
Delving into Variance Transmission and Normalization: Shift of Average Gradient
Makes the Network Collapse

Yuxiang Liu1, Jidong Ge1, Chuanyi Li1 and Jie Gui 2

1 State Key Laboratory for Novel Software Technology, Nanjing University
2 School of Cyber Science and Engineering, Southeast University

yxliu@smail.nju.edu.cn, {gjd, lcy}@nju.edu.cn, guijie@seu.edu.cn

Abstract
Normalization operations are essential for state-of-the-art
neural networks and enable us to train a network from scratch
with a large learning rate (LR). We attempt to explain the
real effect of Batch Normalization (BN) from the perspec-
tive of variance transmission by investigating the relation-
ship between BN and Weights Normalization (WN). In this
work, we demonstrate that the problem of the shift of the
average gradient will amplify the variance of every convo-
lutional (conv) layer. We propose Parametric Weights Stan-
dardization (PWS), a fast and robust to mini-batch size mod-
ule used for conv filters, to solve the shift of the average
gradient. PWS can provide the speed-up of BN. Besides,
it has less computation and does not change the output of
a conv layer. PWS enables the network to converge fast
without normalizing the outputs. This result enhances the
persuasiveness of the shift of the average gradient and ex-
plains why BN works from the perspective of variance trans-
mission. The code and appendix will be made available on
https://github.com/lyxzzz/PWSConv.

Introduction
We have witnessed the growth of deep learning in com-
puter vision. With the maturity of theories for convolutional
neural networks (CNNs) (LeCun et al. 1989; Krizhevsky,
Sutskever, and Hinton 2012), several research directions,
such as image classification (Simonyan and Zisserman 2015;
He et al. 2016a; Szegedy et al. 2016; Huang et al. 2017a) and
object detection (Redmon et al. 2016; Ren et al. 2015; Liu
et al. 2016), can be explored in depth.

Batch Normalization (BN) (Ioffe and Szegedy 2015), ben-
efiting from its ability to accelerate training speed and re-
duce the impact of complex initialization and variance trans-
mission (Glorot and Bengio 2010; He et al. 2015), has been
widely used in most of the state-of-the-art networks. With
the help of normalization, the setting of learning rate (LR) is
no longer scrupulous. Generally, the network (without BN)
will collapse rapidly if a large LR is set for training. In-
tuitively, this is attributed to a large update caused by in-
appropriate LR. By contrast, the appearance of BN allevi-
ates this phenomenon. Moreover, BN accelerates the con-
vergence only by modifying the mean and variance of the
output layer, which is puzzling.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite normalization’s pervasiveness, the real reason for
why they are useful still needs to be studied. However, BN
is not omnipotent. It tends to use large batch size and will
crash by inaccurate batch statistics estimation when we use a
miniature batch size. In (Santurkar et al. 2018; Bjorck et al.
2018), BN was thought to make the optimization landscape
significantly smoother. Many variants (Ba, Kiros, and Hin-
ton 2016; Ulyanov, Vedaldi, and Lempitsky 2016; Wu and
He 2018; Luo et al. 2019) of BN are proposed. Nonetheless,
they may not replace BN entirely because of time cost, per-
formance, and other factors. Inspired by those methods of
conducting normalization on outputs, weight normalization
(WN) (Salimans and Kingma 2016) and other variants (Qiao
et al. 2019; Huang et al. 2017b, 2018) that conduct nor-
malization on filters’ weights are proposed. Those methods
which normalize the filters usually cooperate with BN to
speed up convergence. Many of them may not work if the
scale of the output is out of control. Although BN and other
methods are effective, changing the outputs may block the
variance transmission and lose some information. To better
understand why normalizing the outputs is beneficial, we in-
tend to analyze BN from the perspective of variance trans-
mission. We attempt to find a method, which is equivalent
to BN and simultaneously robust to mini-batch size. In this
way, we may find out why BN works to some extent.

In this paper, we study the variance transmission to find
out why BN can speed up convergence and keep the network
stable when we use a large LR. We point out that the shift
of the average gradient, which is reduced by BN and WN
inadvertently, will hinder network training. Therefore, we
present Parametric Weights Standardization (PWS) as an al-
ternative to BN and WN. PWS solves the shift of the average
gradient by normalizing outputs. It needs less computation
and is robust to mini-batch size. Moreover, PWS does not
directly control the output variance. PWS acts the same as
normal conv operation. We have carried out object detection
task in VOC and COCO (Lin et al. 2014) datasets, and image
classification task in CIFAR10 and ImageNet (Russakovsky
et al. 2015). All models are trained from scratch (Shen et al.
2017; Zhu et al. 2019) to exploit the power of normalization.
We refocus on variance transmission to find the discrepancy
among normalization operations. Our contributions are:

• Theoretically, we reveal how the shift of the average gra-
dient makes a significant impact on variance transmission.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

2216

A huge variance will increase the scale of the gradient.
Thus the network collapses.

• We propose Parametric Weights Standardization (PWS), a
fast and robust to mini-batch size normalization operation,
to solve the shift of the average gradient. Even if we use a
large LR, PWS can still be trained without modifying the
variance of the output layer. The variance transmits natu-
rally. The relationship between BN and PWS may prove
why BN is useful.

• The results indicate that normalizing outputs is not unique
to get better results and faster convergence speed.

The Shift of the Average Gradient
Variance Transmission
To understand the role of the shift of the average gradient,
we first pay attention to the variance transmission and how
the scale of variance influences on the gradient. For a conv
layer, we can get

Yl = Xl ⊗Wl + bl, Xl+1 = f(Yl). (1)

Here, l represents the index of a layer. ⊗ represents the con-
volutional operation. Y is the output feature map, which is a
ŵ-by-ĥ-by-d tensor. ŵ and ĥ are the spatial width and height
of the output feature map. d represents the number of output
channels or the number of filters in that conv layer. X is
the input feature map, which is a Rw×h×c tensor. w and h
are the spatial width and height of the input feature map. c
represents the number of input channels of that conv layer.
Wl is a Rk×k×c×d tensor. k is the spatial filter size of that
layer. We use nl = k2c to denote the number of units in one
filter of that conv layer l. b is a d-by-1 vector of biases. f
is the activation function. In our experiments, f function is
ReLU (Nair and Hinton 2010).

Generally, the elements in Wl will be initialized to be
mutually independent of one another and have a symmet-
ric distribution with a zero mean. As in (Glorot and Bengio
2010), we can assume that the elements in Xl are also mu-
tually independent of each other and share the same distri-
bution. The elements in Wl and the elements in Xl are in-
dependent of each other. For any tensor T , we write Var[T]
and E[T] for the shared scalar variance and mean of all el-
ements in T , respectively. ‖T‖ denotes the square root of
the quadratic sum of all elements in T . If we assume that
bl = 0, E[Yl] = nlE[Xl]E[Wl] = 0 and Yl has a symmetric
distribution around zero impacted by Wl. This leads to:

E[X2
l] = E[relu(Yl−1)2] =

1

2
Var[Yl−1],

and Var[Yl] =
1

2
nlVar[Wl]Var[Yl−1].

(2)

For every layer, one suggestion is to initialize Var[Wl] as
2
nl

(He et al. 2015) to transmit variance through ReLU.
Then we focus on the backward propagation case. We get

a estimation from (Glorot and Bengio 2010; He et al. 2015):

Var[∇Xl
L] = (

m−1∏
i=l

θni+1Var[Wi])Var[∇Xm
L], (3)

where m represents the number of layers in our networks.
θ is 1 (Glorot and Bengio 2010) when f ′(0) = 1 and θ is
1
2 (He et al. 2015) when f is ReLU. We use ReLU as func-
tion f . The initialization for Var[Wl] directly impacts on the
gradients for filters in all layers. Var[Yl] and Var[∇Xl

L]
may both explode due to an unreasonable initialization for
W . Since ∇Wl

L = Xl ⊗∇Yl
L, ∇Wl

L will be affected and
the network may collapse. The influence of variance trans-
mission will become significant if the outputs are not nor-
malized. It deserves to research how to train the network
without normalizing the output.

Gradient Explosion Comes From the Shift
Obviously, an inappropriate initialization for weights will
cause the gradient explosion. However, the gradient will also
explode even though we use a suitable initialization method.
We find that a slightly higher LR can also make networks
collapse. Figure 1(a) displays Var[Wo,l−∆Wo,l]/Var[Wo,l]
for every layer. Subscript o is used to index a filter in a layer.
∆Wo,l representsLR×∇Wo,l

L. Here we use SSD (Liu et al.
2016) + VGG (Simonyan and Zisserman 2015) as the object
detection model because it is sensitive to LR. If we set LR as
1e-2 and do not use BN after every conv layer, the network
will collapse. It seems that using a large LR will not change
the variance a lot (Figure 1(a)), but prompts the filter to have
a large shift (Figure 1(b)). The changes of variance for dif-
ferent filters are insignificant (Figure 1(a)). Nevertheless, the
network indeed collapses.

The collapse drives us to define a fine-grained variance
propagation formula. Ignoring the bias, we can get Yo,l =
Xl ⊗Wo,l and E[Yo,l] = nlE[Wo,l]E[Xl] as mentioned be-
fore. For a conv layer, the number of output channels is equal
to the number of filters. We use Nl = d to denote the num-
ber of filters in layer l. According to Figure 1(b), we know
E[∆Wo,l] for different filters in the same layer are distinct,
especially for networks without BN. This shift has a great
impact on variance transmission. Yo,l is a part of Yl, where
Yl is a ŵ-by-ĥ-by-d tensor and Yo,l is a ŵ-by-ĥ matrix. We
can use Var[Yo,l] and E[Yo,l] to express Var[Yl]:

Var[Yo,l] =
1

2
nlVar[Wo,l]Var[Yl−1], (4)

Var[Yl] =Var[Yl−1]

∑
o

1
2nlVar[Wo,l]

Nl
+ Var[nlE[Wo,l]E[Xl]].

(5)

A detailed proof is shown in Appendix. Some researches at-
tribute the variance explosion to the change of input distri-
bution and the amplification of the parameters Wo,l. While
Figure 1(a) shows that Var[Wo,l] are stable and not ampli-
fied too much, even in a collapsed network corresponding to
Figure 1(a). We assume that parameters are initialized rea-
sonably (such as nlVar[Wo,l] = 2 when ReLU is the acti-
vation function) and nlVar[Wo,l] are relatively stable at the
beginning of the training. E[Xl] is independent of subscript
o and can be regarded as a constant in Var[nlE[Wo,l]E[Xl]].
Thus we can get:

Var[Yl] ≈ Var[Yl−1] + E2[Xl]Var[nlE[Wo,l]]. (6)

2217

(a) Var[Wo,l − ∆Wo,l]/Var[Wo,l] (b) Average gradients in a layer (V ar[nlE[∆Wo,l]])

Figure 1: Measuring the gradients for Wo,l (Figure a) and the divergence of different filters at the same layer (Figure b). We
use o to index a filter in a conv layer. Therefore, Wl is a k-by-k-by-c-by-d tensor and Wo,l is a k-by-k-by-c tensor. ∆Wl can
be computed as LR × ∇Wl

L. Figure a shows the influence of a training step on the variance of Wo,l using SSD backbone
(standard). It is explicit that the variance does not have a huge fluctuation even though the network cannot be trained. Figure b
shows the variance of the mean value of different filters at the same layer, represented by Var[nlE[∆Wo,l]]. The value for the
standard backbone is too large, thus we divide it by 10. Figure b may mean that gradients for each filter in a layer have distinct
mean value. Var[nlE[∆Wo,l]] represents the extent of the shift of the average gradient.

Generally, variance is transmitted through
∑

o
1
2nlVar[Wo,l]

Nl
.

Var[E[Wo,l]] ≈ 0 when we initialize Wl. Thus Var[Yl] is
in normal range transmitted by Var[Yl−1]. Everything has
changed when Var[nlE[Wo,l]] increases. It is worth men-
tioning that the shifts of E[Wo,l] are all coming from gra-
dients because we initialize E[Wo,l] to 0. Thus the curves
in Figure 1(b) imply an excessive shift on E[Wo,l]. Even
though Var[nlE[Wo,l]] has been divided by 10 for readabil-
ity, the maximum of this value is up to 5 at initial layers.
E2[Xl] is less than 1

2Var[Yl−1], but E2[Xl] will not be too
small because the elements inXl are all greater than or equal
to 0. The range of E2[Xl] and E2[Xl]/E[X2

l] for every layer
is shown in Appendix. The increase in Var[Yl] may impact
on E[Xl+1] and is transmitted to latter layers. At last few
layers, Var[nlE[Wo,l]] is theatrically up to 30. Those shifts
in different filters are continuously multiplied. Normal trans-
mission may be destroyed by shift of the average gradient.

BN’s Effect on the Shift of the Average Gradient
First, we discuss about how BN reduces the shift of the
average gradient. Formally, we can define a simplified BN
of a certain channel of a layer l by formula Ŷo = Yo−µo

σo
,

where µo = E[Yo] and σ2
o = Var[Yo] + ε. Subscript o

is used to index an output channel. ε is a small constant.
Yo and Ŷo is an N -by-w-by-h tensor. w and h are the spa-
tial width and height of the output feature map. N is the
batch size. We use n = N × w × h to denote the num-
ber of elements in a channel of that output feature map.
Here we define 〈U, V 〉 = vec(U)T vec(V), where vec rep-
resents flattening a tensor in row major order. Additionally,
〈U, V 〉 = U × sum(V) if U is a scalar. sum(V) means the
sum of all elements in V . We can get:

‖∇YoL‖2 = 1
σ2
o
(‖∇Ŷo

L‖2 − 〈1,∇Ŷo
L〉2+〈∇Ŷo

L,Ŷo〉2

n), (7)

E[∇Yo
L] = 0. (8)

Detailed proof is shown in Appendix. ‖∇Yo
L‖ will be re-

stricted by the σo compared with ‖∇Ŷo
L‖. Thus σo impacts

on the gradients forWo. Moreover, E[∇YoL] = 0 reduce the
shift on the weights when backward propagation. As Fig-
ure 1(b) has shown, the shift for filters with BN is reduced.

For every channel Yo in the output feature map, which
is computed by Wo, BN will make it zero-mean. There-
fore, the influence of the shift of the average gradient will
be eliminated because BN’s zero-mean operation will let
Var[E[Ŷo,l]] be zero, although it changes the output informa-
tion. We speculate that we can get an analogous result with-
out scaling if we keep a robust variance transmission. For
Layer Normalization (LN) (Ba, Kiros, and Hinton 2016), In-
stance Normalization (IN) (Ulyanov, Vedaldi, and Lempit-
sky 2016), Group Normalization (GN) (Wu and He 2018),
and Switchable Normalization (SN) (Luo et al. 2019), the
zero-mean operation of those methods also reduces the shift
of the average gradients.

WN’s Effect on Variance Transmission
Instead of normalizing the outputs, WN divides the filter
weights by its Frobenius norm. Formally, we can define a
simplified WN of a filterW in a conv layer by Ŵ = g

‖W‖W ,
where g is a scalar and W is a k-by-k-by-c tensor. c repre-
sents the number of input channels of that conv layer. k is
the spatial filter size of that layer. We also use nl = k2c to
denote the number of units in a filter of that conv layer l. For
a conv operation, WN use Ŵ instead of W to compute the
final output. If we set g to a small value, such as 1, instead of
Data-Dependent Initialization (Salimans and Kingma 2016),
networks with WN can be trained with a large LR. The rea-
son might be the constrained Var[Ŵ]. We can get Var[Ŵ]:

Var[Ŵ] =
g2Var[W]

‖W‖2
=
g2

nl

Var[W]

Var[W] + E2[W]
. (9)

The elements in W will be initialized to a symmetric dis-
tribution with a zero mean. E[W] ≈ 0 is established at the

2218

beginning, leading Var[Ŵ] to g2

nl
. Considering (2), we know

that the value of 1
2nlVar[Ŵl] = g2

2 should be constrained.
We assume that E[W] ≈ 0 at the beginning. E[∇WL] will
be constrained when we set g as 1 due to:

E[∇WL] =
g

‖W‖
E[∇ŴL], (10)

‖∇WL‖2 =
g2

‖W‖2
(‖∇ŴL‖

2 −
〈∇ŴL, Ŵ 〉2

g2
). (11)

The detailed proof is shown in Appendix. Filters will be ini-
tialized so that nlVar[W] = ‖W‖2 = 2 as we mentioned
above. g

‖W‖ = g√
2

directly affect the gradients and the shift
of the gradients. A suitable g will prevent the gradient from
overflow and shift. However, Data-Dependent Initialization
sets g to maintain an equivalent variance between the layer’s
input and output. It may set g to be relatively large, such as√

2, which amplifies the shifts and becomes unstable.
Moreover, the gradient for filter W will increase due to

the weight decay, and finally numeric overflow if LR is large.
(11) seems to be similar to BN’s. ‖∇ŴL‖2 will subtract an
non-zero value and be constrained by ‖W‖2. The input’s
variance is stable and will not descend a lot during the train-
ing. However, ‖W‖ will be reduced due to the training steps
and the weight decay. The descent of ‖W‖ makes the gradi-
ents greater. When we use a large LR and maintain an equiv-
alent variance, the network becomes sensitive and easy to
collapse. The detailed illustration is shown in Appendix.

Parametric Weights Standardization (PWS)
To deal with the shift of the average gradient, we focus on
how to solve the gradient shift elegantly without normaliz-
ing the outputs. Generally, normalizing the outputs requires
more computation than normalizing the filters. However,
many methods of normalizing filters do not take the output
variance and the computation into account. Most of them
should be used with BN, GN or other methods of normal-
izing the outputs. These methods increase the burden of the
network to get a better result. To become robust to mini-
batch size, and become faster and stabler than those meth-
ods, we defined a PWS layer as follow:

Ŵo =

√
2

nl

Wo − E[Wo]√
Var[Wo] + γ

,

and Yo = αo ·X ⊗ Ŵo + βo.

(12)

Here Wo is a k-by-k-by-c tensor. c represents the number
of input channels of that conv layer. k is the spatial filter
size of that layer. Subscript o denotes the index of a filter at
that layer. nl = k2c denotes the number of units in a filter
of that conv layer l. Yo is a channel of the batch of output
feature map as defined above. X is a batch of input feature
map. αo, βo and γ are scalars. αo and βo are trainable and γ
is fixed. Var[Wo] and E[Wo] represents the calculated vari-
ance and mean of all elements in Wo. It is crucial to mul-
tiply Wo−E[Wo]√

Var[Wo]+γ
by

√
2/nl to maintain a correct variance

of Ŵo. Most methods that normalize the filters do not adjust

the filters’ variance and subsequently amplify the outputs.
The variance will explode due to (2). It is straightforward
that we can eliminate the shift of the average gradient on
different filters by letting E[Ŵo] ≡ 0 due to:

E[∇Wo
L] = −

√
2

nl

E[Ŵo]〈∇Ŵo
L, Ŵo〉

nl
√

Var[Wo] + γ
= 0. (13)

The gradient here is similar to BN’s. However, this gradi-
ent will directly act on Wo. Thus the gradient for Wo will
not shift. Moreover, E[Ŵo] and E[Yo] are correlated due to
E[Yo] = nlE[X]E[Ŵo] at the beginning of the training, in-
dicating that centralizing the filters is equivalent to central-
izing the outputs from the perspective of variance transmis-
sion. PWS does not make a strong assumption of letting dif-
ferent inputs to have the same mean value of outputs, which
is different from IN. The relationship between BN and PWS
may be that they both solve the shift of the average gradient
by making E[Yo] in different channels equal. This perspec-
tive helps us understand why BN works well and why we
can use a large LR with BN. Moreover, PWS can be reset
to a normal conv layer in the inference stage because PWS
does not change the output variance.

Trainable Parameter α
Think about BN’s case. In the inference stage, BN will ap-
ply constant σo and µo on the output. Here σo and µo are
calculated by moving mean during the training steps. σo and
µo are fixed values when testing. If we let Po = Wo/σo and
Qo = βo − µo/σo, the complete operation will just seem
like a regular convolution operation that Yo = X⊗Po+Qo.
However, the variance of Ŵo is fixed if we use PWS with-
out α. Thus the output channels will not be attached to a
weight and have the same variance. PWS will let the filters
in the same layer to have a different weight with α. Simulta-
neously, α will make PWS layer act the same as conv layer.

Parameter γ
The difference between normalizing outputs and normaliz-
ing filters is that the denominator σ in BN is stabler than
the denominator in those methods of normalizing filters.√

Var[Wo] will continuously decrease. Figure 2(a) shows
the variance of Wo during the training. The variance will
be reduced due to weight decay. As the training goes on,
the gradient for Wo will increase. If we do not use a large
LR, the network may benefit from this increase and con-
verge faster. However, the network may collapse when we
use a large LR. γ in

√
Var[Wo] + γ is not acting as ε in BN.

As Figure 2(b) has shown, γ can constrain the increase of
the reciprocal. Note that with a large LR, even though we
set γ to 1e-3 (Var[Wo] is less than 1.6e-3), the network may
also converge. A suitable γ adjusts the training gradient to
an acceptable range when we use a large LR. We will show
the results in the Experiment part.

Experiments
We conduct experiments in object detection and image clas-
sification tasks. To prove PWS’s usability, we use VGG (Si-

2219

(a) Variance of Wo (b) 1/
√
V ar[Wo] + γ

Figure 2: Measuring the minimum of Var[Wo] in the third conv layer of the backbone for image classification. The training
settings are the same as in the Experiments part except for LR and γ. Here LR is 5e-2. The curves of different results adopt
different γ. Figure a shows that Var[Wo] will decrease when the network is training. Var[Wo] decreases faster, especially at the
beginning of the training. γ will not hinder the training of the network and a proper γ will make 1√

Var[Wo]+γ
stabler.

Figure 3: Training conditions of different methods.

monyan and Zisserman 2015) and ResNet (He et al. 2016b)
as backbones and train all models from scratch with a large
LR. It should be mentioned that we remove all BN layers
in the backbone to verify our method’s effect. For ResNet,
we only remove all BN layers. The network structure is not
modified. ReLU is the activation function. We use HE ini-
tializer (He et al. 2015) for IN, GN, BN, and SN. We use the
same initializer strategy as (Salimans and Kingma 2016)
for WN. For PWS, we find that

√
2/nl(Var[Wo] + γ) will

impact on ‖∇Wo
L‖2. Suppose we initialize the values of

all filters in different layers to follow the same distribution.
In that case, the gradients for those filters cannot match the
gradients for normal conv operation due to different nl. To
match the gradients for normal conv operation, we use HE
initializer for PWS rather than set a fixed variance for filters
in different layers. αo is set to 1 and βo is set to 0. γ is con-
stant for all layers in our experiments. Weight decay for αo
is set as 0. Detailed settings for PWS refer to the configura-
tion in our code repository. Class-wise scores and inference
time will also be exhibited in our code repository.

Object Detection in VOC07
All experiments are conducted on SSD (Liu et al. 2016)
structure. The LR is set to 1e-2 and is multiplied by 0.1 after
90 and 170 epochs. For normal conv operation, it should be
mentioned that the network cannot be trained without nor-
malizing outputs when LR is 1e-2. The training finally stops
at 240 epochs. We use stochastic gradient descent (SGD) to
train the models, where the weight decay is set to 0.0005,
and the momentum is set to 0.9. The image size is fixed to
320. We use the same Non-Maximum Suppression (NMS)
operation and data augmentation with SSD. All models are
trained from scratch in Pascal VOC 07+12 and tested in
VOC 07. The train set consists of 16,551 images, and the test
set consists of 4,952 images. We do not use any tricks when
we train our models and do not use a pre-trained model. γ is
set to 1e-3 when LR is 1e-2, and 1e-5 when LR is 1e-3.

Comparison of other normalization methods We exper-
iment with different batch sizes to prove that PWS is robust
to mini-batch size. Figure 3 shows the training condition
with an LR of 1e-2 and a batch size of 16. The f -measure is
calculated by the predicted object box and the ground truth
object box. PWS has a faster convergence speed than other
methods. Table 1 shows the training speed and the mAP re-
sult of different normalization methods in VOC07 test with
an LR of 1e-2. These experiments are conducted on a single
GPU. Training speed represents number of images that can
be trained on an RTX 2080ti per second (batch size= 8). IN,
BN, GN, and SN are methods of normalizing the outputs. IN
does not work well as others, and the possible reason is that
IN eliminates the difference in different channels for differ-
ent images. For every image, IN ensures the E[Yo] ≡ 0. BN,
GN, and SN can work better when training from scratch.
However, BN is not robust to mini-batch size (from 76.74
when batch size is 8 to 72.97 when batch size is 2). GN
and SN train slower and need more resource. WN and PWS
are methods of normalizing the filters. We do not experi-

2220

Batch Size

Methods Training speed (FPS) 2 4 8

IN 35.34 71.43 72.69 72.97
BN 45.66 72.97 75.18 76.74
GN 29.26 75.08 75.26 75.13
SN 28.56 76.29 76.53 76.86

WN (g = 1) 52.11 NaN 76.70 77.06
PWS 52.72 76.93 77.11 77.66

Table 1: Sensitivity to batch size: mAP in VOC07, trained
with 8, 4 and 2 images/GPU.

Component

Methods LR Backbone
√

2/nl in (12) Trainable α γ mAP (%)

Normal conv 1e-3 VGG-16 68.68
BN 1e-3 VGG-16 72.80
SN 1e-3 VGG-16 71.70

PWS 1e-3 VGG-16 X X 1e-5 72.99
PWS 1e-3 VGG-16 X X 1e-3 70.32

BN 1e-2 ResNet-50 75.83
PWS 1e-2 ResNet-50 X X 1e-3 77.19
BN 1e-2 VGG-16 77.00

PWS 1e-2 VGG-16 1e-3 NaN
PWS 1e-2 VGG-16 X 1e-3 74.96
PWS 1e-2 VGG-16 X X 1e-3 77.52
PWS 1e-2 VGG-16 X X 1e-4 76.50
PWS 1e-2 VGG-16 X X 1e-5 NaN

Table 2: Ablation study in VOC07 test. Batch size is 16.

ment with other methods of normalizing the filters because
most of them should be used with BN or GN in computer vi-
sion tasks. To make WN feasible to use a large LR, we must
manually set g to 1 instead of automatically letting it initial-
ize to ensure the normal spread of variance. Otherwise, the
network will collapse at the beginning of the training. How-
ever, we found that WN will collapse when using a small
batch size. A small batch size leads to more training steps.
${\{}rm Var}[W o]$ becomes smaller due to weight decay,
which may make the gradients explode.

Ablation study for PWS Table 2 shows the ablation study
for PWS. First, without

√
2/nl, the network will directly

collapse (the row of the first NaN result) and the possi-
ble reason is that Var[Wl] = 1 leads to the constraint
1
2nlVar[Wl] to be nl

2 . The row of the first NaN result ver-
ifies that networks may directly collapse if Var[Wo] closes
to 1 and the outputs are not normalized. This result indicates
that some methods that normalize the filters may directly
collapse without BN because they do not concern the vari-
ance. The filters’ variance must be restricted by this constant
parameter to transmit a reasonable variance. The trainable α,
which is used to change the scales of filters, works well, im-
proving the result from 74.96 to 77.52. PWS works well un-
der different LR when the backbone is VGG. γ, as we con-
jecture, constraints the gradient when we use a large LR. The
variance of Wo for a conv layer with 64 filters whose spa-
tial size is 3 is 0.00347 (2

3×3×64). Therefore, setting a large
γ will decrease the performance when we use a small LR
(1e-3). However, we know that the gradients will increase in
WN and PWS. The last row of Table 2 may verify that the
decrease of ‖Wo‖ indeed destroy the training when we use a

Structure Method LR schedule AP bbox AP bbox50 AP bbox75

Mask R-CNN† BN 1x 38.0 58.6 41.4
GN 1x 38.2 59.2 41.1

PWS 1x 38.9 59.6 42.5
SSD BN 1x 25.2 41.3 26.4

PWS 1x 25.3 41.2 26.6
BN 2x 26.6 42.7 28.1

PWS 2x 27.2 44.0 28.7

Table 3: Detection result in COCO. †indicates the imple-
mentation by (Chen et al. 2019).

large LR. Some results have been shown in Figure 2 to illus-
trate how γ affect the reciprocal. When γ is 1e-5, normal LR
can make PWS train well (better than BN in Table 2), but ex-
cessive LR will lead to NaN. To avoid the network collapse
like WN, we should enlarge γ. For a large LR, the training
may not be hindered by a large γ. With a suitable setting,
PWS can work well and stably without any other normaliza-
tion operations compared with WN (collapses when using a
small batch size) and is more robust to mini-batch size than
BN (from 72.97 to 76.93 when batch size is 2).

Object Detection in COCO
We experiment with Mask R-CNN (He et al. 2017) +
FPN (Lin et al. 2017) and SSD structure for COCO dataset.
The settings for SSD are the same as the experiments in
VOC07 except for LR schedule. Batch size is 16 for SSD.
LR is set to 1e-2. The standard LR schedule (1x) contains
80 epochs. LR is multiplied by 0.1 after 30, 50, and 70
epochs, respectively. 2x LR schedule contains 150 epochs.
LR is multiplied by 0.1 after 60, 100, and 140 epochs, re-
spectively. SSD uses VGG-16 as the backbone. The settings
for Mask R-CNN are the same as in (Chen et al. 2019). We
use ResNet-50 as backbone. Mini-batch size is 4. The stan-
dard LR schedule contains 12 epochs. LR is multiplied by
0.1 after 8 and 11 epochs, respectively. For Mask R-CNN
we use pretrained model to alleviate the impact of batch size
on BN. The train set consists of 118k images, and the test
set consists of 5k images. For PWS conv, we remove all BN
layers and replace all conv layers in the backbone with PWS
layer. γ is set to 1e-4. Details are available on our github.

Table 3 shows the results in COCO. For Mask R-CNN,
BN gets an inferior result to GN and PWS due to the small
batch size. PWS can provide a competitive result with BN
and GN and be robust to mini-batch size. For SSD, the re-
sults for LR schedule 1x and LR schedule 2x imply that
PWS can get similar results to BN under normal batch size.
Moreover, PWS does not normalize the outputs and needs
less computation, which is distinctive and promising.

Image Classification in CIFAR10
We experiment with PWS for image classification task in
CIFAR10. This dataset consists of 60k images, with 50k
training examples and 10k test examples. The LR for net-
works is multiplied by 0.1 after 100, 150, and 180 epochs,
respectively. The training finally stops at 200 epochs. We use
stochastic gradient descent (SGD), where the weight decay

2221

Figure 4: Top-1 error for CIFAR-10 (LR:5e-2).

Residual Plain

Methods LR: 1e-1 LR: 5e-2 LR: 1e-1 LR: 5e-2

Normal 8.82 9.11 7.28 7.40
BN 6.12 9.14 5.90 7.67
GN 6.82 9.09 6.77 7.54
SN 6.19 8.90 5.95 7.34

WN 7.18 7.41 6.98 7.38
PWS 6.50 6.75 6.16 6.30

Table 4: The classification error for CIFAR-10

is set to 0.0005, and the momentum is set to 0.9. The batch
size is 128. The image size is fixed to 32. γ is set to 1e-3 for
PWS. We follow the simple data augmentation in (Lee et al.
2015) for training. All models are trained from scratch.

We use both plain and residual architectures to verify
the generality of PWS. The plain architecture is similar to
the ConvPool-CNN-C architecture of (Springenberg et al.
2015), with a modification that abandons all dropout layers.
The residual architecture is the same as (He et al. 2016a).
Details about the network architecture will be presented in
Appendix. GN does not work well. A possible reason may
be that the number of channels in a layer is not large enough.
In this experiment, γ will not affect a lot because the network
is not deep enough. From Table 4, we find BN, GN, and SN
will not work better than PWS when LR is small, which may
due to the change of output variance. When the LR is set
to 1e-1, PWS works not the best. This may be because the
gradients for α are too large, leading to some unreasonable
updates. Therefore, PWS and WN will both be affected.

Image Classification in ImageNet
We experiment with PWS for image classification task in
ImageNet. We train on the 1.28M training images and eval-
uate on the 50k validation images. We use ResNet-50 as
our backbone. The setting for PWS is the same as we dis-
cussed in COCO detection task. To get equivalent outputs
and gradients to BN, we use LN to normalize the input and
the output of ResNet-50. It should be emphasized that we
remove all BN layers in ResNet-50. Batch size is 64. LR is
0.025 at the beginning and multiplied by 0.1 after 30, 60,
and 90 epochs. The training finally stops at 100 epochs. We
use stochastic gradient descent (SGD), where the weight de-
cay is set to 0.0001, and the momentum is set to 0.9. The

Figure 5: Top-5 error for ImageNet val set.

Measurement BN GN LN IN WN PWS

val error (%) 23.6 24.3 25.3 28.4 28.2 24.0

Table 5: Comparison of top-1 error rates (%) of ResNet-50
in the ImageNet validation set.

image size is fixed to 224. We follow the same data augmen-
tation strategy in ResNet-50. From Table 5, it seems that
PWS may not work the best for classification task. How-
ever, PWS gets a similar result to GN. On the contrary, WN
has degraded performance on ImageNet. PWS is the only
method which normalize the filters and get a competitive re-
sult. Moreover, PWS requires less computation (Table 1) and
converges faster (Figure 4 and Figure 5).

Conclusion
PWS is similar to BN. However, it is robust to mini-batch
size. The variance transmits naturally with PWS. PWS also
has a faster training speed than other normalization opera-
tions. The experiment results show that the average gradi-
ent migration can affect the network training. Moreover, the
results of PWS indicate that normalizing outputs is not the
only way to get better results and faster convergence speed.

Nevertheless, it still has problems. We must pay more
attention to variance transmission due to the decrease of√

Var[Wo] + γ. The network can benefit from a proper γ,
which is different from WN. Therefore, how to find a suit-
able γ automatically remains a problem. Our suggestion is
to use a large γ when LR is large and use a small γ when LR
is suitable for normal conv. If your network is not deep, the
choice of γ will not have a huge impact. One suggestion for
the choice of γ is to set it as 0.1

√
nl/2.

In this paper, we theoretically analyze the effect of BN
from the perspective of variance propagation. We guess that
the shift of the average gradient is a problem, which causes
the network to collapse. We propose a fast and robust to
mini-batch size method called PWS. It is proved that BN
and PWS play the same role in the shift of the average gradi-
ent, indicating why BN is beneficial. PWS provides another
way to speed up the network fitting. We refocus on variance
transmission, which is critical to help us understand how net-
works work and how to make the network more robust.

2222

Acknowledgments
This work was supported by National Natural Science
Foundation of China (No.61802167, No.61802095), Nat-
ural Science Foundation of Jiangsu Province (Grant
No.BK20201250), and Open Foundation of State key Lab-
oratory of Networking and Switching Technology (Beijing
University of Posts and Telecommunications) (SKLNST-
2019-2-15). Jidong Ge and Jie Gui are the corresponding
authors of this paper.

References
Ba, J. L.; Kiros, J. R.; and Hinton, G. E. 2016. Layer nor-
malization. arXiv preprint arXiv:1607.06450 .

Bjorck, N.; Gomes, C. P.; Selman, B.; and Weinberger, K. Q.
2018. Understanding batch normalization. In NIPS 2018,
7694–7705.

Chen, K.; Wang, J.; Pang, J.; Cao, Y.; Xiong, Y.; Li, X.; Sun,
S.; Feng, W.; Liu, Z.; Xu, J.; Zhang, Z.; Cheng, D.; Zhu, C.;
Cheng, T.; Zhao, Q.; Li, B.; Lu, X.; Zhu, R.; Wu, Y.; Dai,
J.; Wang, J.; Shi, J.; Ouyang, W.; Loy, C. C.; and Lin, D.
2019. MMDetection: Open MMLab Detection Toolbox and
Benchmark. arXiv preprint arXiv:1906.07155 .

Glorot, X.; and Bengio, Y. 2010. Understanding the diffi-
culty of training deep feedforward neural networks. In AIS-
TATS 2010, 249–256.

He, K.; Gkioxari, G.; Dollár, P.; and Girshick, R. 2017. Mask
r-cnn. In ICCV 2017, 2961–2969.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving
Deep into Rectifiers: Surpassing Human-Level Performance
on ImageNet Classification. In ICCV 2015, 1026–1034.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016a. Deep Resid-
ual Learning for Image Recognition. In CVPR 2016, 770–
778.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016b. Identity Map-
pings in Deep Residual Networks. In ECCV 2016, 630–645.

Huang, G.; Liu, Z.; van der Maaten, L.; and Weinberger,
K. Q. 2017a. Densely Connected Convolutional Networks.
In CVPR 2017, 2261–2269.

Huang, L.; Liu, X.; Lang, B.; Yu, A. W.; Wang, Y.; and
Li, B. 2018. Orthogonal Weight Normalization: Solution
to Optimization Over Multiple Dependent Stiefel Manifolds
in Deep Neural Networks. In AAAI 2018.

Huang, L.; Liu, X.; Liu, Y.; Lang, B.; and Tao, D. 2017b.
Centered Weight Normalization in Accelerating Training of
Deep Neural Networks. In ICCV 2017, 2822–2830. IEEE
Computer Society.

Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift. In ICML 2015, 448–456.

Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
ageNet Classification with Deep Convolutional Neural Net-
works. In NIPS 2012, 1106–1114.

LeCun, Y.; Boser, B. E.; Denker, J. S.; Henderson, D.;
Howard, R. E.; Hubbard, W. E.; and Jackel, L. D. 1989.
Backpropagation Applied to Handwritten Zip Code Recog-
nition. Neural Computation 1(4): 541–551.
Lee, C.; Xie, S.; Gallagher, P. W.; Zhang, Z.; and Tu, Z.
2015. Deeply-Supervised Nets. In AISTATS 2015, vol-
ume 38 of JMLR Workshop and Conference Proceedings.
JMLR.org.
Lin, T.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ra-
manan, D.; Dollar, P.; and Zitnick, C. L. 2014. Microsoft
COCO: Common Objects in Context 740–755.
Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.;
and Belongie, S. 2017. Feature pyramid networks for object
detection. In CVPR 2017, 2117–2125.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S. E.;
Fu, C.; and Berg, A. C. 2016. SSD: Single Shot MultiBox
Detector. In ECCV 2016, 21–37.
Luo, P.; Ren, J.; Peng, Z.; Zhang, R.; and Li, J. 2019. Differ-
entiable Learning-to-Normalize via Switchable Normaliza-
tion. In ICLR 2019.
Nair, V.; and Hinton, G. E. 2010. Rectified Linear Units
Improve Restricted Boltzmann Machines. In ICML 2010,
807–814.
Qiao, S.; Wang, H.; Liu, C.; Shen, W.; and Yuille, A. 2019.
Weight standardization. arXiv preprint arXiv:1903.10520 .
Redmon, J.; Divvala, S. K.; Girshick, R. B.; and Farhadi,
A. 2016. You Only Look Once: Unified, Real-Time Object
Detection. In CVPR 2016, 779–788.
Ren, S.; He, K.; Girshick, R. B.; and Sun, J. 2015. Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. In NIPS 2015, 91–99.
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh,
S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein,
M. S.; et al. 2015. ImageNet Large Scale Visual Recogni-
tion Challenge. International Journal of Computer Vision
115(3): 211–252.
Salimans, T.; and Kingma, D. P. 2016. Weight normaliza-
tion: A simple reparameterization to accelerate training of
deep neural networks. In NIPS 2016, 901–909.
Santurkar, S.; Tsipras, D.; Ilyas, A.; and Madry, A. 2018.
How Does Batch Normalization Help Optimization? In
NIPS 2018, 2488–2498.
Shen, Z.; Liu, Z.; Li, J.; Jiang, Y.; Chen, Y.; and Xue, X.
2017. DSOD: Learning Deeply Supervised Object Detectors
from Scratch. In ICCV 2017, 1937–1945.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convo-
lutional Networks for Large-Scale Image Recognition. In
ICLR 2015.
Springenberg, J. T.; Dosovitskiy, A.; Brox, T.; and Ried-
miller, M. A. 2015. Striving for Simplicity: The All Con-
volutional Net. In ICLR 2015.
Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; and Wojna,
Z. 2016. Rethinking the Inception Architecture for Com-
puter Vision. In CVPR 2016, 2818–2826.

2223

Ulyanov, D.; Vedaldi, A.; and Lempitsky, V. 2016. Instance
Normalization: The Missing Ingredient for Fast Stylization.
arXiv: Computer Vision and Pattern Recognition .
Wu, Y.; and He, K. 2018. Group Normalization. In ECCV
2018, 3–19.
Zhu, R.; Zhang, S.; Wang, X.; Wen, L.; Shi, H.; Bo, L.; and
Mei, T. 2019. ScratchDet: Training Single-Shot Object De-
tectors From Scratch. In CVPR 2019, 2268–2277.

2224

