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Abstract

The end-to-end Human Mesh Recovery (HMR) approach
(Kanazawa et al. 2018) has been successfully used for 3D
body reconstruction. However, most HMR-based frameworks
reconstruct human body by directly learning mesh parameters
from images or videos, while lacking explicit guidance of 3D
human pose in visual data. As a result, the generated mesh
often exhibits incorrect pose for complex activities. To tackle
this problem, we propose to exploit 3D pose to calibrate hu-
man mesh. Specifically, we develop two novel Pose Calibra-
tion frameworks, i.e., Serial PC-HMR and Parallel PC-HMR.
By coupling advanced 3D pose estimators and HMR in a
serial or parallel manner, these two frameworks can effec-
tively correct human mesh with guidance of a concise pose
calibration module. Furthermore, since the calibration mod-
ule is designed via non-rigid pose transformation, our PC-
HMR frameworks can flexibly tackle bone length variations
to alleviate misplacement in the calibrated mesh. Finally, our
frameworks are based on generic and complementary integra-
tion of data-driven learning and geometrical modeling. Via
plug-and-play modules, they can be efficiently adapted for
both image/video-based human mesh recovery. Additionally,
they have no requirement of extra 3D pose annotations in the
testing phase, which releases inference difficulties in prac-
tice. We perform extensive experiments on the popular bench-
marks, i.e., Human3.6M, 3DPW and SURREAL, where our
PC-HMR frameworks achieve the SOTA results.

1 Introduction
3D human mesh reconstruction is an important computer vi-
sion task with wide real-life applications such as virtual try-
on, robotics, etc. However, it is often challenging to recon-
struct human body mesh from images or monocular videos,
due to inherent ambiguity in unconstrained environments.

Recently, deep learning has proven to be promising to al-
leviate such limitation (Kanazawa et al. 2018, 2019; Zhang
et al. 2019b; Nikos Kolotouros 2019; Kolotouros et al. 2019;
Sun et al. 2019b; Wang, Shin, and Fowlkes 2020; Kocabas,
Athanasiou, and Black 2020). In particular, a Human Mesh
Recovery (HMR) framework (Kanazawa et al. 2018) has
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Figure 1: Motivation. The widely-used HMR (Kanazawa
et al. 2018) reconstructs human body by directly regress-
ing mesh parameters, while lacking explicit guidance from
3D pose. As a result, it often fails to capture complex pose
variations, e.g., the right arm of this actor. To tackle such
problem, we propose pose calibration for human mesh re-
covery (PC-HMR), which can effectively integrate advanced
3D estimator and HMR in a novel manner to correct mesh.

been gradually used as the mainstream architecture for end-
to-end 3D reconstruction. However, HMR reconstructs body
configuration by directly regressing 3D mesh parameters of
SMPL (Loper et al. 2015), while lacking explicit and ge-
ometrical knowledge of 3D human pose. As a result, the
generated mesh often fails to correctly capture human pose
variations in complex activities, e.g., HMR achieves an un-
satisfactory mesh on the right arm of the actor in Fig. 1.

Hence, our basic idea is to use 3D human pose as guid-
ance to reduce structural ambiguity in the 3D mesh. How-
ever, the ground truth 3D pose is usually unavailable in the
testing phase. Fortunately, 3D pose estimation has recently
made remarkable progress (Martinez et al. 2017; Cai et al.
2019; Pavllo et al. 2019), based on the fast development of
deep learning. Inspired by this observation, we propose to
integrate 3D pose estimators and HMR approaches in a uni-
fied fashion, so that we can take advantage of their comple-
mentary combination to calibrate human mesh.

Specifically, we introduce three contributions in this
work. First, we develop two novel frameworks for Pose
Calibration (PC), i.e., Serial and Parallel PC-HMR. Serial
PC-HMR is a mesh-pose AutoEncoding framework. It can
adaptively refine 3D pose to correct HMR mesh via multi-
level encoding-decoding architecture. Parallel PC-HMR is
a mesh-pose TwoStream framework. It can directly take ad-
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vantages of off-the-shelf 3D pose estimators to deform mesh
in HMR. Based on such serial or parallel manner, these two
frameworks can effectively take tradeoffs between recon-
struction error and computation cost into account. Second,
we design a concise pose calibration module for these two
frameworks. By leveraging non-rigid pose transformation
as guidance, this module can effectively reduce misplace-
ment caused by bone length variations, and thus generate
more natural calibrated mesh. Third, our frameworks are
the generic integration of pose estimators and mesh gener-
ators. On one hand, it can flexibly extend human mesh re-
covery for both images and videos. On the other hand, such
plug-and-play design significantly releases training difficul-
ties, and does not need extra 3D pose annotations for infer-
ence. We evaluate our PC-HMR frameworks on three popu-
lar benchmarks, i.e., Human3.6M, 3DPW, and SURREAL,
where we achieve the SOTA results on mesh reconstruction.

2 Related Works
3D Mesh Reconstruction. SMPL (Loper et al. 2015) has
been widely used for 3D human mesh reconstruction. To
boost its power in practice, a number of deep learning frame-
works have been proposed by using SMPL as a mesh genera-
tion module (Kanazawa et al. 2018, 2019; Kocabas, Athana-
siou, and Black 2020; Sun et al. 2019b; Nikos Kolotouros
2019; Bogo et al. 2016). In particular, HMR (Kanazawa
et al. 2018) is one mainstream framework which regresses
SMPL parameters directly from input images by end-to-
end training. Following this research direction, several ex-
tensions have been introduced to improve 3D mesh recon-
struction in images (Kolotouros et al. 2019; Kanazawa et al.
2019; Sun et al. 2019b; Guler and Kokkinos 2019; Zeng
et al. 2020) or model temporal relations for recovering 3D
mesh in videos (Kanazawa et al. 2019; Kocabas, Athana-
siou, and Black 2020). Additionally, several non-parametric
frameworks have been proposed via voxel-based methods
(Saito et al. 2019; Huang et al. 2020). However, most HMR-
based approaches lack explicit guidance of 3D pose. As a
result, the body parts of generated mesh are often located
at unsatisfactory positions. To alleviate such problem, we
leverage advanced 3D pose estimators to calibrate mesh in
two general PC-HMR frameworks.

3D Pose Estimation. Compared to 3D mesh reconstruc-
tion, 3D pose estimation has achieved more successes via
deep learning. Basically, most current models can be cat-
egorized into two frameworks. The first is to directly esti-
mate 3D pose from images, based on volumetric representa-
tion (Pavlakos et al. 2017; Sun et al. 2018; Pavlakos, Zhou,
and Daniilidis 2018; Wang, Shin, and Fowlkes 2020; Wang
et al. 2019). But these approaches may involve in complex
post-processing steps. Based on the explosive improvement
in 2D pose estimation (Newell, Yang, and Deng 2016; Chen
et al. 2018), another framework is to estimate 2D pose from
images and then lift 2D pose to 3D pose (Martinez et al.
2017; Zhao et al. 2019; Ci et al. 2019; Cai et al. 2019; Pavllo
et al. 2019). Since these approaches take 2D joint locations
as input, 3D human pose estimation simply focuses on learn-
ing depth of each joint. This releases learning difficulty and
leads to better 3D pose. In this work, we use advanced 3D

pose estimators as guidance to calibrate human mesh in the
HMR-based reconstruction approaches. This would disen-
tangle human mesh recovery respectively into shape and
pose modeling, which effectively alleviates pose ambiguity
in the generated mesh.

3 Method
In this section, we first introduce HMR and explain how
to build up our PC-HMR frameworks. Then, we design a
pose calibration module in our frameworks, which uses pose
transformation as guidance to correct HMR mesh.

3.1 3D Human Mesh Recovery
HMR (Kanazawa et al. 2018) is a widely-used deep learning
framework to generate 3D human mesh from images. First,
it uses CNN to estimate 3D mesh parameters from an input
image of human, i.e., Θ = (β,θ,R, t, s) = CNN(Img),
where β refers to human body shape, θ refers to rela-
tive 3D rotation of K joints, and (R, t, s) represent cam-
era parameters. Second, it feeds (β,θ) into the well-known
SMPL (Loper et al. 2015) to generate a triangulated mesh
Mhmr with N vertices,

Mhmr = [Vhmr
1 ,Vhmr

2 , ...,Vhmr
N ]. (1)

Third, it uses a linear mesh-to-pose projector to produce 3D
pose Jhmr,

Jhmr = UMhmr, (2)

where U is a linear projection matrix. Finally, it applies
(R, t, s) within a weak-perspective camera model, which is
a 3D-to-2D pose projector to obtain 2D pose Zhmr,

Zhmr = sΠ(RJhmr) + t, (3)

where Π represents the orthographic projection. By adding
supervision on (Θ, Mhmr, Jhmr, Zhmr), HMR can be ef-
ficiently trained in an end-to-end manner. One can refer
(Kanazawa et al. 2018) for more details.

3.2 Our PC-HMR Frameworks
Directly regressing mesh parameters Θ would introduce
interference of shape modeling when learning 3D pose.
Hence, HMR-based approaches are often limited when cap-
turing complex pose variations. To tackle this problem, we
design two pose calibration frameworks, i.e., serial and par-
allel PC-HMR. With guidance of target (or reference) 3D
pose Jtarget from pose estimators, serial / parallel PC-HMR
can effectively calibrate HMR mesh Mhmr by mesh-pose
autoencoding / twostream.

Serial PC-HMR. As shown in Fig. 2 (a), we first adapt
HMR to be a multi-level autoencoding framework for cali-
bration. (I) 3D Pose AutoEncoding. We use it to generate
target 3D pose Jtarget. Specifically, we notice that success-
ful 3D pose estimators often consist of 2D pose estimator
and 2D-to-3D lifter in the literature (Martinez et al. 2017;
Pavllo et al. 2019). Inspired by this fact, we propose to use
the HMR framework as a 2D pose estimator, and introduce
2D-to-3D pose lifter on top of 3D-to-2D pose projector in
Eq. (3). In this case, pose projector becomes a pose encoder
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Figure 2: PC-HMR Frameworks. Our serial and parallel frameworks provide two generic manners to calibrate HMR mesh with
explicit guidance of 3D pose. More details can be found in Section 3.2.

that encodes HMR 3D pose as HMR 2D pose (Jhmr →
Zhmr), and pose lifter becomes a pose decoder that decodes
HMR 2D pose as target 3D pose (Zhmr → Jtarget),

Jtarget = PoseLifter(Zhmr). (4)

It is worth mentioning that, target 3D pose Jtarget tends to
be better than HMR 3D pose Jhmr via our autoencoding
manner. The main reason is that, Jhmr is generated from a
simple linear projection of HMR mesh Mhmr (Eq. 2), which
has limitation to capture pose variations as mentioned be-
fore. On the contrary, Jtarget is generated from an advanced
2D-to-3D pose lifter, which can effectively leverage data-
driven deep learning to adjust 2D locations of Zhmr and
estimate depth of each joint. In our experiments, we inves-
tigate several well-known pose lifters to show its effective-
ness. (II) 3D Mesh AutoEncoding. After obtaining target
3D pose Jtarget, we design a pose calibration module to cor-
rect HMR mesh Mhmr as calibrated mesh Mtarget. In par-
ticular, we add this calibration module on top of 2D-to-3D
pose lifter, leading to a 3D mesh autoencoder. First, we use
Mesh-to-Pose projector (Eq. 2) as a mesh encoder, which en-
codes HMR 3D mesh into HMR 3D pose (Mhmr → Jhmr).
Then, we use 3D pose autoencoder to map HMR 3D pose
into target 3D pose (Jhmr → Jtarget). Finally, we use the
calibration module as a mesh decoder, which deforms HMR
mesh as calibrated mesh (Mhmr →Mtarget),

Mtarget = Calibration(Mhmr|Jhmr,Jtarget). (5)

Note that, our calibration function uses (Jhmr,Jtarget) as
condition. This is mainly because, this function leverages
non-rigid pose transformation between Jhmr and Jtarget

as effective guidance, to deform HMR mesh as calibrated
mesh. We will further explain this module in Section 3.3.
(III) Training Serial PC-HMR. The output of each encoder
and decoder in our serial PC-HMR has its physical mean-
ing such as 3D mesh, 3D pose or 2D pose. This makes our

training procedure become convenient and flexible, i.e., we
can train each module of our serial PC-HMR separately, and
then fine-tune the entire framework. In our experiments, we
first pretrain HMR (including mesh-to-pose and 3D-to-2D
projectors) and 2D-to-3D pose lifter separately. Then, we
fine-tune the entire framework, by adding 3D pose supervi-
sion on pose lifter and 3D mesh supervision on pose calibra-
tion module. As a result, our serial PC-HMR can effectively
calibrate HMR mesh by 3D pose refinement.

Parallel PC-HMR. To obtain better target 3D pose for
calibration, we adapt HMR as a twostream framework in
Fig. 2 (b). (I) 3D Pose Stream. Instead of pose refinement
in serial PC-HMR, we directly use advanced 3D pose es-
timator as extra stream to generate target 3D pose Jtarget,
e.g., we first apply 2D pose estimator to obtain 2D pose
from the input image (Img → Ztarget), and then use 2D-
to-3D pose lifter to estimate target 3D pose from 2D pose
(Ztarget → Jtarget). Note that, 2D pose Ztarget is bet-
ter than Zhmr in serial PC-HMR. The main reason is that,
Zhmr is indirectly generated through HMR, Mesh-to-Pose
projector, 3D-to-2D projector with complex interference of
shape modeling. On the contrary, Ztarget is directly gen-
erated from advanced 2D pose estimator, which is able to
predict 2D joint locations accurately from an input image.
Subsequently, by using a better 2D pose Ztarget, target 3D
pose Jtarget from this extra stream tends to be more reliable
than the one (Eq. 4) from serial PC-HMR. (II) 3D Mesh
Stream. After obtaining target 3D pose, we introduce a 3D
mesh stream, where we first obtain human mesh from HMR,
and then correct it via pose calibration module (Eq. 5). (III)
Training Parallel PC-HMR. Similar to serial PC-HMR,
parallel PC-HMR can be trained in a flexible manner. In our
experiments, we first pretrain mesh stream (HMR+Mesh-to-
Pose Projector) and pose stream separately, and then fine-
tune the entire framework by adding 3D pose supervision on
pose lifter and 3D mesh supervision on calibration module.
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Figure 3: Non-Rigid Pose Transformation. For an arbitrary
point Jhmr

b on a bone of HMR 3D pose, we design a non-
rigid transformation to find its corresponding point Jtarget

b
on the corresponding bone of target 3D pose. Note that, the
bone length of target 3D pose can be different from that of
HMR 3D pose. Our non-rigid transformation can effectively
tackle this problem by bone extension or shortening (i.e.,
W∆).

Discussions. We discuss the proposed PC-HMR frame-
works from the following aspects. (I) Extension on Video-
Based Mesh Recovery. Our PC-HMR frameworks provide
two generic manners to reconstruct human mesh with ex-
plicit guidance of 3D pose. Hence, they can be straightfor-
wardly extended for video-based mesh reconstruction, by in-
tegrating video-based mesh generators and pose estimators
in our plug-and-play fashion. In our experiments, we will
show flexibility and robustness of our PC-HMR frameworks
for both image/video-based mesh recovery. (II) Accuracy-
Efficiency Tradeoffs. Our PC-HMR frameworks take trade-
offs between reconstruction error and computation cost into
account, i.e., parallel framework achieves a smaller recon-
struction error with extra 3D pose estimation stream, while
serial framework maintains a lighter computation cost by 3D
pose refinement with 2D-to-3D pose lifter. In practice, both
can effectively calibrate HMR mesh. We can choose either
of them, depending on accuracy-efficiency balance.

3.3 Calibration Module
In this section, we further explain pose calibration module
(Eq. 5) in PC-HMR frameworks. To leverage target 3D pose
Jtarget as guidance, we propose to establish transformation
between Jtarget and HMR 3D pose Jhmr. Then, we use
this pose transformation as reference to deform HMR mesh
Mhmr into our calibrated mesh Mtarget. Note that, since
Jhmr and Jtarget may not share the same bone lengths, our
transformation is designed to be non-rigid to alleviate mis-
placement in the calibrated mesh. Moreover, our module is
based on geometrical transformation with learnable param-
eters. Hence, it can take advantages of both physical and
data-driven learning to calibrate HMR mesh effectively.

Non-Rigid Pose Transformation. Without loss of gen-
erality, we mainly describe how to make non-rigid trans-
formation on one bone. Specifically, for one bone in the
HMR 3D pose Jhmr, we denote (Jhmr

p , Jhmr
c , Jhmr

b ) re-
spectively as the parent joint of this bone, the child joint of
this bone, and an arbitrary point on this bone between par-
ent and child joints. For the corresponding bone in the tar-

get 3D pose Jtarget, we use the similar notations such as
(Jtarget

p , Jtarget
c , Jtarget

b ). The parent and child joints in the
bone are defined according to human skeleton, i.e., the top
joint in the bone is parent, and the bottom joint in the bone
is child. Note that, the parent and child joints are given in
both HMR and target 3D poses. Hence, our goal is to build
up non-rigid transformation of any point between Jhmr

b and
Jtarget
b , based on the parent and child joints (Jhmr

p , Jhmr
c )

and (Jtarget
p , Jtarget

c ). The whole transformation process is
shown in Fig. 3. (I) Rotation bmΨ. We first compute the
rotation matrix Ψ, in order to rotate the bone in HMR pose
along the direction of the corresponding bone in target pose.
Specifically, based on Lie algebra, we can compute the rota-
tion vector ψ between bone directions bhmr and btarget,

ψ = arccos

(
bhmrbtarget

‖bhmr‖‖btarget‖

)
bhmr × btarget

‖bhmr × btarget‖
, (6)

where bhmr = Jhmr
p − Jhmr

c , btarget = Jtarget
p − Jtarget

c
and× is cross product. Then, we use Rodrigues rotation for-
mula (Koks 2006) to transform rotation vector ψ into rota-
tion matrix Ψ,

Ψ = cos‖ψ‖I + (1− cos‖ψ‖)φφT + sin‖ψ‖φ
∧
, (7)

where φ = ψ
‖ψ‖ is the unit vector of ψ, φT is transpose of

φ, and φ
∧

=

[
0 −φz φy

φz 0 −φx

−φy φx 0

]
is the cross product

matrix of φ.
(II) Translation T. After joint rotation, we need to align

the rotated joint of HMR bone with the corresponding joint
of target bone. Specifically, we use parent joint as reference,
and compute the translation vector T for alignment,

T = Jtarget
p −ΨJhmr

p . (8)

(III) Non-Rigid Term ∆. Given rotation and translation, we
next transform the child joint of HMR bone Jhmr

c into the
space of target bone,

J̆target
c = ΨJhmr

c + T. (9)

However, there may be gap between J̆target
c and the given

child joint of target pose Jtarget
c , due to bone length varia-

tions between HMR and target poses. To fill up this gap, we
propose a non-rigid term on the child joint,

∆ = Jtarget
c − J̆target

c . (10)

As a result, for an arbitrary point on the bone of HMR pose
Jhmr
b , we can find its corresponding point on the target pose

Jtarget
b , according to a non-rigid transformation as follows,

Jtarget
b = ΨJhmr

b + T + W∆. (11)

As shown in Eq. (11), we first transform Jhmr
b into the space

of target pose, i.e., J̆target
b = ΨJhmr

b + T. Then, we further
improve J̆target

b by proportionally adjusting non-rigid term
W∆ with a learnable parameter matrix W. In this case, our
non-rigid transformation can extend or shorten J̆target

b along
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Figure 4: Mesh calibration with guidance of non-rigid 3D
pose transformation.

the target bone, in order to make correct alignment between
HMR and target 3D poses.

Mesh Calibration. After obtaining pose transformation
in Eq. (11), we use it as an distinct guidance to calibrate
HMR mesh. Specifically, we assume that each vertex on the
mesh follows the similar transformation in Eq. (11). In this
case, we can transform the j-th vertex Vhmr

j in the HMR
mesh Mhmr as

Vtarget
j,i = Ψ(i)Vhmr

j + T(i) + Wj,i∆
(i), (12)

where Vtarget
j,i is the prediction of the corresponding vertex

in the target mesh, according to pose transformation of the
i-th bone (Ψ(i),T(i),∆(i)) . Subsequently, we summarize
the contribution of all the bones by a learnable weight matrix
A, and produce the final prediction of the j-th vertex in the
target mesh Mtarget,

Vtarget
j =

∑
i
Aj,iV

target
j,i . (13)

We can see in Eq. (12)-(13) that, Vtarget
j is generated

by non-rigid pose transformation with learnable parameters
Wj,i and Aj,i. Hence, our calibration module can integrate
geometrical modeling and data-driven learning together to
effectively calibrate HMR mesh.

4 Experiments
Datasets and Implementation Details. To evaluate our PC-
HMR frameworks, we investigate extensive experiments on
three popular benchmarks, i.e., Human3.6M (Ionescu et al.
2014), 3DPW (von Marcard et al. 2018) and SURREAL
(Varol et al. 2017). Specifically, Human3.6M is a popular
motion capture dataset. We use 5 subjects (S1, S5, S6, S7
and S8) for training and 2 subjects (S9 and S11) for test-
ing. 3DPW is an in-the-wild dataset with multiple actors oc-
curred in the same image. We use its official data split for
training and testing. SURREAL is a large-scale synthetic
dataset with SMPL body annotations. We directly evaluate
its test set by our model pretrained on Human3.6M to show
generalization capacity. Moreover, as suggested in the liter-
ature (Kanazawa et al. 2018; Sun et al. 2019b; Rong et al.
2019; Zimmermann and Brox 2017), we mainly use three
protocols to measure accuracy of our generated mesh, i.e.,
Mean Per Joint Position Error (MPJPE), Procrustes Aligned

Human3.6M mpjpe pa-mpjpe mpve
Self-mocap (Tung et al. 2017) 98.4 - 145.8
HMR (Kanazawa et al. 2018) 88.0 56.8 96.1
HMMR (Kanazawa et al. 2019) 85.2 56.7 94.2
VIBE (Kocabas et al. 2020) 65.9 41.5 -
Pose2Mesh (Choi et al. 2020) 64.9 47.0 -
HoloPose (Guler et al. 2019) 60.3 46.5 -
HKMR (Georgakis et al. 2020) 59.6 - -
DSD-SATN (Sun et al. 2019b) 59.1 42.4 -
I2L-MeshNet (Moon et al. 2020) 55.7 41.7 -
DaNet (Zhang et al. 2019a) 54.6 42.9 66.5
Occluded (Zhang et al. 2020) - 41.7 -
SPIN (Kolotouros et al. 2019) - 41.1 -
DecoMR (Zeng et al. 2020) - 39.3 -
Our PC-HMR 47.9 37.3 61.1
3DPW mpjpe pa-mpjpe mpve
HMR (Kanazawa et al. 2018) 128.4 81.8 152.7
DSD-SATN (Sun et al. 2019b) 122.7 69.5 183.4
SPIN (Kolotouros et al. 2019) 96.9 59.2 116.4
VIBE (Kocabas et al. 2020) 93.5 56.5 113.4
I2L-MeshNet (Moon et al. 2020) 93.2 58.6 -
Pose2Mesh (Choi et al. 2020) 89.2 58.9 -
Our PC-HMR 87.8 66.9 108.6
SURREAL mpjpe pa-mpjpe mpve
HMR (Kanazawa et al. 2018) 73.6 55.4 85.1
Self-mocap (Tung et al. 2017) 64.4 - 74.5
Bodynet (Varol et al. 2018) - - 73.6
Our PC-HMR 51.7 37.9 59.8

Table 1: SOTA comparison for human mesh reconstruction
on Human3.6M, 3DPW and SURREAL datasets. For most
metrics and benchmarks, our parallel PC-HMR framework
achieves the SOTA performance, e.g., for Human3.6M, it
outperforms (Sun et al. 2019b; Choi, Moon, and Lee 2020)
that also leverage pose estimators for mesh reconstruction.
This shows our PC-HMR framework is a more effective
manner to boost mesh recovery by human pose.

MPJPE (PA-MPJPE), Mean Per Vertex Error (MPVE). We
implement our PC-HMR frameworks as follows. First, we
choose HMR (Kanazawa et al. 2018) as our basic architec-
ture. Second, for Human3.6m and SURREAL, we use CPN
(Hong et al. 2018) as 2D pose estimator, and VideoPose3D
(Pavllo et al. 2019) as 2D-to-3D pose lifter in our frame-
work. For 3DPW, we use PoseNet (Moon, Chang, and Lee
2019) as 3D pose estimator in our framework. Finally, we
train all the modules separately, according to their official
codes with default hyperparameter and supervision settings.
Then, we fine-tune the entire framework using 3D mesh
as supervision, where we set 90/50 training epochs with
1024/128 mini-batch size for Human3.6M and 3DPW. We
set the learning rate as 0.001 for our calibration module and
1× 10−5 for other modules. We implement our frameworks
by PyTorch. All the codes and models will be released after-
wards.

4.1 SOTA Comparison
In Table 1, our parallel PC-HMR framework achieves the
SOTA performance, e.g., for Human3.6M, it outperforms
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Designs
Mesh Generator 2D-to-3D Pose Lifter 2D Pose Estimator

MPVE↓ GFLOPs↓HMR HMMR SemanticGCN VideoPose3D CPN HRNet
(Kanazawa et al.

2018)
(Kanazawa et al.

2019)
(Zhao et al.

2019)
(Pavllo et al.

2019)
(Hong et al.

2018)
(Sun et al.

2019a)

Baseline X - - - - - 96.1 3.5
- X - - - - 94.2 3.6

Serial

X - X - - - 91.9 3.5
X - - X - - 82.7 3.5
- X X - - - 90.3 3.6
- X - X - - 82.7 3.6

Parallel

X - X - X - 79.0 16.1
X - X - - X 77.3 19.5
X - - X X - 61.1 16.1
X - - X - X 68.6 19.5
- X X - X - 77.1 16.2
- X X - - X 76.2 19.6
- X - X X - 61.1 16.2
- X - X - X 68.4 19.6

Table 2: Generalization capacity (Human3.6M). Our frameworks can be straightforwardly used for video-based mesh recon-
struction without any difficulties, e.g., we apply video-based HMMR (Kanazawa et al. 2019) as mesh generator, or apply
video-based VideoPose3D (Pavllo et al. 2019) as 2D-to-3D pose lifter. More explanations can be found in Section 4.2.

Method HMR Our PC-HMR w/o
Non-Rigid w/o Fine-Tune PC-Template GT 3D Pose Extra

Self-Rotation
w/o Shape

Compensation
MPVE 96.1 61.1 69.3 85.5 125.72 29.9 61.0 61.2

Table 3: Detailed designs of our PC-HMR (Human3.6M).

(Sun et al. 2019b; Choi, Moon, and Lee 2020) that also
leverage pose estimators for reconstruction. This shows
our PC-HMR framework is a more effective manner to
boost mesh recovery by human pose. Additionally, for most
metrics and benchmarks, our PC-HMR outperforms SPIN
(Kolotouros et al. 2019) that plugs iterative SMPLify opti-
mizer into HMR for further calibrating mesh parameters. It
shows our pose calibration is a more preferable calibration
design than traditional optimization.

4.2 Ablation Studies
Generalization Capacity. We mainly use Human3.6M to
further investigate properties of our PC-HMR frameworks.
In Table 2, we examine generalization capacity of our frame-
works, via changing different mesh generators, 2D-to-3D
pose lifters and 2D pose estimators. First, both serial and
parallel frameworks outperform baselines, no matter which
types of mesh generators, pose lifters and estimators we
use. It shows the effectiveness of our pose calibration. Sec-
ond, our proposed frameworks take tradeoffs between re-
covery error and computation cost, i.e., Serial PC-HMR is
lighter while Parallel PC-HMR is more accurate. This pro-
vides more reasonable choices in practice, depending on
which factor is important in the deployment. Third, both
frameworks can be straightforwardly used for video-based
mesh reconstruction without any difficulties. For example,
we use video-based HMMR (Kanazawa et al. 2019) as mesh
generator, or use video-based VideoPose3D (Pavllo et al.
2019) as 2D-to-3D pose lifter in our frameworks. We can

see that, video-based frameworks outperform image-based
frameworks, no matter which styles we use (serial or paral-
lel). It shows the importance of using temporal information.
Moreover, VideoPose3D (Pavllo et al. 2019) is more critical
than HMMR (Kanazawa et al. 2019) for temporal model-
ing, e.g., when we choose VideoPose3D as pose lifter, the
performance would be comparable no matter which mesh
generators we use (HMR or HMMR). It indicates that, it is
more effective to introduce temporal modeling for 3D hu-
man pose, without complex interference of learning mesh
shape. Finally, we use 2D pose in the official code of Video-
Pose3D (Pavllo et al. 2019), where 2D pose estimator refers
to CPN (Hong et al. 2018). Hence, CPN (Hong et al. 2018)
and VideoPose3D (Pavllo et al. 2019) are more compatible
to be a 3D pose estimator, which leads to the best accuracy
in our parallel framework. For other parallel cases, the bet-
ter 2D pose estimator (e.g. HRNet) achieves a better perfor-
mance of mesh recovery as expected.

Detailed Designs. Since MPVE directly reflects recov-
ery error of mesh surface, we use it to evaluate the detailed
designs. Additionally, we choose the parallel framework for
this study, due to its higher accuracy. (I) w/o Non-Rigid. For
comparison, we delete the non-rigid term Wj,i∆

(i) of Eq.
(12) in our pose calibration module. As shown in Table 3, the
non-rigid one achieves a smaller mesh error, showing its ef-
fectiveness. (II) w/o Fine-Tune. In our design, we fine-tune
the entire framework after training each module separately.
We delete this fine-tuning procedure for comparison. As ex-
pected, the setting of fine-tuning is better, since our pose
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Image HMR Our PC-HMR Ground Truth Image HMR Our PC-HMR Ground Truth 

Figure 5: Human Mesh Visualization. The left/right columns are respec-
tively from Human3.6M/3DPW.

Non-Rigid Rigid Non-Rigid Rigid 

Figure 6: Non-Rigid vs. Rigid Transformation.
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Figure 7: Weight Visualization. For bone i, we visualize the trained A(:, i), W(:, i), and A(:, i) ·W(:, i) on the mesh, where
the grey color indicates weights are close to zero, while the bright color means weights are close to one.

calibration module becomes compatible for mesh recovery
via end-to-end learning. Additionally, our pose calibration
module can still boost HMR, even without fine-tuning. It
mainly thanks to geometry modeling in this module. (III)
PC-Template. In our parallel framework, we replace the
HMR mesh stream by a template mesh, and operate pose
calibration module to correct this template mesh to be tar-
get mesh of the input image. In Table 3, our PC-HMR out-
performs PC-Template. It shows that HMR provides more
preferable shape in the mesh, and thus it is reasonable to in-
tegrate our pose calibration module in HMR. (IV) GT 3D
Pose. We use GT 3D pose for comparison. As expected,
GT 3D pose can achieve a better performance. But still, our
PC-HMR with estimated 3D pose significantly outperforms
HMR. (V) Extra Self-Rotation. There may exist a relative
rotation around the bone itself. Hence, we use a two-layer
MLP to estimate it, where we take mesh parameters Θ in
HMR and Ψ in our pose calibration module as input. Then
we multiply the self rotation matrix with Eq. (7) as final rota-
tion matrix in our calibration module. In Table 3, the results
are comparable between our default and extra self-rotation
setting. For simplicity, we use our default setting in the ex-
periments. (VI) w/o Shape Compensation. To reduce de-
tailed shape error, we use a two-layer MLP to estimate 3D
rotation of keypoints in the calibrated mesh, with input of
mesh parameters Θ in HMR and Ψ in our pose calibration
module. Then we feed the estimated 3D rotation into pose
blend shape function of SMPL as post-processing compen-
sation in our framework. In Table 3, the w/o shape compen-
sation setting is slightly worse. Hence, we use our default
setting.

4.3 Visualization
Mesh Visualization. We visualize HMR (baseline) and our
PC-HMR (parallel) in Fig. 5. As expected, our PC-HMR

can generate 3D mesh with more reliable pose, even for oc-
cluded (e.g., Human3.6M) or in-the-wild (e.g., 3DPW) sce-
narios. It indicates the effectiveness of our model.

Weight Visualization. We visualize the trained weights
of our pose calibration module, i.e., A in Eq. (13), W in Eq.
(12) and A ·W. The parallel framework is used as illustra-
tion in Fig. 7. First, A(:, i) controls the importance of bone
i when obtaining each final vertex in the calibrated mesh.
Hence, bone i has more contribution on the vertices around
it. Second, according to Eq. (12)-(13), A(:, i) ·W(:, i) con-
trols the proportion of non-rigid term ∆(i) in bone i. Via
further learning W(:, i), we can see that A(:, i) ·W(:, i) is
gradually highlighted around the child joint of each bone, in
order to proportionally adjust bone length in the calibrated
mesh. Both facts allow us to calibrate HMR mesh smoothly
and reasonably with non-rigid transformation.

Calibration Module. We further show non-rigid trans-
formation in our pose calibration module. We use parallel
framework as illustration in Fig. 6. As expected, the gener-
ated mesh with our non-rigid transformation is much more
natural, without significant misplacement.

5 Conclusion

In this paper, we design two generic plug-and-play PC-HMR
frameworks to calibrate human mesh with explicit guidance
of 3D pose. They leverage a non-rigid pose calibration mod-
ule to couple HMR mesh generators and 3D pose estima-
tors in the serial or parallel manner, so that they can be
flexibly applied for image/video-based mesh recovery, and
have no requirement of 3D pose annotations in the testing.
The extensive experiments on popular benchmarks show our
frameworks significantly boost recovery performance.
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