved compared to the previous fusion methods.

Energy based Fusion Inspired by (Liu, Song, and Wang
2020), features from large regional energy (pixel value) al-
ways contain more effective information. The residual learn-
ing strategy can be regarded as recovering high-frequency
(HF) information of the depth map in the coarse-to-fine
stage. Max pooling operation (Boureau, Ponce, and LeCun

Channel
Shuffle
(CS)

Input

Output

Figure 3: The proposed Channel shuffle operation. The pur-
ple fdi and yellow fci denote depth and color image fea-
tures, respectively. The channel shuffle(CS) obtains new fea-
tures f ′di and f ′ci by feature mixing in channel level, and re-
turn to their respective convolutions for the next step.

2010)(Springenberg et al. 2014) chooses large pixels and can
well preserve texture information during the down-sampling
process. Inspired by max pooling, to well recover HF and
texture information, we propose a simple and effective en-
ergy based fusion operation to further sufficiently fuse the
features fd and fc obtained by feature extraction.

Suppose that H , W are the height and width of a feature
map fij , where i ∈ [0, N ], j ∈ [1,M ], and N is the num-
ber of convolution blocks in backbone, M is the number of
channels, fkij (m,n) is the feature value at (m,n), where
m ∈ [1, H], n ∈ [1,W ], and fk represents color and depth
features, respectively. We define Ek(m,n) to represent the
energy in region L × L centered at (m,n), and k ∈ [1, 2]
mean color and depth information, respectively. Ek(m,n)
can be computed as:

Ekij (m,n) =
m′∑

a=−m′

n′∑
b=−n′

ω(fkij (m+ a, n+ b))2 (4)

wherem′ = bL2 c, n
′ = bL2 c, ω is a coefficient. The fusion

feature map of color and depth can be represented as fo, and
foij (m,n) (i ∈ [0, N ], j ∈ [1,M ]) can be calculated as:

foij (m,n) =

{
σf1ij (m,n), E1ij (m,n) ≥ E2ij (m,n)
σf2ij (m,n), E1ij (m,n)<E2ij (m,n)

(5)
where σ is a coefficient. In this paper, we set L = 5,

ω = 1, σ = 2, empirically, and we will provide more anal-
ysis in the supplementary material. According to Eq. 4 and
Eq. 5, the features extracted from color and depth informa-
tion can be sufficiently fused. By selecting the feature value
with higher regional energy instead of add or concatenate
the two features, the feature fusion result can be effectively
improved and get more useful information.

Residual Learning In the training process, given the fea-
tures f obtained by energy based fusion operation, a convo-
lution operation Conv is used to obtain the residual depth
dr. And the final output do of the coarse-to-fine stage can be
obtained by:

dr = Conv(f),

do = dr + dsc
(6)
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Loss Function
The loss used in the coarse-to-fine stage is defined as:

Loss =
1

ν

Hd∑
m

Wd∑
n

|(do(m,n)− dgt(m,n))×Ψ|p (7)

where do and dgt mean the recovered depth map and
ground truth, respectively, Hd and Wd are the height and
width of the depth map, and p ∈ {1, 2}, if the value of the
corresponding position of ground truth is valid, the value of
the position of Ψ is 1, and the rest is zero. ν denotes the
number of non-zero points in the Ψ.

Experiment
We evaluate the performance of our method against different
state-of-the-art (SoTA) methods on diverse publicly avail-
able datasets, including the KITTI and NYUDv2 dataset.

KITTI Dataset and Implementation Details
The KITTI dataset (Geiger et al. 2013) is a large outdoor
dataset for autonomous driving, which contains 85k color
images and corresponding sparse depth maps for training, 6k
for validation, and 1k for testing. In validation, 1000 color
images and corresponding sparse depth maps are selected as
validation data. For training, we bottom-cropped color and
depth images to 352× 1216.

In the sparse-to-coarse stage, the framework of STD (Ma,
Cavalheiro, and Karaman 2019) is used as a simple network
which pre-trained on KITTI to obtain a coarse dense depth
map, and other approaches can also be used here. All models
are trained with Adam optimizer with β1=0.9, β2=0.999. We
set batch size as 8, the learning rate starts from 1e-5 and
reduces by 0.1 for every 10 epochs. The p in the loss function
is set to 2. The models are trained for 20 epochs.

NYUDv2 Dataset and Implementation Details
The NYUDv2(Silberman et al. 2012) dataset is comprised of
video sequences from a variety of indoor scenes as recorded
by both the color and depth cameras from the Microsoft
Kinect. Following (Mal and Karaman 2018)(Cheng, Wang,
and Yang 2018)(Cheng et al. 2020), we utilize a subset
of 45K images from the official training split as training
data, and 654 official labeled images are used for evaluation.
Since the input resolution of our network must be a multi-
ple of 16, for a fair comparison with other methods, we first
down-sampled the input frames to 320 × 240, and center-
cropped the prediction of the network to 304 × 228 during
evaluation.

Like the KITTI dataset, the framework of STD (Ma, Cav-
alheiro, and Karaman 2019) is used as the simple network to
obtain coarse dense depth maps. The p in the loss function
is set to 1. The learning rate starts from 1e-5 and reduces
by 0.1 for every 10 epochs, and the model is trained for 20
epochs. We utilize the Adam as the optimizer with β1=0.9,
β2=0.999, weight-decay=0.01. When training the fine net-
work, we freeze the parameters of the coarse network and
finally make end-to-end predictions during the evaluation.

Evaluation Metrics

We use the standard metrics for evaluation: (1) root mean

squared error (RMSE):
√

1
ν

∑
x(d̂x − dx)2; (2) mean abso-

lute error (MAE): 1
ν

∑
x

∣∣∣d̂x − dx∣∣∣; (3) root mean squared

error of the inverse depth (iRMSE):
√

1
ν

∑
x( 1
d̂x
− 1

dx
)2;

(4) mean absolute error of the inverse depth (iMAE)
1
ν

∑
x

∣∣∣ 1
d̂x
− 1

dx

∣∣∣.
For NYUDv2, in addition to using RMSE as an evaluation

metric, there are also the following: (1) mean absolute rela-
tive error (REL): 1

ν

∑
x

∣∣∣ d̂x−dxdx

∣∣∣; (2) δτ : Percentage of pixels

satisfying max(dx
d̂x
, d̂xdx ) < τ , τ ∈ {1.25, 1.252, 1.253}.

Evaluation on KITTI Dataset

Table. 1 demonstrates the quantitative comparison results of
our approach on the KITTI benchmark. Note that the results
of STD is obtained in supervised manner in Table 1 and Ta-
ble. 2. It is obvious to find that our FCFR-Net outperforms
existing SoTA approaches in RMSE, which is the main eval-
uation metric on the KITTI depth completion benchmark.
Due to the sensitivity of RMSE to outliers, our approach
has better processing ability for long-distance depth. Com-
pared with the results of STD (Ma, Cavalheiro, and Karaman
2019), our coarse-to-fine stage improves performance by
about 10% in RMSE. The qualitative comparison is shown
in Fig. 4. We can find that depth maps obtained by our ap-
proach are with sharper boundaries and more depth details,
especially on long-distance, which proves the effectiveness
of our approach.

Method RMSE MAE iRMSE iMAE
mm mm 1/km 1/km

CSPN 1019.64 279.46 2.93 1.15
STD 814.73 249.95 2.80 1.21
CG (Lee et al. 2020) 807.42 253.98 2.73 1.33
RV 792.80 225.81 2.42 0.99
PwP (Xu et al. 2019) 777.05 235.17 2.42 1.13
RGBG&C 772.87 215.02 2.19 0.93
MSG-CHN (Li et al. 2020) 762.19 220.41 2.30 0.98
DeepLiDAR (Qiu et al. 2019) 758.38 226.50 2.56 1.15
Uber (Chen et al. 2019) 752.88 221.19 2.34 1.14
CSPN++ (Cheng et al. 2020) 743.69 209.28 2.07 0.90
NLSPN (Park et al. 2020) 741.68 199.59 1.99 0.84
Ours 735.81 217.15 2.20 0.98

Table 1: Quantitative comparison with state-of-the-art meth-
ods on KITTI Depth Completion testing set. The re-
sults of other methods are obtained from the KITTI on-
line evaluation site. The CSPN, STD, RV and RGBG&C
mean (Cheng, Wang, and Yang 2018)(Ma, Cavalheiro, and
Karaman 2019)(Yan, Liu, and Belyaev 2020)(Van Gans-
beke et al. 2019), respectively. The results are ranked by the
RMSE.
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(g)

Figure 4: Qualitative Comparison on KITTI test set. From top-to-bottom: (a) Image, (b) NLSPN (Park et al. 2020), (c) CSPN++
(Cheng et al. 2020), (d) DeepLidar (Qiu et al. 2019), (e) STD (Ma, Cavalheiro, and Karaman 2019), (f) CSPN (Cheng, Wang,
and Yang 2018), (g) Ours (FCFR-Net). The results are from the KITTI depth completion leaderboard in which depth images
are colorized along with depth range.

Evaluation on NYUDv2 Dataset
To verify the effectiveness of our approach, we also eval-
uate our approach on the NYUDv2 dataset. Following
CSPN++ (Cheng et al. 2020) and NLSPN (Park et al. 2020),
we use 500 randomly sampled points as sparse input and the
quantitative comparisons results are shown in Table. 2. It can
be seen that our approach outperforms SoTA approaches in
all metrics with 500 sampling points. And compared with
STD (Ma, Cavalheiro, and Karaman 2019), the RMSE re-
sults obtained by our approach decrease by 13%. Fig. 5 il-
lustrates the qualitative comparison results, and depth maps
obtained by our approach have more depth details and ob-
ject edge structures, which proves the effectiveness of our
approach on indoor scenes.

Ablation Studies
In this section, we provide more analyses of the operations
utilized in our approach. We sort the depth maps in time
series and uniformly sample 1/4 of the data as mini-training
data for ablation studies for fast training.

Sparse Input vs. Dense Input Using STD (Ma, Caval-
heiro, and Karaman 2019) as the baseline, we compare the
depth completion results between sparse depth and dense
depth as input. The output of STD (Ma, Cavalheiro, and

Method RMSE REL δ1.25 δ1.252 δ1.253
m m

STD 18 0.230 0.044 97.1 99.4 99.8
Sparse-to-Coarse 0.123 0.026 99.1 99.9 100.0
CSPN 0.117 0.016 99.2 99.9 100.0
CSPN++ (Cheng et al. 2020) 0.116 - - - -
DeepLiDAR (Qiu et al. 2019) 0.115 0.022 99.3 99.9 100.0
PwP (Xu et al. 2019) 0.112 0.018 99.5 99.9 100.0
Ours 0.106 0.015 99.5 99.9 100.0

Table 2: Quantitative evaluation on the NYUDv2 dataset.
Sparse-to-Coarse is trained using STD (Ma, Cavalheiro, and
Karaman 2019), other methods are the results of the respec-
tive papers. STD 18 means (Mal and Karaman 2018), CSPN
means (Cheng, Wang, and Yang 2018). And all methods use
500 sampled depth points as the sparse input.

Karaman 2019) (with sparse depth as input) is regarded as
the dense depth map. Under the same framework, the re-
sults are shown in Table. 3 (SI and DI), where S stands
for sparse depth input, and D stands for dense depth input.
We can see that when the input depth is dense, all evaluation
metrics are greatly reduced, which indicates that the dense
depth input provides effective consecutive information. Thus
better depth completion results can be obtained.
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(a) (b) (c) (d) (e) (f) (g)

Figure 5: Qualitative Comparison on NYUDv2. From left-to-right: (a) Image, (b) Dilated sparse input for visualization, (c)
Sparse-to-dense (Mal and Karaman 2018), (d) CSPN (Cheng, Wang, and Yang 2018), (e) Coarse result using Sparse-to-
dense(gd) (Ma, Cavalheiro, and Karaman 2019), (f) Ours fine result, (g) Ground Truth. The circled rectangles areas show
the recovery of object details.

name S/D input residual number of encoders CS EF iRMSE iMAE RMSE MAE
1/km 1/km mm mm

SI S N 1 N N (concat) 3.81 1.60 942.65 299.46
DI D N 1 N N (concat) 2.90 1.35 845.55 264.80
DR D Y 1 N N (concat) 2.48 1.03 816.94 228.27
DE D Y 2 N N (concat) 2.41 1.00 812.92 224.80
DCC D Y 2 Y N (concat) 2.41 1.00 805.23 224.07
DCA D Y 2 Y N (add) 2.40 1.01 806.26 225.23
DCE D Y 2 Y Y 2.39 1.00 802.62 224.53

Table 3: Ablation study on KITTI Depth Completion selected validation dataset. CS means channel shuffle, and EF means
energy based fusion.

Directly Learning vs. Residual Learning When the in-
put depth map is dense, network learning has two choices:
directly learn the final depth, or learn the residual between
the input depth map and the ground truth. In Table. 3 (DI
and DR), we compare the results between direct learning
and residual learning. Compared with direct learning, it is
easy to find that residual learning results are greatly im-
proved in all evaluation metrics.

One Feature Extractor vs. Two Feature Extractors For
feature extraction, there are two choices: (1) concatenate
color and depth images and use a feature extractor to ex-
tract features, which named one feature extractor; (2) use
two feature extractors to extract features of color and depth
information respectively, then fuse them with concatenating
operation, which named two feature extractors. Table. 3DR
and DE show the results of one feature extractor and two
feature extractors, where the two encoders can extract fea-
tures of different scales of color and depth, and merge them
separately, and the result is better than one encoder.

Channel Shuffle vs. No Channel Shuffle To demonstrate
the effectiveness of the proposed channel shuffle operation,
the depth completion results with and without channel shuf-
fle are shown in Table. 3 (DCC and DE). We can see that
results obtained by approaches with channel shuffle outper-
form no channel shuffle, which proves that the channel shuf-
fle operation can sufficiently exchange and fuse the features
of color and depth information. Thus more representative
features and better depth completion results can be obtained.

Energy based Fusion vs. No Energy based Fusion
DCNN based approaches usually fuse the features extracted
from color and depth information with concatenating or add
operation. Here, to prove the effectiveness of the proposed
energy based fusion operation, we compare the results ob-
tained by energy based fusion with other fusion operations
(concatenate and add) in Table. 3. DCC means concatenate
fusion results, DCA means add fusion results, and DCE
means energy based fusion results. It can be seen that en-
ergy based fusion achieves better results for all evaluation
metrics, which proves that the proposed energy based fusion
operation can sufficiently fuse the features extracted from
color and depth information, thus obtain better depth results.

Conclusion
In this paper, we propose a simple and effective framework
for depth completion, which tackles the problem as a two-
stage task, i.e., a sparse-to-coarse stage and a coarse-to-fine
stage. We find that dense depth maps can provide consec-
utive features; thus, better depth results can be obtained.
Meanwhile, to obtain more representative features, channel
shuffle and energy based fusion operations are proposed,
which effectively and sufficiently extract and fuse the fea-
tures with color and depth images as input. Thus more ac-
curate depth completion results can be achieved. Extensive
experiments across indoor and outdoor benchmarks demon-
strate the superiority of our approach over state-of-the-art
approaches.
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