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Figure 1: Eyes, mouth, hair and both hair&face translation for example faces in the CelebAMask-HQ dataset.

Abstract
With the progression of Generative Adversarial Networks
(GANs), image translation methods has achieved increas-
ingly remarkable performance. However, most available
methods can only achieve image level translation, which is
unable to precisely control the regions to be translated. In this
paper, we propose a novel self-adaptive region translation net-
work (SART) for region-level translation, which uses region-
adaptive instance normalization (RIN) and a region matching
loss (RML) for this task. We first encode the style and con-
tent image for each region with style and content encoder. To
translate both shape and texture of the target region, we in-
ject region-adaptive style features into the decoder by RIN.
To ensure independent translation among different regions,
RML is proposed to measure the similarity between the non-
translated/translated regions of content and translated images.
Extensive experiments on three publicly available datasets,
i.e. Morph, RaFD and CelebAMask-HQ, suggest that our ap-
proach demonstrate obvious improvement over state-of-the-
art methods like StarGAN, SEAN and FUNIT. Our approach
has further advantages in precise control of the regions to be
translated. As a result, region level expression changes and
step-by-step make-up can be achieved. The video demo is
available at (https://youtu.be/DvIdmcR2LEc).

Introduction
Generative Adversarial Networks (GANs) has been widely
used for image generation, image super-resolution (Kar-
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ras et al. 2017; Karras, Laine, and Aila 2019) and image
translation (Zhu et al. 2017a; Choi et al. 2018, 2020; Liu
et al. 2019; Jiang et al. 2020; Deng et al. 2020). Though
achieved remarkably success in transferring complex ap-
pearances across different domains, most image translation
methods can only translate faces at image level. As shown in
Fig.2(a), for image level translations approaches like Star-
GAN(Choi et al. 2018), AttGAN(He et al. 2019) and FU-
NIT(Liu et al. 2019), the same translation is usually ap-
plied to different face regions and they can only transfer the
whole image from domain A to B. When image level ap-
proaches change the attribute of a specific region, e.g. hair
style and skin tone, using conditional attribute labels, other
regions could easily be changed as well, during the image
level translation. In contrast, our region level approach can
adaptively translate the styles of different regions to vari-
ous domains like B, C, D and E, without affecting other
regions.

Recently, some region-level translation methods have
been proposed. While Jiang and Deng (Jiang et al. 2020;
Deng et al. 2020) use unsupervised attention to solve this
task, Zhu (Zhu et al. 2020) applied semantic image synthe-
sis to generate different regions. However, the former fails
to precisely control the translated region and distinguish the
boundaries between translated and untranslated regions as
masks are not used to enforce constraints on the generation
of images. Fig. 2(b) shows the differences between our ap-
proach and semantic image synthesis methods like SPADE
(Park et al. 2019) and SEAN (Zhu et al. 2020). Given a face
mask with specified regions like eyes, nose, mouth, face and
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Figure 2: Differences between SART and other GAN based methods.

hair, SPADE and SEAN mainly generate the content of these
regions according to the styles of the style face. As shown
in the 2nd row of Fig. 2(b), the regions of the generated face
have exactly the same shape with that of the mask. For ex-
ample, although the style image consists of a lady’s face with
long hair, the hair of the generated face is short, due to the
constraint of the hair region in the face mask. In contrast,
our approach adaptively translate the eyes, nose, mouth and
hair of a man to the style of lady’s face. While the face still
looks similar to the man in the content image, the eyes, nose,
mouth and hair now look much more like a beautiful lady,
due to the generation of eye shadow, lip stick and long hair.

We propose in this paper a self-adaptive region translation
network (SART), for region level face translation. Our work
mainly presents two contributions: region-adaptive instance
normalization (RIN) and region matching loss (RML). To
translate different regions of a face into various styles, RIN
firstly extracts the feature map and style code of each region
from the content and style images, respectively, and then
adaptively inject the styles into the feature maps of corre-
sponding regions. To make sure that the regions are trans-
lated separately, i.e. the translation of certain regions does
not affect other regions, we propose RML to measure the
similarity between the non-translated/translated regions of
content and translated images. Our approach is extensively
tested on three publicly available datasets, i.e. Morph (Ri-
canek and Tesafaye 2006), RaFD (Langner et al. 2010) and
CelebAMask-HQ (Lee et al. 2020; Karras et al. 2017; Liu
et al. 2015). The results are quantitatively evaluated using
metrics like Accuracy, FID (Frechet Inception Distance) and
LPIPS (Learned Perceptual Image Patch Similarity). Both
visual and quantitative results suggest that our approach
demonstrate a large improvement over state-of-the-art meth-
ods like StarGAN, SEAN and FUNIT. The idea of our work
can be summarized as below:
• We propose a novel self-adaptive region translation net-

work (SART) for region level translation, which can
change the styles of target regions and keep the styles of
other regions at the same time.

• We propose a region-adaptive instance normalization
(RIN) module to adaptively translate the styles (both
shape and texture) of target regions for a given face.

• We propose a region matching loss (RML) to ensure re-

gion level translation, such that the translation of certain
regions does not affect other regions.

• Experimental results quantitatively and qualitatively
proves that SART achieves the-start-of-art performance
on three publicly available datasets, i.e. Morph , RaFD
and CelebAMask-HQ.

Related Work
Image-to-Image Translation. Image-to-image translation
is an umbrella concept that can be used to describe many
problems in computer vision and computer graphics. As
Generative Adversarial Networks (GANs) becoming in-
creasingly mature in image generation, super resolution
(Karras et al. 2017; Karras, Laine, and Aila 2019) and text-
to-image generation (Xu et al. 2018; Hong et al. 2018), it
also achieves remarkable performance in image translation
(Chen, Shen, and Lai 2019; Chen et al. 2020; W. Liu 2020).
As a milestone, Isola et al. (Isola et al. 2017) first showed
that conditional GANs can be used as a general solution
to various image-to-image translation problems. Since then,
their method has been extended by several works to scenar-
ios including unsupervised learning (Liu, Breuel, and Kautz
2017; Zhu et al. 2017a), few-shot learning (Liu et al. 2019),
high resolution image synthesis (Wang et al. 2018), multi-
modal image synthesis (Zhu et al. 2017b; Huang et al. 2018)
and multi-domain image synthesis (Choi et al. 2018, 2020;
Chen et al. 2019). However, as illustrated in Fig. 2 (a), all the
methods mentioned above can only translate at image level
and are not suitable to separately transfer each region from
domain A to other domains.

Region level translation. Region level translation can be
mainly classified into three categories: label-guided meth-
ods, attention based methods and mask-guided methods.
Though designed for image level translation, StarGAN(Choi
et al. 2018) and AttGAN(He et al. 2019) can transfer face
regions related to attributes specified by the targeting la-
bels. While region information is not available in the la-
bels, these approaches generally translate the whole face
and related regions based on the translations learned from
the training images collected from different domains. Such
a translation is not regionally separated and thus can not be
precisely controlled. For attention based methods, r-FACE
(Deng et al. 2020) takes an example-guided attention mod-
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Figure 3: Detailed architecture of our proposed SART.

ule to fuse attention features and the target face compo-
nent features extracted from the reference image. PSGAN
(Jiang et al. 2020) proposes an Attentive Makeup Morph-
ing module that adaptively morphs the makeup matrices to
source images, which can robustly transfer pose and expres-
sion. Nonetheless, the boundaries of the translated image are
always blurry and changed unexpectedly. Thus, geometry-
guided methods are introduced to address this problem by
providing semantic segmentation mask. To further translate
the texture of style image for each region, SEAN encodes
the style of each region to the spatially varying normaliza-
tion parameters. Then, per region style can be transferred by
applying these parameters. However, these works can only
fill texture of a given style into the semantic face masks and
can not transfer both the shape and texture, as demonstrated
in Fig. 2 (b). As content image is not involved, only the tex-
ture of the style image can be presented.

Method
In this paper, we focus on region level face translation. The
proposed framework, named self-adaptive region translation
(SART), aims to individually translate the styles of different
regions in a content image. In the following sections, we will
show the details of system framework, RIN and RML.

System Framework
As shown in Fig. 3(a), our generator network architecture
consists of content encoder, style encoder and decoder. Our
generator takes four input images (content image x, content
mask cm, style image s and style mask sm) and outputs a
translated image x̂. The process of generation can be repre-
sented as:

z = CE(x)

st = SE(s, sm)

x̂ = De(z, cm, st)

(1)

where CE is the content encoder, SE is the style encoder,
De is the decoder, st is the style tensor encoded by style
encoder, cm is the content mask with R regions, x̂ is the
translated image.

Style encoder. As shown in Fig. 3(a), our encoder em-
ploys a bottleneck structure to remove the information ir-
relevant to styles from the style image. The feature map ex-
tracted by TConv − Layers (transposed convolution) will
be passed through a region-wise average pooling module to
get style tensor st. Each vector in st corresponds to one re-
gion in style mask. In implementation, we first transform
style mask into one-hot tensor where each channel repre-
sents a region. Take a channel representing hair region for
example, while the values of pixels in hair region are set as
1, others are set to 0. A set of R style feature maps can then
be obtained by element-wise multiplication between feature
map and different one-hot channels. Finally, we use a global
average pooling to get style tensor st, which consists of style
information of the R regions.

Decoder. As shown in Fig. 3(a), the decoder is composed
of five RIN − Res blocks, three UpSampling blocks and
one Fully − Connected layer. As shown in Fig. 3(b),
our proposed RIN − Res block consists of three convo-
lutional layers, three ReLU layers and three RIN blocks.
Each RIN residual block takes three inputs: content feature
maps, per-region style tensor st and content mask. Note that
the input content mask is downsampled to the same height
and width of the feature maps at the beginning of eachRIN
block.

Discriminator. Our discriminator is a PatchGAN discrim-
inator (Isola et al. 2017), which utilizes the Leaky ReLU
nonlinearity and employs no normalization. The discrimina-
tor consists of one convolutional layer followed by 10 activa-
tion first residual blocks (Mescheder, Geiger, and Nowozin
2018).

2182



𝜷𝟐

...

...

...

One-hot mask

Norm

...

...𝒔𝒕

γ β

Conv

𝒇𝟏

𝒇𝟐

𝒇𝟑

𝒇𝑹−𝟏

𝒇R

𝒔𝒇𝟏

𝒔𝒇𝟐

𝒔𝒇𝟑

𝒔𝒇𝑹−𝟏

𝒔𝒇𝑹

𝜸𝟏

𝜸𝟐

𝜸𝟑

𝜸𝑹−𝟏

𝜸𝑹

𝜷𝟏

𝜷𝟑

𝜷𝑹−𝟏

𝜷𝑹

𝒇𝒊𝒏

𝒇𝒐𝒖𝒕

Conv

Conv

Conv
Conv

γ

β
Style Map

SEAN

RIN

Figure 4: Region-adaptive Instance Normalization.

Region-adaptive Instance Normalization
As shown in the red box of Fig. 4, the style injection branch
of SEAN applies the same tensors of gamma and beta to
adjust the weight and bias of content feature map for nor-
malization, however, our RIN applies adaptive gamma and
beta for different regions.

Given a style tensor st encoding R region styles, the seg-
mentation mask of content image cm and input feature map
fin, our RIN tries to translate each of the R regions in con-
tent image to the corresponding style specified in the tensor
st, by region-adaptive instance normalization. As shown in
Fig. 4, we fist multiply (element-wise) feature map fin with
the one-hot masks (channels) to get per-region feature maps
{f1, f2, . . . , fR}, which are then modulated by the adaptive
normalization parameters learned from the style tensor st.
Let fin denote the input feature map of the current RIN
block in a deep convolutional network for a batch ofN sam-
ples,H ,W and C be the height, width and channel numbers
of the feature map, the style feature map of the ith region at
site fn,c,y,xi (n ∈ N, c ∈ C, y ∈ H,x ∈ W ) can be repre-
sented as:

fn,c,y,xi =
fn,c,y,xin − µc

σc
× cm[i] (2)

where fn,c,y,xin denote the feature map at the site before nor-
malization, cm[i] denotes the one-hot mask corresponding
to the ith region, µc and σc are the mean and standard devi-
ation of the feature map in channel c.

After getting the per-region feature map of content im-
age, with the same operation as AdaIN (Huang and Belongie
2017), we do the element-wise calculation between the per-
region feature map and its corresponding adaptive regional
modulation parameters γ and β extracted by st:

sfn,c,y,xi = fn,c,y,xi × (1 + γi) + βi (3)
where sfn,c,y,xi denotes style feature map for the ith region,
γi and βi are the adaptive modulation parameters learned
from the ith channel of st.

By now, the per-region feature maps have been all injected
with per-region styles encoded from style image, using our
region-adaptive instance normalization. Finally, the R mod-
ulated per-region feature maps are added together to get the
output feature map:

fn,c,y,xout =
∑
i

sfn,c,y,xi (4)

Region Matching Loss
As shown in Fig. 5, we first use a content image x and a style
image s to generate a face x̂ presenting similar expression
with s, which can be represented as:

stt = SE(s, sm)

x̂ = De(CE(x), stt, cm)
(5)

where stt is the style tensor encoded from the R regions of
style image s and x̂ is the result image where all R regions
have been translated to the per-region styles encoded in stt.
In the second task, we only translate the style of ith region
of the content image x, by replacing the ith channel of its
style tensor, with that of stt:

str = SE(x, cm)

str[i] = stt[i]

r̂ =De(CE(x), str, cm)

(6)

where str[i] and stt[i] are the ith channel of style tensor
str and stt, respectively, which encode the style of the ith
region of x and s, r̂ represent the result image by translating
the style of ith region of content image x.

Given a content image x and the fully translated image x̂
and partially translated r̂, we design a region matching loss
to measure the similarity between the ith regions of x̂ and
r̂, and the similarity between other regions of x and r̂:

LRM = Ex,r̂,x̂[||r̂− x̂||11 × cm[i] + ||r̂− x||11 ×
∑
j 6=i

cm[j]]

(7)
where cm[i] and cm[j] represent the one-hot mask corre-
sponding to the ith and jth regions, respectively.

The Full Objective Functions
The proposed SART was trained by solving a minimax op-
timization problem given by

min
D

max
G
LGAN (D,G) + λRLR(G)+

λFMLFM (G) + λRMLRM (G)
(8)

where LGAN , LR, LFM and LRM are the GAN loss, the
content image reconstruction loss, the feature matching loss
and the region matching loss, respectively. The GAN loss is
a conditional one given by

LGAN (D,G) = Ex[−logDcx(x)]+
Ex,{y1,...,yk}[log(1−Dcy (x̂)]

(9)

The content reconstruction loss helps G learn a translation
model. Specifically, when using the same image for both the
input content image and the input style image, the loss en-
courages G to generate an output image identical to the input

LR(G) = Ex[||x−G(x, cm, {x, cm})||11] (10)
The feature matching loss regularizes the training. We

first construct a feature extractor, referred to as Df , by re-
moving the last (prediction) layer from D. We then use Df

to extract features from the translation output x̂ and the style
image {y1, ..., yk} and minimize

LFM (G) = Ex,{y1,...,yk}[||Df (x̂)−
∑
k

Df (yk)

k
||11] (11)

The GAN loss, the content reconstruction loss and the fea-
ture matching loss are the same as that of FUNIT.
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Experiment
Our proposed SART was evaluated on three challenging
datasets, i.e. Morph, RaFD, CelebAMaskHQ. A wide range
of quantitative metrics including FID, Accuracy and LPIPS
were evaluated among different models; Qualitatively, the
examples of synthesized images are shown for visual inspec-
tion.

Datasets
Morph. The Morph dataset (Ricanek and Tesafaye 2006)

is a large-scale public longitudinal face dataset, collected in
indoor office environment with variations in age, pose, ex-
pression and lighting conditions. It has two subsets: Album1
and Album2. Album 2 contains 55,134 images of 13,000 in-
dividuals with age label ranging from 16 to 77 years old. We
divide the images into a training set with 50020 images and
a test set with 4,925 images. The images are separated into
five groups with ages of 11-20, 21-30, 31-40, 41-50 and 50+.

RaFD. The RaFD dataset (Langner et al. 2010) is a high-
quality face database, containing a total of 67 models with
8,040 pictures displaying 8 emotional expressions, i.e., an-
gry, fearful, disgusted, contempt, happy, surprise, sad and
neutral. Each expression consists of three different gaze di-
rections and was simultaneously photographed from differ-
ent angles using five cameras. We divide the images into a
training set with 4,320 images and a test set with 504 im-
ages.

CelebAMask-HQ. The CelebAMask-HQ dataset (Lee
et al. 2020; Karras et al. 2017; Liu et al. 2015) containing
30,000 segmentation masks for the CelebAHQ face image
dataset. We divide the images into a training set with 25,000
images and a test set with 5,000 images.

Metrics
In the training stage of three datasets above, we train dif-
ferent GAN models with their training set. Note that all the
baselines are trained with the batch size of 4, the image size
of 128×128 and the maximum iteration of 100,000. We per-
form all traning runs on NVIDIA DGX with one Tesla V100
GPU using Pytorch 1.1.0 and cuDNN 7.4.2.

In the test stage, we evaluate performance of different
models on their test set using three metrics as follows:

Accuracy. Three classifiers (Resnet-18) (He et al. 2016)
trained using three training sets of different datasets are used
to test accuracy of translation. If the synthetic face of target
class is correctly classified by the classifier, we decide such
translation as a successful one.

FID. Calculated as the Frechet inception distance (Heusel
et al. 2017) between two feature distribution of the gener-
ated and real images, FID score has been shown to corre-
late well with human judgement of visual quality. We use
the ImageNet-pretrained Inception-V3 (Szegedy et al. 2016)
classifiers as feature extractor. For each test image from a
source domain, we translate it into a target domain using 10
style images randomly sampled from the test set of the tar-
get domain. We then compute the FID between the translated
images and training images in the target domain. We com-
pute the FIDs for every pair of image domains and report the
average score.

LPIPS. Learned perceptual image patch similarity
(LPIPS) (Zhang et al. 2018) measures the diversity of the
generated images using the L1 distance between features ex-
tracted from the pretrained AlexNet (Krizhevsky, Sutskever,
and Hinton 2012). For each test image, we translate its style
with reference to 10 style images randomly sampled from
the target domain. The L1 distances between each pair of
translated image and the style image are then averaged as
the LPIPS of the test image. Finally, we report the average
of the LPIPS values over all test images. Note that LPIPS is
not available for StarGAN, as it does not require any style
image for face translation.

Results on the Morph Dataset
Firstly, the SART is evaluated on Morph dataset to assess re-
gion level age attribute translation. Note that the per-region
styles are encoded using 10 style images randomly sampled
from the test set of the target age groups. Fig. 6 shows the
translation results of an example face of a 25 years old man.
In the first row, the hair of the young man is translated to
the styles of different age groups (long black to short white),
with fixed face regions. In the second row, the face of the
young man is translated to the styles of different age groups
(appearance of wrinkles), with fixed hair style. In the third
row, both hair and face are translated. One can visually ob-
serve that our SART can well control the regions to be trans-
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Figure 6: Translate hair or/and face into styles of different age groups for an example face in the Morph dataset.
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Figure 7: Translate eyes or/and mouth into different expressions for an example face in the RaFD dataset.

lated and achieve decent styles for target regions.
The accuracy, FID and LPIPS of face images translated by

our SART are listed in Table 1, together with that translated
by StarGAN, SEAN and FUNIT. One can observe from the
table that the accuracy of SART is as high as 69.01%, which
is significantly higher than that of StarGAN, SEAN and FU-
NIT. Also, our method achieves the lowest FID score and
LPIPS among these GAN based models.

Results on the RaFD Dataset
We now test the performance of our SART for region level
expression translation using RaFD dataset. Fig. 7 shows the
translation result of an example face in RaFD, whose eyes
or/and mouth are translated from neutral to different ex-
pressions like angry, fearful, happy, sad and surprise, etc.
In the first and second rows, only the eyes and mouth of the
man are respectively translated to different expressions, with
other regions fixed. In the third row, both eyes and mouth
are translated. One can observe from the figure that our ap-
proach can precisely translate the shape and texture of desig-
nated facial regions to a target expression, without touching
any other regions.

Table 1 shows the accuracy, FID and LPIPS of faces gen-
erated by different GAN models. One can observe from
the table that the accuracy of SART is as high as 88.32%,
which is significantly higher than that of StarGAN and more
than 75% higher than that of SEAN and FUNIT. Also, our
method achieves the lowest FID of 27.88, which is 13.79
lower than that of FUNIT. Though the FID of SEAN is close

to our SART, the expressions translated by SEAN is not ac-
curate, due to the fixed shape defined in the semantic mask.

Fig. 10 in Appendix presents more example faces with
different expressions translated by StarGAN, SEAN, FUNIT
and our SART, which clearly justify the advantages of our
approach, in terms of the visual quality of generated face
images.

Results on the CelebAMask-HQ Dataset
We now evaluate the region level gender translation perfor-
mance of our approach using CelebAMask-HQ dataset. Fig.
11 in Appendix shows the intermediate results for face/hair
translation of a man to the styles of a lady. With fixed face,
the first row present the intermediate results for hair transla-
tion from short/black to long/golden. In contrast, the second
row show the intermediate results for face translation from
man to lady, with fixed hair style. Fig. 1 further shows the
results of a man and lady when their left/right eyes, mouths,
hairs and full images are translated to the styles of opposite
genders. Again one can observe that our model can precisely
translate the style of region controlled by the mask overlaid
on the bottom right corner of the generated faces, without
touching other regions.

Table 1 lists the accuracy, FID and LPIPS of different ap-
proaches. Again, our SART achieves the highest accuracy
(97.06%) and lowest FID (31.06) and LPIPS (0.3450).

Fig. 12 in Appendix shows the translation of left/right
eyes, nose, mouth and faces to the style of a beautiful lady.
When the five regions are translated one by one, one can
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Datasets Morph RaFD CelebAMask-HQ
Method Acc(%)↑ FID↓ LPIPS↓ Acc(%)↑ FID↓ LPIPS↓ Acc(%)↑ FID↓ LPIPS↓

StarGAN 60.88 27.89 - 77.28 32.67 - 62.17 47.53 -
SEAN 30.25 48.84 0.2525 13.10 29.61 0.2610 72.95 61.06 0.3465
FUNIT 39.02 26.14 0.3152 12.72 41.67 0.2937 93.30 35.17 0.3781
SART 69.01 23.34 0.2512 88.32 27.88 0.2776 97.06 31.06 0.3450

Table 1: The quantative results of the GAN based models on different datasets.

Method Acc(%)↑ FID↓ LPIPS↓

SART(RIN⇒SEAN) 96.85 35.01 0.3494
SART(w/o RML) 96.61 33.81 0.3421

SART 97.06 31.06 0.3450

Table 2: The quantative results for ablation studies.

clearly see the make up effects like eye-shadow and whiten-
ing of the skin, which beautify the faces to make the ladies
look more attractive.

Ablation Studies on CelebAMask-HQ Dataset
To further prove the effectiveness of our proposed RIN
block and RM (region matching) loss, we perform an ab-
lation study in this section. We replaced our RIN block
with SEAN, removed the RM loss, i.e. set λRM = 0 in
equation (8), and tested the performance of SART for gen-
der style translation using CelebAMask-HQ dataset. Fig. 8
shows the translation results of different regions for a young
man when SART with different settings are applied. Com-
pared with SART using SEAN blocks, the left/right eye and
nose (the 2nd, 3rd and 4th columns) translated by the origi-
nal SART present more lady-like styles, i.e. eye-shadows ap-

pear around the eyes and the nose is whitened. When RML is
removed, there is no significant difference among the faces
presented in the third row when left/right eye and nose are
translated, respectively. The long hair in the sixth column
actually does not fit the face boundary well.

Table 2 lists the accuracy, FID and LPIPS of different set-
tings. Compared with SEAN, our RIN block significantly re-
duces FID from 35.01 to 31.06. The accuracy of our SART is
also higher than that with SEAN and trained without RML.

Conclusion
This paper proposed a novel self-adaptive region translation
framework, named SART, for region level face translation.
A region-adaptive instance normalization block and region
matching loss are proposed to fuse the per-region style of
style and content images, and reduce the influence between
different regions, respectively. The proposed SART is eval-
uated on three datasets and the experiments results demon-
strates its effectiveness.

Acknowledgments
The work was supported by the Natural Science Founda-
tion of China under grants no. 61672357, 91959108 and
U1713214, and the Science and Technology Project of
Guangdong Province under grant no. 2018A050501014.

2186



References
Chen, W.; Shen, L.; and Lai, Z. 2019. Introspective Gan
for Meshface Recognition. In 2019 IEEE International
Conference on Image Processing (ICIP), 3472–3476. doi:
10.1109/ICIP.2019.8803594.
Chen, W.; Xie, X.; Jia, X.; and Shen, L. 2019. Texture Defor-
mation Based Generative Adversarial Networks for Multi-
domain Face Editing. In Nayak, A. C.; and Sharma, A.,
eds., PRICAI 2019: Trends in Artificial Intelligence, 257–
269. Cham: Springer International Publishing. ISBN 978-3-
030-29908-8.
Chen, W.; Yu, S.; Wu, J.; Ma, K.; Bian, C.; Chu, C.; Shen,
L.; and Zheng, Y. 2020. TR-GAN: Topology Ranking GAN
with Triplet Loss for Retinal Artery/Vein Classification. In
Martel, A. L.; Abolmaesumi, P.; Stoyanov, D.; Mateus, D.;
Zuluaga, M. A.; Zhou, S. K.; Racoceanu, D.; and Joskowicz,
L., eds., Medical Image Computing and Computer Assisted
Intervention – MICCAI 2020, 616–625. Cham: Springer In-
ternational Publishing. ISBN 978-3-030-59722-1.
Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; and Choo,
J. 2018. Stargan: Unified generative adversarial networks
for multi-domain image-to-image translation. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 8789–8797.
Choi, Y.; Uh, Y.; Yoo, J.; and Ha, J.-W. 2020. Stargan v2:
Diverse image synthesis for multiple domains. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 8188–8197.
Deng, Q.; Cao, J.; Liu, Y.; Chai, Z.; Li, Q.; and Sun, Z. 2020.
Reference Guided Face Component Editing. arXiv preprint
arXiv:2006.02051 .
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
He, Z.; Zuo, W.; Kan, M.; Shan, S.; and Chen, X. 2019.
Attgan: Facial attribute editing by only changing what you
want. IEEE Transactions on Image Processing 28(11):
5464–5478.
Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; and
Hochreiter, S. 2017. Gans trained by a two time-scale update
rule converge to a local nash equilibrium. In Advances in
neural information processing systems, 6626–6637.
Hong, S.; Yang, D.; Choi, J.; and Lee, H. 2018. Inferring
semantic layout for hierarchical text-to-image synthesis. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 7986–7994.
Huang, X.; and Belongie, S. 2017. Arbitrary style transfer
in real-time with adaptive instance normalization. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, 1501–1510.
Huang, X.; Liu, M.-Y.; Belongie, S.; and Kautz, J. 2018.
Multimodal unsupervised image-to-image translation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), 172–189.

Isola, P.; Zhu, J.-Y.; Zhou, T.; and Efros, A. A. 2017. Image-
to-image translation with conditional adversarial networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1125–1134.

Jiang, W.; Liu, S.; Gao, C.; Cao, J.; He, R.; Feng, J.; and Yan,
S. 2020. Psgan: Pose and expression robust spatial-aware
gan for customizable makeup transfer. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 5194–5202.

Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2017. Pro-
gressive growing of gans for improved quality, stability, and
variation. arXiv preprint arXiv:1710.10196 .

Karras, T.; Laine, S.; and Aila, T. 2019. A style-based gen-
erator architecture for generative adversarial networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 4401–4410.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.

Langner, O.; Dotsch, R.; Bijlstra, G.; Wigboldus, D. H.;
Hawk, S. T.; and Van Knippenberg, A. 2010. Presentation
and validation of the Radboud Faces Database. Cognition
and emotion 24(8): 1377–1388.

Lee, C.-H.; Liu, Z.; Wu, L.; and Luo, P. 2020. Maskgan:
Towards diverse and interactive facial image manipulation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 5549–5558.

Liu, M.-Y.; Breuel, T.; and Kautz, J. 2017. Unsupervised
image-to-image translation networks. In Advances in neural
information processing systems, 700–708.

Liu, M.-Y.; Huang, X.; Mallya, A.; Karras, T.; Aila, T.;
Lehtinen, J.; and Kautz, J. 2019. Few-shot unsupervised
image-to-image translation. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, 10551–10560.

Liu, Z.; Luo, P.; Wang, X.; and Tang, X. 2015. Deep learn-
ing face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, 3730–3738.

Mescheder, L.; Geiger, A.; and Nowozin, S. 2018. Which
training methods for GANs do actually converge? arXiv
preprint arXiv:1801.04406 .

Park, T.; Liu, M.-Y.; Wang, T.-C.; and Zhu, J.-Y. 2019. Se-
mantic image synthesis with spatially-adaptive normaliza-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2337–2346.

Ricanek, K.; and Tesafaye, T. 2006. Morph: A longitudi-
nal image database of normal adult age-progression. In 7th
International Conference on Automatic Face and Gesture
Recognition (FGR06), 341–345. IEEE.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2818–2826.

2187



W. Liu, W. Chen, Y. Z. L. S. 2020. SATGAN: Augment-
ing Age Biased Dataset for Cross-Age Face Recognition. In
2020 25th International Conference on Pattern Recognition
(ICPR).
Wang, T.-C.; Liu, M.-Y.; Zhu, J.-Y.; Tao, A.; Kautz, J.; and
Catanzaro, B. 2018. High-resolution image synthesis and
semantic manipulation with conditional gans. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, 8798–8807.
Xu, T.; Zhang, P.; Huang, Q.; Zhang, H.; Gan, Z.; Huang,
X.; and He, X. 2018. Attngan: Fine-grained text to image
generation with attentional generative adversarial networks.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, 1316–1324.
Zhang, R.; Isola, P.; Efros, A. A.; Shechtman, E.; and Wang,
O. 2018. The unreasonable effectiveness of deep features as
a perceptual metric. In Proceedings of the IEEE conference
on computer vision and pattern recognition, 586–595.
Zhu, J.-Y.; Park, T.; Isola, P.; and Efros, A. A. 2017a. Un-
paired image-to-image translation using cycle-consistent ad-
versarial networks. In Proceedings of the IEEE international
conference on computer vision, 2223–2232.
Zhu, J.-Y.; Zhang, R.; Pathak, D.; Darrell, T.; Efros, A. A.;
Wang, O.; and Shechtman, E. 2017b. Toward multimodal
image-to-image translation. In Advances in neural informa-
tion processing systems, 465–476.
Zhu, P.; Abdal, R.; Qin, Y.; and Wonka, P. 2020. SEAN:
Image Synthesis with Semantic Region-Adaptive Normal-
ization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 5104–5113.

2188


