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Abstract
Pedestrians with challenging patterns, e.g. small scale or
heavy occlusion, appear frequently in practical applications
like autonomous driving, which remains tremendous obstacle
to higher robustness of detectors. Although plenty of previ-
ous works have been dedicated to these problems, properly
matching patterns of pedestrian and parameters of detector,
i.e., constructing a detector with proper parameter sizes for
certain pedestrian patterns of different complexity, has been
seldom investigated intensively. Pedestrian instances are usu-
ally handled equally with the same amount of parameters,
which in our opinion is inadequate for those with more dif-
ficult patterns and leads to unsatisfactory performance. Thus,
we propose in this paper a novel detection approach via adap-
tive pattern-parameter matching. The input pedestrian pat-
terns, especially the complex ones, are first disentangled into
simpler patterns for detection head by Pattern Disentangling
Module (PDM) with various receptive fields. Then, Gating
Feature Filtering Module (GFFM) dynamically decides the
spatial positions where the patterns are still not simple enough
and need further disentanglement by the next-level PDM. Co-
operating with these two key components, our approach can
adaptively select the best matched parameter size for the input
patterns according to their complexity. Moreover, to further
explore the relationship between parameter sizes and their
performance on the corresponding patterns, two parameter
selection policies are designed: 1) extending parameter size
to maximum, aiming at more difficult patterns for different
occlusion types; 2) specializing parameter size by group di-
vision, aiming at complex patterns for scale variations. Ex-
tensive experiments on two popular benchmarks, Caltech and
CityPersons, show that our proposed method achieves supe-
rior performance compared with other state-of-the-art meth-
ods on subsets of different scales and occlusion types.

Introduction
In recent years, pedestrian detection has made great progress
with the success of convolutional neural networks (CNNs)
(Simonyan and Zisserman 2014; He et al. 2016), and
has been widely applied in person re-identification, video
surveillance and autonomous driving, etc. Nevertheless, es-
pecially in realistic circumstances, pedestrian detectors suf-
fer an inevitable accuracy loss from challenging patterns,
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Figure 1: Sample image from Caltech pedestrian dataset. (a)
Pedestrians of small scale. (b) Pedestrians with different oc-
clusion types. Both of them possess more difficult patterns
which occupy various sizes of area due to scales or occluded
parts, requiring more detector parameters to be detected.

e.g. small scale or heavy occlusion. Despite of improved per-
formance achieved by the existing approaches in the litera-
ture (Li et al. 2017; Lin et al. 2018; Liu et al. 2019; Huang
et al. 2020), the problem of how to properly match these dif-
ficult pedestrian patterns and the required amount of detector
parameters, i.e., constructing a detector with proper parame-
ter sizes for certain pedestrian patterns of different complex-
ity, has been seldom investigated intensively. Instead, most
detectors treat pedestrian instances equally with the same
parameter size, which in our opinion is inadequate for those
with harder patterns, leading to unsatisfactory performance.

For instance, as shown in Figure 1(a), in autonomous driv-
ing scenario, some small-scale pedestrians comprise blurry
and noisy patterns, which require a detector with more pa-
rameters to discriminate them from other human-like small
objects or background. Instead, large-scale pedestrians usu-
ally contain numerous sharper patterns, which is painless for
detectors to distinguish them with far less parameters.

Among those methods tried matching patterns and param-
eters for multi-scale detection, FPN (Lin et al. 2017) intro-
duces the lateral connection to fuse high-level semantics and
low-level details, and provides more parameters for detect-
ing smaller objects. Hence, it has been widely adopted in
detecting objects with scale variations like pedestrians (Cao
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Figure 2: The overall architecture of our proposed AP2M network. “Feature Extraction” and “Detection Head” blocks follow
the way in CSP (Liu et al. 2019). The proposed PDMs disentangle the input pattern into simpler patterns by parallel branches
with various receptive fields, corresponding with patterns of various object scales or occluded areas. The proposed GFFMs
adaptively filter the spatial position where the patterns are still not simple enough and need further disentanglement by the
next-level PDM, according to the patterns from the previous-level PDM as well as the patterns from the base feature.

et al. 2019). Less spatial resolution by repeatedly down-
sampling, whereas, is inevitable in detecting larger objects in
FPN, leading to higher performance loss (Guo et al. 2020).
In a divide-and-conquer manner, some pedestrian detectors
exploit parallel branches to handle different scales sepa-
rately, e.g. GADF (Lin et al. 2018) and SAF-RCNN (Li et al.
2017). Yet only coarse-grained pattern-parameter matching
are applied due to the fixed parameter size on each branch.

Meanwhile, as a result of the annotation protocol of main-
stream pedestrian detection datasets, occluded pedestrian
bounding boxes often have other objects insides, as illus-
trated in Figure 1(b). Consequently, detectors are forced to
classify other instances or objects as parts of current pedes-
trian. Quantitate analysis has also been conducted by Cao et
al. (2019) that occluded areas are diversified due to scales
and visible ratios. Patterns of various occluded areas also
require proper parameter sizes. Currently, most of the occlu-
sion handling strategies mainly focus on part-aware feature
extraction and special training or testing scheme, e.g. OR-
CNN (Zhang et al. 2018), RepLoss (Wang et al. 2018) and
PBM+R2NMS (Huang et al. 2020), which treat occluded
patterns equally with the same parameter size.

Moreover, there are also some detectors handling both
types of hard patterns. CSP (Liu et al. 2019) embraces
anchor-free detector with multi-scale feature fusion, which
is a “Entanglement” that processes the fused feature by a sin-
gle branch with fixed receptive field and shared parameters,
thus providing a mixture of easy/still-hard-handled patterns
with various sizes of area (e.g. multiple scales and occluded
parts) to detection head. A “Disentanglement” design is able
to improve the performance on still-hard-handled patterns.

In conclusion, we have observed that: adaptive pattern-
parameter matching problem is remained to be comprehen-
sively investigated for both scale variations and occlusions.
Therefore, we propose a novel detection approach to adap-
tively match pedestrian patterns and detector parameter sizes
in manifold cases. Our main contributions are listed below:

• We introduce a novel network named AP2M for Adaptive
Pattern-Parameter Matching on patterns of different oc-
cluded areas and object scales. Specifically, Pattern Dis-
entangling Module (PDM) adopts parallel branches with
various receptive fields, processing corresponding areas
of hard patterns into easier ones for detection head as a
“Disentanglement” in a divide-and-conquer manner.

• Multi-level gating mechanism is designed to dynamically
filter the spatial positions where the patterns are still not
simple enough and need further disentanglement by the
next-level PDM. Therefore, it makes the proposed method
capable of adaptively selecting the best matched parame-
ter size for input patterns according to their complexity.

• To further explore the relationship between parameter
sizes and their performance on certain patterns, two pa-
rameter selection policies are designed based on Vanilla
PDM: 1) Extended Parameter Policy maximizes parame-
ter size to tackle more difficult patterns for different oc-
clusion types; 2) Grouped Parameter Policy obtains spe-
cialized parameter size by group division, aiming at com-
plex patterns for scale variations. Complementing their
advances, our model achieves new state-of-the-art perfor-
mance in the Caltech and CityPersons benchmarks.

Related Works
Extracting discriminative patterns serve as one of the es-
sential elements for high performance pedestrian detection.
Generally speaking, from a given image or video frame,
local patterns are distinguished by local image descriptors
(Ojala, Pietikäinen, and Mäenpää 2000; Dalal and Triggs
2005) or pre-trained CNN backbones, (Simonyan and Zis-
serman 2014; He et al. 2016). Cooperatinging with powerful
classifiers e.g. SVM (Smola and Schölkopf 1998) or deeper
layers of CNNs, patterns with high-level semantics are ex-
tracted from local ones to facilitate detection. Among these
patterns the hard ones require more parameters to process,
e.g. pedestrians with small scales, heavy occlusion or even a
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mixture. Such a relationship between patterns of pedestrian
and parameter sizes of detector can be regarded as “pattern-
parameter matching” problem.

Pedestrian Detection with Hard Pattern Handling
Multi-Scale Pattern Handling Some pedestrian detectors
are devoted to higher accuracy on the patterns of scale vari-
ations. In a divide-and-conquer manner, Li et al. (2017)
proposes an adapted version of Faster R-CNN (Ren et al.
2015) for handling the smaller and larger scale by sepa-
rate branches. GADF (Lin et al. 2018) performs feature ex-
traction from different levels of backbone network.Although
parallel branches are effective on scale variations, they can
only maintain a coarse-grained pattern-parameter matching
due to the fixed parameter size on each branch. Differently,
some approaches (Cao et al. 2019) are based on the FPN
(Lin et al. 2017)that provide more parameters for detect-
ing smaller objects with longest bottom-up and top-down
streams. However, the FPN-like networks detect larger ob-
jects with repeatedly down-sampling operation, leading to
certain performance loss (Guo et al. 2020).In comparison,
our proposed method adopts not only multiple branches of
dilated convolution (Yu and Koltun 2015) to keep spatial
resolution but also gating mechanism for adaptive pattern-
parameter matching.

Occlusion Pattern Handling Occlusion pattern handling
has become another research hotpot in pedestrian detec-
tion. Some researchers have created new training or testing
schemes. Wang et al. (2018) propose RepLoss that attracts
predicted boxes closer to their ground truth and repulses oth-
ers. Huang et al. (2020) adopts a new post-processing al-
gorithm to preserve highly overlapped pedestrians. Another
solution to occlusion pattern is part-aware feature extrac-
tion. Occlusion-aware RCNN (Zhang et al. 2018) extracts
feature by body parts of every proposal and re-scores the
original proposal to highlight the visible parts. PAMS-FCN
(Yang et al. 2020) introduces parallel branches for larger
and smaller objects with part-aware RoI Poolings. However,
most of these approaches treat occluded patterns equally
with the same parameter size.

Generic Hard Pattern Handling The central key to han-
dling hard patterns of scale variation and occlusion is accu-
rate localization. ALFNet (Liu et al. 2018), AR-Ped (Brazil
and Liu 2019) and PRNet (Song et al. 2020) introduce multi-
phase regression refinement. Employing multi-scale feature
fusion, TLL (Song et al. 2018) is trained by a novel type of
ground truth based on somatic topological line of pedestrian.
Following the former one, CSP (Liu et al. 2019) further
embraces the popular anchor-free detector with less hyper-
parameters for anchor setting and more flexibility in esti-
mating the scale and aspect ratio of bounding boxes. LBST
(Cao et al. 2019) further introduces finer regression for both
smaller scale and occlusion problem.

Unfortunately, progressive refining strategies are lack-
ing in filtering the location for further processing. And
multi-scale feature fusion approaches provides a mixture of
easy and hard patterns to detection head without pattern-
parameter matching and causes potential performance loss.

Gating Mechanism
As an effective and explicit strategy to improve the pixel-
wise quality of feature, gating mechanism is firstly used
in segmentation and then promoted to other tasks. GPSNet
(Geng et al. 2020) adopts the gate mechanism to adaptively
select pattern passing path, assembling the best receptive
field to segment current image. Gated SCNN (Takikawa
et al. 2019) preserves shape information by gating mecha-
nism for sharper segmentation. Liu et al. (2020) apply gat-
ing mechanism in pedestrian detector for scale variation and
occlusion. Nevertheless, its gate modules are only applied
in separate layers, which ignores the interactions between
deeper high-level patterns and shallower low-level patterns
that are claimed and evaluated by FPN.

Differently, we have managed to design a novel gating
module that can adaptively filter spatial positions where the
patterns are still complex and need further processing.

Proposed Method
The overall architecture of our proposed Adaptive Pattern-
Parameter Matching (AP2M) network is illustrated in Fig-
ure 2, which is an anchor-free detection framework follow-
ing the way as in the baseline CSP (Liu et al. 2019). A pre-
trained CNN processes the input image into features at dif-
ferent depth. They are concatenated into “Base Feature”, a
mixture of patterns with various complexities which is pro-
cessed with fixed parameter size in CSP.

In order to achieve adaptive pattern-parameter matching,
our architecture consists of two key components: Pattern
Disentangling Module (PDM) and Gating Feature Filtering
Module (GFFM). PDM is designed for disentangling the in-
put patterns (especially the complex ones) into simpler pat-
terns, corresponding with various scales or occluded areas.
GFFM is designed for sieving the input features and select-
ing the locations where require more parameters to process.
These two modules cooperate to adaptively match different
patterns and parameter sizes. More details will be introduced
in the following sections.

Pattern Disentangling Module
An excellent strategy for dealing with decomposable prob-
lems of high complexity as it is, divide-and-conquer sepa-
rates the whole problem into sub-problems that easier to be
solved. Similarly, the feature extraction network of a detec-
tor should process a mixture of harder patterns with different
areas into easier ones for detection head to predict.

Given the input feature T from shallower level of the
backbone network, e.g. in urban driving scenario, T is likely
to comprise a mixture of complex patterns of pedestrian
with different scales or sizes of occlusion area, denoted as
{ti|ti ∈ T, i ∈ P} where P represents all the locations of
the input feature map. The aim of our proposed Pattern Dis-
entangling Module (PDM) is to disentangle such a mixture
T into a series of simpler patterns ti.

As is shown in Figure 3(a), after the first convolution layer
for down-sizing input channel size, a series of branches with
multiple receptive fields are introduced into the Vanilla PDM
(V-PDM), on the basis of dilated convolution and identity
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Figure 3: Pattern Disentangle Modules. “kxk Conv rate=r, c” means the convolution with dilation rate r, kernel size k and
channel c. “group g” means dividing feature into a g-channel group. Extended and Grouped PDM are under two different
parameter selection policies based on Vanilla PDM.

connection (dilation rate=0), the former of which are capable
of enlarging receptive field, free from information loss by
down-sampling in FPN.

With dilation rates {0, 1, 2, 3}, receptive field sizes
{0× 0, 3× 3, 5× 5, 7× 7} , each branch j only pro-
cesses pattern at a specific spatial range, corresponding with
a range of object scales or occluded areas. Finally, the dis-
entangled pattern tji on branch j and position i denoted as:

tji = δ
(
Wj

r (δ (Wd (ti) + bd)) + bj
)

(1)

where W, b are marked as the weights and biases of con-
volution layers, Wd ∈ R1×1×C×φ, Wj

r ∈ R3×3×φ×η ,
bd ∈ Rφ, bj ∈ Rη . C is the input channel, φ is the output
channel size of the convolution layer for downsizing the C,
and η is the output channel size of branch j with dilation rate
r. The d marks the 1st convolution layer that down-scales
the channel size of input feature. δ refers to ReLU function
(Hahnloser et al. 2000). The final output pattern T∗PDM con-
sists of tj on each branch by concatenation:

T∗PDM = Concate
([
t1, t2, ..., tj

])
(2)

However, for some very hard patterns, e.g. very small
pedestrians or heavily occluded pedestrians, it is still inade-
quate even they are already disentangled once. Therefore, it
is necessary to introduce gating mechanism, by which each
pixel of these disentangled patterns will be decided whether
to be passed to the next-level PDM for further processing,
with the aid of our proposed GFFM, which will be described
in detail in the following section.

Different Parameter Selection Policies for PDM
To further investigating the relationship between the amount
of parameters and the complexity of patterns, we specially
design two parameter selection policies based on V-PDM:

Extended Parameter Policy We consider that the patterns
with different occlusion types are harder to be handled than
non-occluded ones because detectors are forced to classify
the other objects as part of current pedestrian instance, il-
lustrated in Figure 1(b). Based on V-PDM, Extended PDM

(E-PDM) is designed under this policy, as shown in Figure
3(b). The output channel size of the first convolution is in-
creased to 128, those of every branch are raised up to 64,
and an extra convolution is performed to decrease the output
channel size from branches.

Grouped Parameter Policy We consider that the patterns
with smaller scales are relatively more difficult than larger
scale ones, due to their blurry and noisy information. Nor is
this all, Table 3 shows the insufficient capability of V-PDM
on small scale pedestrians. So it is reasonable to raise up the
parameter size for smaller receptive fields. We keep equal
channel size of the output from each branch, so that none of
them will dominate the final output. Group division strategy
is employed to the input features for different parameters, so
that the input channel size 32 can be divided into {16, 8, 8}
for the branches with receptive fields {3× 3, 5× 5, 7× 7}
respectively, and the new PDM under this policy is named
“Grouped PDM” (G-PDM), as shown in Figure 3(c).

Since these polices are specialized to different types of
hard patterns, to achieve the best performance on as more
patterns as possible, it is reasonable for us to ensemble the
advantages of two policies by fusing their detection results
with NMS, marked as a final version of our proposed AP2M.

Gating Feature Filtering Module
Being popular used in plenty of advanced vision tasks, gat-
ing mechanism generates a heatmap and re-weights some
part of the input by an activation function. With the purpose
of filtering the spatial locations where the patterns need fur-
ther disentanglement by the next-level PDM, we design a
simple but powerful gating module, named Gating Feature
Filtering Module (GFFM).

As is shown in Figure 4, GFFM receives two kinds of in-
put: disentangled pattern TPDM from the previous level of
PDM, and the original pattern named “Base Feature” TBase

as in Figure 2. The disentangled pattern from PDM contains
richer semantic information, e.g. higher activation value to-
wards certain scale or occlusion type, but considerable de-
tails in the original pattern are lost through the disentangle-
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ment. Inspired by FPN that provides interaction of deeper
high-level patterns and shallower low-level patterns, both
the input patterns take equal part in generating the spatial
heatmap H ∈ (0, 1), which helps GFFM make comprehen-
sive decision on where to activate:

H = σ (Wg (Concate ([TBase,TPDM ])) + bg) (3)

where Wg ∈ R1×1×(CB+CP )×1, bg ∈ R. CB and CP is the
channel size of TBase and TPDM respectively. The gate ac-
tivation function σ is widely used Sigmoid function. Its input
range is (−∞, +∞) and output is (0, 1), which is suitable
to re-weight the patterns. Hence, the weighted patterns will
be further disentangled in the next level PDM. Moreover, the
original pattern is also combined with the activated disentan-
gled patterns to generate the output T∗GFFM , providing the
next level PDM with more detailed information:

T∗GFFM = Concate ([TBase,H ·TPDM ]) (4)

For example, if the pattern tθ at position θ is very hard to
disentangle, GFFM will multiply it with hθ → 1 at position
θ inside heatmap H at each level. So tθ can be disentangled
into simpler paterns sequentially with their total parameters.
If the pattern tω at position ω is extremely simple enough,
GFFM will not pass it to the next PDM by multiply it with
hω → 0 at position ω inside heatmap H. Thus only one-
level PDM with its parameters will be employed to disentan-
gle it. If the pattern needs a mixture of different processing
scheme, e.g. a few deeper processing for extracting impor-
tant semantics like center of a pedestrian, and some simpler
processing for preserving details like the texture of clothing,
the value of h ∈ (0, 1) will be decided by GFFM at each
level adaptively. Hence, our proposed method can choose the
best matched parameter sizes by selecting a pattern passing
stream according to the complexity of the input patterns and
adaptively matches parameter sizes and patterns with ease.

Detection Head
After our proposed adaptive pattern-parameter matching,
“Output Feature” are further processed by “Detection
Head”. Following the anchor-free style of CSP (Liu et al.
2019), “Detection Head” first down-scales input feature
to less channels. Then multiple branches generate feature
maps: “Center Heatmap” to classify the centers of pedes-
trians, “Scale Map” to predict height scales on fixed as-
pect ratio 0.41 and “Offset Map” to adjust the localization
horizontally and vertically (omitted for simplicity). Finally,
these maps are assembled into bounding boxes of pedestri-
ans. More details can be found in the CSP paper.

Experiments
In this section, extensive experiments are conducted on
two popular pedestrian detection benchmarks, i.e. Caltech
(Dollár et al. 2009) and CityPersons (Zhang, Benenson, and
Schiele 2017), to evaluate our proposed method. Ablation
study is performed to validate the effectiveness of key com-
ponents in the proposed framework. Furthermore, we also
report the sate-of-the-art comparison on both benchmarks.

Figure 4: Gating Feature Filtering Module. Spatial Heatmap
is generated from both the input features for re-weighting,
activated by Gate Activation Function Sigmoid.

Datasets
The Caltech pedestrian dataset (Dollár et al. 2009) contains
2.5 hours of video data captured on the streets of Los An-
geles. Over 70% of annotated pedestrian instances are less
than 100 pixels high, including particularly small pedestrian
instances that are less than 50 pixels. The standard test set
includes 4024 images. By fixing the inconsistency and box
misalignment, Zhang et. al. (2016b) have released new anno-
tations to correct the official ones. To compare fairly with the
baseline and other state-of-the-art methods, following eval-
uations will be performed based on new annotations.

CityPersons (Zhang, Benenson, and Schiele 2017) is a re-
cently published large-scale pedestrian detection dataset. We
train the model on an official training set with 2975 images
and test it on validation set with 500 images. We follow the
standard evaluation metric: log miss rate which is averaged
over the false positive per image (FPPI) in [10−2; 100], de-
noted as MR−2. All tests are applied on original data with-
out resizing, visible body or head boxes for fair comparison.

Implementation Details
Our proposed method is implemented on the basis of a pow-
erful pedestrian detector CSP (Liu et al. 2019) and Keras
framework. Adam (Kingma and Ba 2014) is used for op-
timization. ResNet-50 (He et al. 2016) pre-trained on Ima-
geNet (Deng et al. 2009) serves as the backbone network.
For Caltech dataset, one Nvidia P100 GPU is utilized for
training, with 1 × 10−4 learning rate. For CityPersons, two
P40 GPUs are applied to training, with 2 × 10−4 learn-
ing rate. All the tests are conducted on a single 1080Ti
GPU. The size of training images is 336×448 for Caltech
and 640×1280 for CityPersons. For the best ensemble, IoU
threshold of NMS after fusing detection results of two poli-
cies are 0.54 for Caltech and 0.59 for CityPersons. Note that
if not mentioned, every convolution layer is followed with
Batch Normalization (Ioffe and Szegedy 2015) and ReLU
activation function (Hahnloser et al. 2000).
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Method Reasonable All Large Near Medium Heavy

CSP (Liu et al. 2019) 4.54 56.94 7.84† 10.42† 51.75† 45.81
V-PDM 4.45 56.86 7.73 9.79 51.79 45.04
E-PDM 4.12 56.02 6.70 9.91 50.61 44.05
G-PDM 3.99 56.17 6.73 9.58 50.78 45.66
AP2M 3.30 55.89 5.30 8.71 50.12 42.20

Table 3: Comparison among the variants of PDMs on Caltech. “†” means the result evaluated by us with trained model weights
published by CSP. Bolden are the best results and underlined the 2nd best. GFFMs of each model are omitted for simplicity.

Method Reasonable Heavy Partial Bare Small Medium Large

CSP (Liu et al. 2019) 11.0 49.3 10.4 7.3 16.0 3.7 6.5
E-PDM 11.3 48.3 10.4 7.2 17.2 3.7 6.8
G-PDM 10.9 50.8 10.7 6.8 15.5 5.1 6.2
AP2M 10.4 48.6 9.7 6.2 15.3 3.5 5.3

Table 4: Comparison among the variants of PDMs on CityPersons. Bolden are the best results and underlined the 2nd best.
GFFMs of each model are omitted for simplicity.

Levels PDMs GFFMs E-PDM G-PDM

0 4.54 4.54
1 X 4.45 4.45
2 XX X 4.21 4.15
3 XXX XX 4.12 3.99

Table 1: Ablation study for the levels. X marks the number
of PDMs or GFFMs at certain amount of levels.

Levels PDMs GFFM Conc MR−2

1 X 4.45

2 XX X 4.24
X 4.15

Table 2: Ablation study for GFFM. X marks the number
of PDMs, GFFMs or Concatenations at certain amount of
levels. “Conc” refers to Concatenation.

Ablation Study
The ablation study is first performed on Caltech dataset. The
most widely-used and comprehensive Reasonable subset is
used for comparisons.

Table 1 illustrates the results for different levels. Both E-
PDM and G-PDM gain a lower miss rate after adding the 1st
level. On the 2nd level, G-PDM enjoys more performance
raising by 0.3% while E-PDM only 0.24%. Finally, 3-level
model of G-PDM achieves miss rate of 3.99%, 0.13% lower
than E-PDM. Due to the larger size of parameter, in our

† Due to problems in evaluation code on Caltech provided by CSP,
we have to replace “vRng” from “[inf, inf]” to “[-inf, inf]” to get
correct results on different Scale subsets. For visualizations, please
refer to lmy98129.github.io/academic/src/AP2M-Appendix.pdf.

opinion, E-PDM tends to over-fit on certain hard patterns
more than G-PDM. Therefore, G-PDM are more robust to
the comprehensive subset Reasonable.

The effectiveness of GFFM is also evaluated. We choose
G-PDM that performs better in former experiments as the
target model. For comparison, GFFM is replaced with
channel-wise concatenation. In Table 2, the miss rate of
GFFM is lower than concatenation. We see that concatena-
tion passes all patterns including simple ones unnecessary
to further process and thus causes overfitting. In a word, the
results prove that GFFM has better capability of adaptively
selecting the best pattern processing stream than no filtering.

Comparison among the Variants of PDM
We then evaluate the effectiveness of the Vanilla PDM as
well as its different parameter selection policies.

Table 3 shows the performance comparison on the Cal-
tech subsets of different scale and occlusion. Cooperating
with GFFM, V-PDM performs better than the baseline CSP
on most of subsets, but is still inadequate for certain diffi-
cult patterns, e.g. on Medium and Heavy subset. Thus the
results reveal necessity of our design of two parameter se-
lection policies. G-PDM surpasses the V-PDM on all subsets
including Medium with higher robustness to smaller scales.
E-PDM also obtains lower miss rate on occlusion subset
Heavy than V-PDM as is designed. More specifically, both
of the two PDMs are specialized for other types of patterns
and relatively complemented, i.e. E-PDM performs better on
{All, Large, Medium, Heavy} and G-PDM does excellent
jobs on {Reasonable, Near}. Effectiveness of two policies
is fully proven by experiments above. Under ensemble strat-
egy, AP2M boosts the advances of them.

For CityPersons, the performance comparison on the sub-
set {Reasonable}, {Small, Medium, Large} for scale and
{Heavy, Partial, Bare} for occlusion are presented in Ta-
ble 4. Similar to the results on Caltech, E-PDM is expert
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Method Backbone Reasonable Heavy Partial Bare Small Medium Large

Faster RCNN VGG-16 15.4 - - - 25.6 7.2 7.9
Faster RCNN+Seg VGG-16 14.8 - - - 22.6 6.7 8.0

TLL ResNet-50 14.4 52.0 15.9 9.2 - - -
RepLoss ResNet-50 13.2 56.9 16.8 7.6 42.6 - -
OR-CNN VGG-16 12.8 55.7 15.3 6.7 42.3 - -
ALFNet ResNet-50 12.0 51.9 11.4 8.4 19.0 5.7 6.6

Cascade R-CNN VGG-16 12.0 53.6 - - 38.4 - -
LBST ResNet-50 12.6 48.7 - - 18.6 - -
CSP ResNet-50 11.0 49.3 10.4 7.3 16.0 3.7 6.5

Spatial-wise Gate VGG-16 13.6 52.4 - - 41.2 - -
Channel-wise Gate VGG-16 13.5 53.5 - - 37.6 - -

PBM+R2NMS VGG-16 11.1 53.3 - - - - -
PRNet ResNet-50 10.8 53.3 10.0 6.8 - - -

AP2M (Ours) ResNet-50 10.4 48.6 9.7 6.2 15.3 3.5 5.3

Table 6: Comparison with the state-of-the-arts on CityPersons. Bolden are the best results.

Method Backbone Reason. All Heavy

RPN+BF VGG-16 7.3 59.9 54.6
Faster RCNN VGG-16 8.7 62.6 53.1
HyperLearner VGG-16 5.5 61.5 48.7

ALFNet ResNet-50 6.1 59.1 51.0
RepLoss ResNet-50 5.0 59.0 47.9
OR-CNN VGG-16 4.1 - -

CSP ResNet-50 4.5 56.9 45.8
AR-Ped VGG-16 4.4 - -

PAMS-FCN ResNet-50 4.5 - -
AP2M (Ours) ResNet-50 3.3 55.9 42.2

Table 5: Comparison with the state-of-the-arts on Caltech.
Bolden are the best results. “Reason.” refers to Reasonable.

for heavy occluded pattern and G-PDM is robust to patterns
of smaller scales. These two different policies display com-
plementary properties on different subsets. Complementing
their advantages, AP2M achieves best performance on most
of the subsets.

In general, we observe that based on V-PDM, E-PDM is
initially designed and surely robust for handling all kinds
of occlusion, G-PDM also eliminates the weakness of V-
PDM about smaller scale handling on Medium subset as is
expected. Complementary of these two policies further in-
spires us to ensemble the PDMs and thus develop a more
effective AP2M for handling various types of hard patterns.

Comparison with the State-of-the-arts
For Caltech, we compare our AP2M with state-of-the-arts:
RPN+BF (Zhang et al. 2016a), Faster RCNN (Zhang, Be-
nenson, and Schiele 2017), HyperLearner (Mao et al. 2017),
RepLoss (Wang et al. 2018), ALFNet (Liu et al. 2018), CSP
(Liu et al. 2019), PAMS-FCN (Yang et al. 2020), AR-Ped
(Brazil and Liu 2019), OR-CNN (Zhang et al. 2018). Re-
pLoss and OR-CNN are optimized for occlusion patterns.
PAMS-FCN are dedicated to scare variation and occlusion.

Since only the results on {Reasonable, All, Heavy} sub-
sets are available for these methods, we follow the same
protocol to present comparisons. In Table 5, our method
achieves miss rate 3.3%, 55.9%, 42.2% on Reasonable, All
and Heavy respectively, fully outperforming the best com-
petitor OR-CNN by 0.8% on Reasonable, and CSP by 1.0%
and 3.6% on All and Heavy.

For CityPersons, more state-of-the-art methods are com-
pared including: Faster RCNN+Seg (Zhang, Benenson, and
Schiele 2017), TLL (Song et al. 2018), Spatial and Channel-
wise Gate (Liu et al. 2020), Cascade R-CNN (Cai and Vas-
concelos 2019), PBM+R2NMS (Huang et al. 2020), PRNet
(Song et al. 2020), LBST (Cao et al. 2019). TLL is spe-
cialized for scales. RepLoss, PBM+R2NMS, OR-CNN, PR-
Net are for occlusion. LBST, Spatial and Channel-wise Gate
cope with both scale variation and occlusion. Table 6 shows
that our AP2M surpasses all the other methods on all subsets
and achieves promising performance as expected.

In conclusion, our AP2M has performed as a new state-
of-the-art on both benchmarks especially in handling hard
patterns, which sufficiently validates its capability of adap-
tive pattern-parameter matching.

Conclusion
In this paper, we have proposed a novel pedestrian detec-
tion method AP2M for adaptive pattern-parameter matching
towrads challenging patterns e.g. small scale or heavy occlu-
sion, which consists of two key components: PDM for dis-
entangling hard pattern into simpler patterns and GFFM for
adaptively filtering the spatial positions where patterns need
further processing with more parameters. We further inves-
tigated the relationship between detector parameter size and
complexity of certain patterns and designed two parameter
selection policies: Extended Parameter Policy for patterns
of occlusion and Grouped Parameter Policy for patterns of
small objects. With the help of model ensemble, we obtain
a powerful model for both two kinds of patterns and achieve
new state-of-the-art results on two challenging pedestrian
detection benchmarks Caltech and CityPersons.
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